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Abstract

Background: Vitamin K antagonist (warfarin) is the most classical and widely used oral anticoagulant with assuring
anticoagulant effect, wide clinical indications and low price. Warfarin dosage requirements of different patients vary
largely. For warfarin daily dosage prediction, the data imbalance in dataset leads to inaccurate prediction on the
patients of rare genotype, who usually have large stable dosage requirement. To balance the dataset of patients
treated with warfarin and improve the predictive accuracy, an appropriate partition of majority and minority groups,
together with an oversampling method, is required.

Method: To solve the data-imbalance problem mentioned above, we developed a clustering-based oversampling
technique denoted as DBCSMOTE, which combines density-based spatial clustering of application with noise
(DBCSCAN) and synthetic minority oversampling technique (SMOTE). DBCSMOTE automatically finds the minority
groups by acquiring the association between samples in terms of the clinical features/genotypes and the warfarin
dosage, and creates an extended dataset by adding the new synthetic samples of majority and minority groups.
Meanwhile, two ensemble models, boosted regression tree (BRT) and random forest (RF), which are built on the
extended dataset generateed by DBCSMOTE, accomplish the task of warfarin daily dosage prediction.

Results: DBCSMOTE and the comparison methods were tested on the datasets derived from our Hospital and
International Warfarin Pharmacogenetics Consortium (IWPC). As the results, DBCSMOTE-BRT obtained the highest R-
squared (R?) of 0424 and the smallest mean squared error (mse) of 1.08. In terms of the percentage of patients
whose predicted dose of warfarin is within 20% of the actual stable therapeutic dose (20%-p), DBCSMOTE-BRT can
achieve the largest value of 47.8% among predictive models. The more important thing is that DBCSMOTE saved
about 68% computational time to achieve the same or better performance than the Evolutionary SMOTE, which
was the best oversampling method in warfarin dose prediction by far. Meanwhile, in warfarin dose prediction, it is
discovered that DBCSMOTE is more effective in integrating BRT than RF for warfarin dose prediction.
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application in warfarin treatment.

Conclusion: Our finding is that the genotypes, CYP2C9 and VKORCT, no doubt contribute to the predictive
accuracy. It was also discovered left atrium diameter, glutamic pyruvic transaminase and serum creatinine included
in the model actually improved the predictive accuracy; When congestive heart failure, diabetes mellitus and valve
replacement were absent in DBCSMOTE-BRT/RF, the predictive accuracy of DBCSMOTE-BRT/RF decreased. The
oversampling ratio and number of minority clusters have a large impact on the effect of oversampling. According
to our test, the predictive accuracy was high when the number of minority clusters was 6 ~ 8. The oversampling
ratio for small minority clusters should be large (> 1.2) and for large minority clusters should be small (< 0.2). If the
dataset becomes larger, the DBCSMOTE would be re-optimized and its BRT/RF model should be re-trained.
DBCSMOTE-BRT/RF outperformed the current commonly-used tool called Warfarindosing. As compared to
Evolutionary SMOTE-BRT and RF models, DBCSMOTE-BRT and RF models take only a small computational time to
achieve the same or higher performance in many cases. In terms of predictive accuracy, RF is not as good as BRT.
However, RF still has a powerful ability in generating a highly accurate model as the dataset increases; the software
"WarfarinSeer v2.0" is a test version, which packed DBCSMOTE-BRT/RF. It could be a convenient tool for clinical
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Background
Patients who have atrial fibrillation, valvular heart dis-
ease, thromboembolic disease, etc. need a long-term
oral anticoagulant therapy. Vitamin K antagonist is
the most classical and widely used oral anticoagulant
with assuring anticoagulant effect, wide clinical indi-
cations and low price. Warfarin is the main Vitamin
K antagonist comprehensively used in the clinic
around the world. In recent years, although new oral
anticoagulants (NOACs) are easy to use, they are
relatively expensive, and their indications are relatively
limited. Specific antagonists of NOACs are expensive
and have not yet been marketed in China. NOACs ef-
ficacy can hardly be evaluated by routine tests or
blood concentration tests. In contrast, although war-
farin needs to monitor international normalized ratio
(INR) [1-3] for stable dosage adjustment, its control-
lability and applicability of special symptoms make it
the most cost-effective anticoagulant. Once the indi-
vidual initial dosage can be accurately predicted, the
number of dosage adjustments before stabilization can
be reduced, anticoagulation effectiveness and safeness
of warfarin can be improved, and the mortality of
thromboembolism can be reduced. Individualized dose
prediction of warfarin is a hot research topic in the
field of anticoagulant individualized therapy in recent
years. With the long-term accumulation of warfarin
medical data, the volume and information integrity of
the data are increasing, which provides a basis for the
establishment of individual precise dose prediction
model of warfarin by machine learning method.
Warfarin dosing should be precise for each patient.
However, warfarin dosage requirements of different
patients vary largely. For an individual patient, before
the INR becoming stable within the therapeutic range

and his or her stable dose being figured out, he or
she has to endure quite a long time of numerously
blood tests and dosage adjustments. And this process
is mainly depended on doctor’s experience. To im-
prove the predictive accuracy, many works have de-
veloped their warfarin dose predictive models [4-8]
based on linear regression, such as the well-known
predictive model of International Warfarin Pharmaco-
genetics Consortium (IWPC), Warfarindosing predict-
ive tool, and Yu model, etc. [9-11]. Machine learning
methods [12] such as boosted regression tree (BRT)
[13], artificial neural networks (ANNs) [14, 15] and
support vector regression (SVR) [16] can provide
highly-accurate prediction in warfarin daily dose. BRT
employed a gradient boosting to combine multiple
binary regression trees [17]. We proved that BRT was
able to present accurate prediction on warfarin dos-
age. Random forest (RF) integrated with an oversam-
pling method has been applied in this area [18].

In 2018, Saffian et al. analyzed 22 predictive models
for warfarin dose prediction before 2018 [19], and con-
cluded that these models underpredicted the patients
who require actual dosage > 7 mg/day. They claimed that
it is necessary to deeper understanding of coagulation
mechanisms such that the performance of predictive
models can be improved. In addition, they didn’t give
the reason for inaccuracy of these models. As reported
in Ref [20], the genotype contributes to 43% dose vari-
ability. According to the research [21], the patients with
VKORCI of GG and CYP2C9 of *3/*3 were the minor-
ity, and the others were the majority. The data imbal-
ance leads to inaccurate prediction of models on the
patients with rare genotype, who usually have large
stable dosage requirement. These previous works haven’t
taken the data imbalance into account.
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To balance the data and improve the overall predictive
accuracy, appropriate partition of majority and minor-
ities followed an oversampling technique is needed. In
our previous works [21, 22], the dataset is divided de-
pending on the value of genotypes and important clinical
variables. However, the partition that only involves a few
variables may not accurately obtain minority, whose
members are sparse samples or outliers. Synthetic mi-
nority oversampling technique (SMOTE) have been tried
[21] and evolutionary SMOTE (ESMOTE) was further
proposed to optimize oversampling parameters of for
data balance [22]. However, both of them just focused
on improving the oversampling quality of minority sam-
ples, not care about finding appropriate minority classes.

Warfarin dose prediction is a typical regression prob-
lem. Distinguished from a classification problem, the la-
bels of warfarin dose prediction are continuous warfarin
dosage (mg/daily). There is no label for dividing minor-
ity or majority classes. To accurately find minority clas-
ses, only unsupervised learning methods can be used.
The k-mean algorithm was used to distinguish the ma-
jority and minority [23]. However, k-mean cannot accur-
ately find outliers or boundary samples, which were
probably the minority. In this study, we propose a
clustering-based oversampling method, which integrates
density-based spatial clustering of application with noise
(DBSCAN) [24] and SMOTE [25], to improve the war-
farin dosage prediction. For convenience, this method is
denoted as DBCSMOTE. DBSCAN conducts density
clustering to find minorities in the warfarin dose-effect
dataset, and SMOTE creates new samples for the minor-
ity class. The performance of DBCSMOTE is evaluated
by the dose prediction of a predictive model built on the
training set extended by BDCSMOTE. The ensemble
models, BRT and RF, are used to accomplish this task.

Dataset
Our dataset comes from two sources. One source con-
tains 357 patients, who underwent warfarin treatment in
the Suzhou area, was provided by the Department of
Cardiology in The First Hospital of Soochow University.
The other source contains 235 Han Chinese patients
treated with warfarin, got from IWPC database. So, the
total number of samples in our dataset is 592. The data-
set is divided into a training set of 394 samples, a valid-
ation set of 50 samples and a test set of 148 samples.
Table 1 lists 13 clinical variables and two genotype
variables in warfarin treatment. Many clinical factors can
affect the anticoagulation effect of warfarin, including
age, height, weight, gender, amiodarone and target INR,
which are widely acknowledged as important factors that
affect warfarin dosing. Amiodarone is an antiarrhythmic
medication used to treat ventricular tachycardia or ven-
tricular fibrillation, which is more likely to be taken
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Table 1 clinic variables and genotypes used for warafrin dose
prediction in this study

variables
information Age, Height, Weight, Gender
genotypes CYP2C9, VKORC1

drug and habit Amiodarone, Drinking

clinical variables LA (Left atrium), ALT (Glutamic pyruvic
transaminase), SCr (Serum creatinine),
CHR (Congestive Heart Failure), DM

(Diabetes Mellitus), VR(valve Replacement)
INR target INR

together with warfarin than the other drugs. It has
been proven that the genotypes have a remarkable
influence on warfarin dose-effect. Congestive heart
failure (CHF) and diabetes mellitus (DM) are associ-
ated with INR instability. Valve replacement (VR)
with mechanical valve is an independent predictor of
elevated warfarin sensitivity index. Left atrium (LA)
and Glutamic pyruvic transaminase were tested in
[26], whose effect cannot be entirely certain. They
need further testing.

Data imbalance and minority class
In the dataset of warfarin patients, the unequal number
of patients in clinical or genotype variables, which have
a large influence on warfarin dose-effect, lead to data
imbalance. For instance, both CYP2C9 and VKORCI ac-
count for a large proportion of dosage variability. Pa-
tients with rare genotypes of CYP2C9 and VKORC1
sometimes require an unusually large or small stable
dosage. Meanwhile, patients who take amiodarone or in-
gest alcohol, probably need a reduction on the daily dos-
age. We partitioned minority and majority based on
“genotype”, “amiodarone” and “drinking”, and observed
the data imbalance in terms of three clinical variables.
The data imbalance can be observed from Fig. 1.
The patients who have rare genotypes are the minor-
ity and ones who have popular genotypes (i.e. *1/*1
for CYP2C9, AA for VKORCI1) are the majority. The
proportion of minority and majority in a dataset is
about 1:13, may be even smaller. Furthermore, pa-
tients with *3/*3 for CYP2C9 and AG for VKORC1
are even fewer. Besides, the patients, who took amio-
darone or drank regularly, are grouped as the minor-
ity and the other ones can be the majority. The
number of patients, who took amiodarone, is 90, only
account for 15.33%; the number of drinking patients
is 42 and account for 7.15%. Some samples may be
duplicated in groups of minorities when samples are
partitioned based on different clinical variables. In
this case, the duplicated samples only remain in the
group of minorities, which has fewer samples.
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Fig. 1 minority groups and the effect of minority on predictive accuracy
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Results

Experiment

In the experiment, we take RF, BRT, SVR and Warfarin-
dosing as the baselines in warfarin dose prediction.
ESMOTE with BRT/RF and SMOTE with RF are also
compared with our method. The results and comparison
were discussed in Section “Discussion”.

The initial setting on the parameters of
DBCSMOTE and RE/BRT are given in Table 2. For
DBSCAN and SMOTE, the parameters are the
number of minimum samples in a neighbourhood
centered on a core-sample, the radius and the over-
sampling ratio combination, which were denoted as
MinPts, Eps (i.e. €) and {r}, respectively. #iteration in-
dicates the number of iterations of the greedy strategy
in DBCSMOTE. A RF is composed of 100 classifica-
tion and regression trees (CARTs), while BRT is com-
posed of 150 trees. For trees in RF, the minimum
number of leaves of a parent node is 12 (the depth of
tree is small). In BRT, the number of leaves of a
weak tree model is 12. It is noted that only the initial
range of some parameters are given in Table 2, not
the optimized value of parameters. DBCSMOTE-RF/
BRT and all the comparison methods run on the ma-
chine with CPU of 3.1GHz speed and cache of 4G.

In this study, the collected dataset was sampled five
times in sequence to generate five training, validation
and test sets, respectively. We guarantee each sample
in the dataset will be used for training and test. This
is to evaluate the overall performance of models on

different data distributions. DBCSMOTE-BRT/RF and
all the comparison methods will run ten times on
each training set, and for each training set, the best
trained predictive model was used to calculate the
average value of evaluation metrics in figures.

Evaluation metrics

We use four metrics to evaluate the performance of
models in warfarind dose prediction. They are R-squared
(R%, mean square error (mse), mean absolute error
(mae) and a probability bias (20%-p). The forms of mse,
mae and R? are denoted as (1).

Table 2 setting of experimental parameters

DBCSMOTE-BRT/RF Parameter Value
DBSCAN MinPts {2345}
Eps or ¢ [0.95,1.2]
SMOTE r [02,1.5]
greedy strategy #iteration 100
BRT #max_leaves 12
#tree 150
#features 15
RF min_leaves 12
#tree 100
#features 15
tree type CART
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Here, N indicates the number of samples, j; and y; are
predicted and observed speed, respectively. A small mse
indicates small variance of errors, a small mae indicates
small deviation of model and a large R* leads to good fit-
ness of model.

All the methods use the same number of variables to
build the predictive model. We give the alternative
models a fair chance, which means using same times of
running and on the same hardware.

(1)
R*=1-

Effect of greedy strategy

In this study, a greedy strategy was used to optimize the
parameters of DBCSMOTE (Table 2). We select three
combinations of MinPts, ¢ and {r}, denoted as #1, #2 and
#3, which were obtained by the greedy strategy, to
analyze the effect of parameter optimization. The aver-
age mse, R> and 20%-p of #1, #2 and #3 can be observed
in Fig. 2. It can be seen that DBCSMOTE #1, ¢ of 0.97,
MinPts of 4 and r of {0.2,1.9,0.3,1.3,0.2...}, generated the
most clusters (i.e. 16) but got the largest error and the
smallest R* in dose prediction. DBCSMOTE #2 created
the smallest number of clusters, which yielded higher ac-
curacy than #1 but lower accuracy than #3. DBCSMOTE
#3 generated four minority clusters and yielded the best
performance in dose prediction, i.e. mse of 1.08, R* of 0.48
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and 20%-p of 52%. It was observed that when ¢ is set to an
appropriate value, the number of clusters will be reason-
able and minority samples would be more effective.

The results in Fig. 2 illustrate the necessity of the greedy
strategy used in DBCSMOTE. The parameters of
DBCSMOTE have a large influence on the predictive ac-
curacy. Greedy strategy can search a group of good param-
eters for DBCSMOTE with a small computational effort,
which is much lower than that of ESMOTE. DBCSMOTE
can achieve a good trade-off between predictive accuracy
and computational effort by using greedy search.

Predictive accuracy

In this subsection, we compared DBCSMOTE-BRT/RF
with the other models to observe the performance of dif-
ferent modeling techniques in warfarin dose prediction.
Figures 3, 4 and 5 show the comparison results in terms
of four evaluation metrics on five test sets. Small mse,
large R* and 20%-p of a predictive model implies high
accuracy, a highly fitting quality and a good clinical ap-
plication of the model.

It was observed in Figs. 3, 4 and 5 that DBCSMOTE-
BRT got an average R> of 0.424, average mse of 0.013
and average 20%-p of 47.8%, which performed the best
among these models. As compared to ESMOTE-BRT,
DBCSMOTE-BRT outperformed 25.7% in R* and got a
4.9% reduction on mse. As compared to the base pre-
dictive model BRT, DBCSMOTE-BRT increased by
25.8% in R* and got an overall 6.3% reduction on mse.
Meanwhile, DBCSMOTE-BRT yielded better results
than RF-series models. It illustrated that DBCSMOTE
was surprisingly suitable for BRT in warfarin dose

DBCSMOTE(e = 0.97513, MinPts = 4) DBCSMOTE (¢ = 1.0219, MinPts = 5) DBCSMOTE (¢ = 1.0189, MinPts = 4)
° minpr?ty 0 o minorit\;#o ©  minority #0
x majorty# L, . B#l . W#2 | x mejoriy#t| X majority #1
' 22’333 w | 8o ° N majority #2 majority #2
a oy |% < B 25 majority #3| 25 majority #3
m!n:zt:y " dﬁ% 0{?& m?nrotiy #1
:::rotiz#s R cﬁvg&‘l@? % ° N : 2 x m!nronyg
o o ti
minrotiy #4 ‘5‘/,;,>‘x Qo 8;(0 .5 -, minrotiy
minrotiy #5 AR (X x © ° o
minrotiy #6 LR ';/ * oo 1 ’
minrotiy #7 ’ ”
minrotiy #8 05 05
minrotiy#g 2 25 3 35 4 45 1.5 2 25 3 35 4 45 15 25 3 35 4 45
0.13 0.6 0.55
N #1
0.12 0.4 0.5
0.11 = Ky
' #3
0.09 0 0.4 :
mse R-squared 20%-p
Fig. 2 mse, R-squared and 20%-p of different parameters for DBCSMOTE
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Fig. 3 average mse of methods over five test sets
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prediction. It was also noted that DBCSMOTE-RF out-
performed ESMOTE-RF and SMOTE-RF in these cases,
although it performed worse than DBCSMOTE-BRT.

As shown in Figs.3 and 4, the average mse and R* of
DBCSMOTE-BRT/RF were generally smaller and higher
than that of ESMOTE-BRT, ESMOTE-RF and SMOTE-
RF, respectively. It demonstrated that both BRT and RF
combined with DBCSMOTE can be trained on synthetic
samples of higher quality than that combined with
ESMOTE and SMOTE in these cases.

We also observed the performance of baselines such
as SVR, BRT, RF and Warfarindosing. Among these
baselines, SVR got the similar performance as ESMOTE-
RF, but was worse than BRT series models. Warfarindos-
ing is a tool built by a traditional regression method,
which is the worst one among these models. It is con-
cluded that the base predictive models such as BRT and
RF combined with oversampling technique can outper-
form baselines in warfarin dose prediction.

In terms of 20%-p, it was noted in Fig. 5 that the com-
parison methods achieved the value larger than 45%, ex-
cept  Warfarindosing. Among  these  methods,
DBCSMOTE-BRT obtained the largest 20%-p of 47.8%.
Due to the conflict between mse and 20%-p in some
cases, a small mse may not lead to a large 20%-p. Fortu-
nately, DBCSMOTE-BRT obtained a not bad 20%-p in
the case that it has got a small mse.

Discussion

Advantage and limitation of DBCSMOTE
ESMOTE-BRT/RF and SMOTE-RF were similar models
as DBCSMOTE-BRT/RF, which were trained on the
training set extended by adding new synthesized

average R-squared DBCSMOTE.BRT

W ESMOTE-BRT
W BRT
m DBCSMOTE RF

0.4
m ESMOTE-RF
B SMOTE-RF
0.2 RE
. SVR
m warfarindosin,
0.0 €

Fig. 4 average R’ of methods over five test sets

0.6

average 20%-p

0.6
0.4
0.2
0.0

Fig. 5 average 20%-p of methods

DBCSMOTE-BRT
m ESMOTE-BRT
W BRT
m DBCSMOTE RF
W ESMOTE-RF
= SMOTE-RF

RF

. SVR
m warfarindosing

samples. Since the base predictive models that
DBCSMOTE, SMOTE and ESMOTE combined with are
same, the better generalization and predictive accuracy
of DBCSMOTE-BRT/RF can be attributed to the new
samples synthesized by DBCSMOTE.

Meanwhile, DBCSMOTE has a better trade-off be-
tween the computational time and the quality of minor-
ity clusters than that of ESMOTE. For example, as in
Fig. 6, on a single training set, DBSMOTE can outper-
form ESMOTE 5.2 ~ 8.3% in mse reduction with paying
a much shorter computational time (i.e. average 87 s of
one run). ESMOTE usually spent a long evolutionary
time on calculating the fitness of oversampling parame-
ters even it can find high-quality oversampling parame-
ters. Moreover, the minority groups used for ESMOTE
were generated based on the human knowledge, which
cannot be generalized to different data distributions.
While the minority groups of DBCSMOTE were gener-
ated according to data distribution. Therefore,
DBCSMOTE was obviously a cost effective oversampling
method and can be more widely used in different data
distribution of test sets.

The generalization is a double-edged sword for
DBCSMOTE. On different datasets, DBCSMOTE can
performed generally well, but cannot always be the best
solution. On four out of five test sets, ESMOTE can lead
to equally good or better predictive model than
DBCSMOTE. This is attributed to ESMOTE’s better
oversampling ratio combinations and the high-quality
synthesized samples. In some cases, the greedy strategy
in DBCSMOTE cannot perform as well as ESMOTE in
parameters optimization. For ESMOTE, the cost of a
long optimization time sometimes receive rich returns.

DBCSMOTE vs ESMOTE

time

DBCSMOTE-BRT  m ESMOTE-BRT
W BRT m DBCSMOTE-RF
W ESMOTE-RF HRF

mse

Fig. 6 DBCSMOTE vs ESMOTE in mse and computational time
.
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Another limitation of DBCSMOTE is that the predictive
accuracy of DBCSMOTE model strongly depends on the
quality of minority clustering. Once the clustered minor-
ity samples are not accurate, the predictive accuracy can-
not be improved anyway.

Effect of LA, ALT and SCr
In the feature group shown in Table 1, the clinical vari-
ables, amiodarone and drinking, have been tested and
proven to be effective for dose prediction in previous pa-
pers [26, 27]. As reported in [26, 27], ALT and SCr
didn’t significantly reduce the predictive error in some
cases. This conclusion was based on the small accuracy
reduction of their ensemble model without using ALT
and SCr. However, the trees in the ensemble model,
which were randomly generated by a genetic program-
ming on a small dataset of 289 samples, may haven’t
made full use of ALT and SCr. Hence, the inference that
LA, ALT and SCr have no significant effect on dosage
was probably not accurate. In this study, we test the ef-
fect of LA, ALT and SCr in DBCSMOTE-BRT and -RF
on the larger dataset of 592 samples for warfarin dose
prediction. The comparison results are shown in Fig. 7.
The average mse, mae, R* and 20%-p for comparison
models were also calculated on five test sets.

The value of ALT indicates the pathological changes
of liver, where produces clotting factors. If the liver is
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damaged, clotting factors will be reduced and the body’s
clotting mechanism will not work. SCr is the indicator
of renal function. According to the research work [28],
acute renal injury (AKI) can be caused by volume
hemorrhage caused by excessive anticoagulation. Trad-
itionally, warfarin alone was not the cause of renal in-
jury. However, this report of warfarin induced AKI have
changed this view, a phenomenon known as warfarin re-
lated nephropathy (WRN). Therefore, the patients of
AKI probably should reduce the warfarin dosage for
achieving the target INR. According to the guideline
[29], left atrium (LA) diameter >50 mm was a patient-
related risk factor for thrombosis, which probably has an
influence on the warfarin daily dosage.

It is noted in Fig. 7 that by adding LA, ALT and SCr
to the predictive model, both DBCSMOTE-BRT and -RF
obtained a smaller mse/mae, larger R* and 20%-p. By
using LA, ALT and SCr, the improvement of models on
R* was up to 13.7% and the reduction on mse/mae was
4.38%/6.57%. This illustrates that LA, ALT and SCr have
a certain influence on warfarin dose-effect.

Effect of CHR, DM and VR

In this subsection, we further test the effect of CHR,
DM and VR in DBCSMOTE-BRT/RF for warfarin dose
prediction. The evaluations for models are the same as

-

average mean Squared error

M model without LA, ALT and SCr
B model with LA, ALT and SCr

0.015541892 0.01486 0.0158
0.013528

RF BRT

average R-squared

0.4236

T

0.3872

0.340462906 I
RF

0.324

BR

comparison (d) 20%-p comparison

Fig. 7 comparison between DBCSMOTE-BRT/RF models with and without LA, ALT and SCr (a) mse comparison (b) mae comparison (c) R’

average mean absolute error

0.090381549 0.09095

0.084436

RF
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0.083888

BRT

0445945946 046362

RF

0.44

0.48
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that in the subsection, which tested LA, ALT and SCr.
The comparison results of models are shown in Fig. 8.

The patients, undergoing either mechanical heart valve
or Bioprosthetic valve replacement (VR), need anticoagu-
lation therapy. However, the dose-effect of VR for warfarin
was not clear. Recently, more and more diabetics, espe-
cially older patients, need anticoagulation therapy due to
cardiovascular and cerebrovascular complications of dia-
betes mellitus (DM). Congestive Heart Failure (CHF) is an
uncertainty factor for warfarin treatment. It was reported
that CHF was related to the occurrence rate of deep vein
thrombosis in Japan [30]. This relationship hasn’t been
proven for Chinese patients.

Observed from Fig. 8, DBCSMOTE-BRT/RF using
CHR, DM and VR obviously outperformed the ones
without CHR, DM and VR. For DBCSMOTE-REF, there
was a large improvement when using CHR, DM and VR,
i.e. about 3.6% reduction on mse, 7.5% reduction on
mae, a 12.2% increase on R* and 2.5% increase on 20%-
p. For DBCSMOTE-BRT, when using CHR, DM and
VR, it generally obtained a 3.0% reduction on mse, 6.8%
reduction on mae, a 7.9% increase on R*> and 2.1% in-
crease on 20%-p. Meanwhile, it was discovered that the
model with CHR, DM and VR didn’t always work better
than the model without CHR, DM and VR. On two of
five test sets, the model without CHR, DM and VR
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obtained a smaller error and a larger R-squared. This il-
lustrates that CHR, DM and VR probably have a certain
impact on warfarin dose-effect for a special part of pa-
tients, maybe not so effective for the other patients.

Clinical application
In this study, DBCSMOTE was still tested on a small
dataset. It is known that a large dataset may have sub-
stantially different statistical characteristics between bal-
anced and unbalanced samples, which a small dataset
may not have. However, this may be not an issue to
DBCSMOTE. DBCSMOTE literately conducts the clus-
tering on minority and majority classes by the feedback
of predicted dosage during training. It can be automatic-
ally adaptive to the characteristics between balanced and
unbalanced samples in a new dataset, maybe a large one.
According to the performance of variables in predic-
tion, the features that contain genotypes and amiodarone
are effective in clinical application. Meanwhile, the fre-
quency of occurrence of DM and drinking is much
smaller than that of the other variables in multiple trees.
Therefore, we can conclude that Age, Height, Weight,
ATL, LA, CRH, VR, amiodarone, TargetINR, CYP2C9
and VKORC1 may be effective in warfarin dose predic-
tion. When new clinical variables (race or newly found
gene variations) should be added, our model can be

average mean squared error

0.015416836

0.01486
0.01395
0.013528

RF BRT

average R-squared

0.4236
0.396

BRT

0.3872
0.345096701

RF

comparison (d) 20%-p comparison

B model without CHF,DM,VR
B model with CHF,DM,VR

Fig. 8 comparison between DBCSMOTE-BRT/RF models with and without CHF, DM and VR (a) mse comparison (b) mae comparison (c) R?

average absolute error

0.091356438

054450 0.08455 0.0838388
RF BRT

average 20%-p

0.48
0.47
0.46362 l
BRT

0.452252252
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updated as the process implemented in the Section
“METHODS”. A clustering and training process with
new clinical variables was necessary. For example, the
combination of the original and new variables will be
used as a feature vector input. DBSCAN and SMOTE
are to find minority class and create synthetic samples
with new variables.

Comparison between predictive models

Many clinical trials suggested that the advantages of
pharmacogenetic-guided dosing algorithms over stand-
ard dosing are obvious, whereas the advantages over
clinical variables-guided algorithm are equivocal. Differ-
ent genotype-guided dosing models were utilized in
these trials, such as IWPC model, Warfarindosing and
Yu model. Among the three models, Warfarindosing
was proven the best one [26]. It was trained on a dataset
of 1015 patients and obtained a R*=0.21 on our test
sets. IWPC model got the smallest R* of 0.112 despite it
was trained on the 4000-size dataset. Both IWPC model
and Warfarindosing are recommended by a clinical
guideline [3], while Yu model built on a similar dataset
with ours for Chinese patients. As previous works re-
ported [21, 22, 26], these regression models are not ac-
curate in warfarin dose prediction.

As stated in our previous works, deep learning
methods or neural networks are usually too complex for
warfarin dose prediction. Three baselines, SVR, BRT and
RF, have been tested in warfarin dose prediction. SVR
usually can obtain a good R? which was better than
SMOTE-RF and performed as well as ESMOTE-RF in
some cases. RF and BRT are two ensemble models,
where BRT is more suitable for oversampling methods.
This is because BRT gradually fits all the samples by
adding trees to reduce the bias, making full uses of the
synthesized samples of oversampling, while RF would
not specifically reduce the bias to the synthesized sam-
ples of oversampling. The oversampling method makes
the imbalance dataset more balance and improves the
generalization of the predictive model. Apparently, two
models, DBCSMOTE-BRT and ESMOTE-BRT, have po-
tential in clinical application in the future.

Conclusion

To solve the data imbalance problem in warfarin dose
prediction, we propose a clustering-based oversampling
method called DBCSMOTE. It targets to improve the
balance in warfarin dosage dataset and predictive accur-
acy. DBCSMOTE-BRT/RF was tested on the dataset of
our hospital and IWPC.

DBCSMOTE-BRT obtained a R* of 0.478 and mse of
1.08. In terms of 20%-p, DBCSMOTE-BRT also achieved
a large value of 48%. As compared to ESMOTE models,
DBCSMOTE takes only a small computational time to
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achieve the same or higher performance in many cases.
The oversampling ratio and number of minority clusters
have a large impact on the effect of oversampling. Ac-
cording to our test, the predictive accuracy was higher
when the number of minority clusters was 6 ~ 8. The
oversampling ratio for the minority clusters of small size
should be large (> 1.2) and that for the minority clusters
of relatively large size should be small (< 0.2).

Two genotypes, CYP2C9 and VKORCI, no doubt con-
tributed largely to the predictive accuracy of the predict-
ive model. Moreover, three features, LA, ALT and SCr
included in the model, actually improved the predictive
accuracy on our test sets. When CHR, DM and VR were
absent in our model, the predictive accuracy of models,
BRT and RF, decreased. This illustrates the effect of
these clinical features on warfarin daily dose. However,
we still cannot fully illustrate the deep mechanic behind
these effects of features with machine learning methods.

Future work will focus on three aspects. One is to in-
tegrate evolutionary approach with clustering on minor-
ity groups. The performance of integrated methods will
be observed. The other is to develop dose refining algo-
rithm, which makes uses of INR value on days of therapy
so as to improve the accuracy of dose prediction. The
final work is to interpret deep mechanic of the clinical
features used for warfarin dose prediction.

Methods

We propose a density-based clustering synthetic minor-
ity oversampling technique (DBCSMOTE) to accomplish
warfarin dose prediction under the data imbalance.
DBCSMOTE contains a density-based clustering algo-
rithm and an oversampling method, together with a par-
ameter optimizer. The flow of DBCSMOTE in extending
a training set, parameter optimization and algorithm
testing are illustrated in Fig. 9. BRT and RF are the base
predictive models combined with DBCSMOTE for war-
farin dose prediction.

Density-based clustering for the minority class

Density-based clustering algorithm groups together sam-
ples with many nearby neighbours, marking as outliers
samples that lie alone in low-density regions, whose
nearest neighbours are too far away. The density-based

DBCSMOTE minority
Parameter optimization synthetic |
minority samples |
Orisinal Dosage
riginal <
dataset ':> majority '$> majority :> BRT/RF ':> @
DBSCAN SMOTE Training Test

Fig. 9 DBCSMOTE extending training set, parameter optimization of
DBCSMOTE and testing process

- J
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spatial clustering of application with noise (DBSCAN),
one of the most common density-based clustering algo-
rithms, is robust to outliers. In this study, we make use
of the robustness of DBSCAN to outliers and clusters to
find the minority groups. DBSCAN has two parameters,
one is the radius, denoted as Eps or ¢, which represents
the area of circular neighbourhood centred on a given
sample p, and the other is the number of minimum sam-
ples in a neighbourhood centred on the sample p, de-
noted as MinPts.

A sample p is a core-sample if at least MinPts samples
are within distance ¢ of it, including p; a sample p is a
boundary-sample if less than MinPts samples are within
¢ of it, but it is within distance ¢ from one core-sample.
These samples compose clusters and the left ones are
outliers. To compose minority group, the minority sam-
ple ¢ is defined as follow:

a. ¢ is an outlier not reachable from any other sample;

b. g belongs to the cluster, which has a smaller
number of members than a threshold (i.e. 50 in this
study).

Figure 10 shows a diagram of density-based clustering
on samples. Let us describe the process as follow: if
MinPts = 4, ten black points and two blue points form
two clusters, denoted as #1 and #2. The left points, v
and y, are two outliers. According to our definition, the
samples of cluster #1 are majority members. In this case,
two minority groups are created. One group consists of
two blue points (cluster #2), which are fewer than 3
(threshold); the other group is composed of two outliers.

If Eps is too large, too many samples will be clustered
in the same cluster. If Eps is too small, a cluster will
split. When MinPts becomes large, many samples may
be clustered as outliers. A too-small MinPts will lead to
a large number of majority samples. Conventionally, it is
appropriate to use k-distance graph to obtain the value
of Eps. Euclidean distance is employed to calculate the
distance between samples. The valley point position in
k-distance curve is a good value of Eps if using

¥ majority
(O minority (outliers)
* minority (cluster of few members)

e

the density
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descending order. In this study, only a small number of
samples with special features are exactly needed. We
hope these samples can be clustered as outliers. Hence,
Eps can be a little larger than that at valley point
position.

Synthetic samples by SMOTE

The task of synthesizing new samples is accomplished
by SMOTE. Synthetic samples are generated with two
steps: selecting a minority sample and finding k-nearest
neighbours of the minority sample. Let x be the minority
sample. k-nearest neighbours are the ones, whose dis-
tance to x is k nearest. The distance is evaluated as (2).

[ = Hwac,-—vwc,”2 (2)

Where x; and x; are two samples. w is the weight vec-
tor, which is assigned to variables of a sample. Some var-
iables such as “drinking”, “amiodarone” and “genotypes”
deserve large weight. All the variables are normalized.

Let n be one of k nearest neighbours to x and & be the
random value in [0,1]. A new sample x’ is as the form.

¥=x+68 (x-n) (3)

Among the variables, someones are 0/1 logical vari-
ables, which are set to binary value (0/1). Hence, round-
ing resets the value of these variables. For a minority
sample, k-nearest neighbours are selected from both the
majority and the minority class.

Let r be the oversampling ratio of DBCSMOTE. The
sampling number can be denoted as N; = round(r*N,,,;,,),
where N,,;,, is the number of samples in the minority
class. If Ny<N,,;,, (r<1), randomly select N; minority
samples from N,,,;,, and create each synthetic sample by
randomly selecting one of its nearest neighbour; else if
N> Nino (r> 1), let ¢ = (int)Ny/N,,,;,0 and p= [r-
(int)Ng/N,iino) < 1, create ¢*N,,;,, synthetic samples by
using ¢ nearest neighbours of each minority sample, and
@*N,ino synthetic samples are generated as the way
under N < N, (r< 1).

The dosage f of new samples is the weighted dosage
sum of neighbours, which is denoted as the form.

&) =a fln) +(1-a)- f(&) (4)

Here, a = 1/1. The weight of dosage is calculated by the
distance reciprocal of a new sample to its parent.

Greedy strategy for parameters optimization

It is hard for a human to configure the parameters for
DBCSMOTE, that will make the accuracy of the predict-
ive model highest. As for DBSCAN, two parameters
MinPts and Eps need to be optimized. For SMOTE, the
oversampling ratio combination, denoted as {r}, needs to
be optimized.
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The optimization problem is to find the best parame-
ters of DBCSMOTE (i.e. DBSCAN and SMOTE), which
lead to the smallest error of the predictive models such
as BRT and RF. Let X = [MinPts, Eps, {r}] be the variable
of objective function z(X). The optimization problem
can be formulated as follow.

2.5 21(X) + z2(X)

minz(X) = K- 500

(5)

Where,

21(X) = msesrain + 2 - Mseyqlia
22(X) = mseggin(f > 4.2|f < 1.5)
zZ3 (X) = thmin + Rzmlid

The objective function z(X) contains three sub func-
tions. z;(X) calculates the mean squared error of X with
respect to the training and validation sets, respectively.
75(X) calculates the mean squared error with respect to
the samples, whose observed dosage f is larger than 4.2
mg/day or smaller than 1.5 mg/day. z3(X) calculates the
R? of X on the training and validation sets, respectively.
K is an amplification constant in z(X) only for observing
z(X). We set K to 20, which makes z(X) > 1.

In (5), mse i, and mse,,;; indicate the mse on the
training and validation sets, respectively. R%, .. and
R?,;.; indicate the values of R* on the training and val-
idation sets, respectively. For mse and R* calculation, a
temporal predictive model-CART, which is built on the
training set extended by X, is used. This is a low-
complexity model with convenient use for evaluation on
parameters of DBCSMOTE in each iteration.
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A greedy strategy is used to evaluate the quality of
DBCSMOTE and search the solution to the optimization
problem (5). The flow of the greedy strategy is as follow.

Step 1: Give a set of feasible solutions {X} (feasible
setting of parameters);

Step 2: Select a candidate X in {X};

Step 3: Run DBCSMOTE with X to generate an
extended training set;

Step 4: Create a CART model on the extended training
set and validated on the validation set;

Step 5: Calculate the mse and R? of the CART model,
and then calculate the value of z(X);

Step 6: Traverse all candidates in {X}; the candidate
that obtained the smallest value of z(X) represents the
best solution (parameters) of DBCSMOTE.

DBCSMOTE for dose prediction
In previous works [21, 22], a predictive software called
“WarfarinSeer v1.0” was developed by our research
group, which has encapsulated some predictive models
such as SMOTE-RF, CART, RF, BRT, SVR and Ensem-
ble models [26]. This predictive software is written in
MATLAB and can successfully run with the environ-
mental support of MATLAB. In order to provide clini-
cians with a new model for warfarin dose prediction, we
developed an upgraded version “WarfarinSeer v2.0”
based on DBCSMOTE-BRT/RF models.

The flow of DBCSMOTE-BRT/REF is as follow:

Step 1: Divide the original dataset into three subsets,
i.e. training set, validation set and test set;

Step 2: Run the greedy strategy to optimize the param-
eters of DBCSMOTE;

prs——
o w e 5 o o — . -
e import traning Sle 1. clustering 2 waining INS'-" Actuall')l_o's'e' Predicted_[_)'czsf
3 Gender e eight eigh rinkin A
; Ao ) Heah | Weg | Ow | om 1 W 1Dk 1.7200 2.5000 26223
25 2 ; - e = ; - . 1.5700 3 3.1929
: : . s s - y . : 1.7000 2.5000 2.4991
" $ " - s 5 ; A e 27000 4.2900 3.0389
. . s 5 < g 3 £ 1.9100 3.7500 3.9156
1 " . = s - : . . 2.4500 2.5000 2.0834
os R R 00 N (R N Y | 2 - = = - ¢ . v 1.6600 2.5000 2.7942
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oo [ CumeubyOemAT Ao UL s mpentense | | — :
Gend Height Weight DM CHR VR y 0 19400 ‘ 37272
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Fig. 11 warfarin dosing predictive tool “WarfarinSeer” encapsulated DBCSMOTE (a) software interface (b) actual dose vs predicted dose
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Step 3: Keep minority and majority clusters with these
optimized parameters;

Step 4: Use SMOTE to synthesize new samples for ex-
tending the training set;

Step 5: Build the BRT/RF model on the extended
training set, validate it on the validation set, and output
dose prediction on the test set.

Figure 11 shows the GUI of “WarfarinSeer v2.0”. On
the GUI, data grids present the training data and test
data, which are imported from an outside file with suffix
“.dat”. In the file, each row indicates one sample (i.e. a
patient). The columns indicate clinical features and the
last column is the stable dosage. Text-boxes receive the
parameter configuration for algorithms and different
models. Button “1. clustering” is to run DBCSMOTE
with greedy strategy optimization. Button “2. training”
starts the training of BRT predictive model on the ex-
tended training set yielded by DBCSMOTE, and button
“predict” runs the trained BRT model to predict test
samples. Charting controls display the process of model
fitting and results of running algorithms. The perform-
ance of the predictive model, mean square error, R-
squared and 20%-p, will be displayed at right-bottom.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-020-00781-2.

Additional file 1. DBCSMOTE.zip, code files for generating minority and
majority clusters in Matlab. DBCSMOTE_demo.m: the demo of DBCSMOTE
together with random forest, which gives the estimated dosage. ‘num’
indicates the number of iterations of running DBCSMOTE. In each
iteration, ‘evaluatePop’ calls the function to evaluate the oversampling
quality. ‘train.txt’, ‘validate.txt’ and test.txt’ are sub sets used for training,
validation and testing. DBSCAN_fun.m: the function of algorithm
DBSCAN. It conducts the clustering with two parameters (Eps and
MinPts) on an input dataset and returns the samples of minority clusters
and the number of clusters. RandomForestm: the function of random
forest. Random forest is an ensemble model of CARTs, which are the
weak regression models. They are built on the extended training set,
which is extended by DBCSMOTE. CARTprediction.m: the function of
CART algorithm. This is a weak regression model of random forest.
Meanwhile, this is the tool for evaluating the oversampling quality, which
is generated by DBCSMOTE.
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