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Alzheimer’s disease (AD) has been categorized by the Centers for Disease Control

and Prevention (CDC) as the 6th leading cause of death in the United States. AD is a

significant health-care burden because of its increased occurrence (specifically in the

elderly population), and the lack of effective treatments and preventive methods. With

an increase in life expectancy, the CDC expects AD cases to rise to 15 million by 2060.

Aging has been previously associated with susceptibility to AD, and there are ongoing

efforts to effectively differentiate between normal and AD age-related brain degeneration

and memory loss. AD targets neuronal function and can cause neuronal loss due to the

buildup of amyloid-beta plaques and intracellular neurofibrillary tangles. Our study aims

to identify temporal changes within gene expression profiles of healthy controls and AD

subjects. We conducted a meta-analysis using publicly available microarray expression

data from AD and healthy cohorts. For our meta-analysis, we selected datasets that

reported donor age and gender, and used Affymetrix and Illumina microarray platforms

(8 datasets, 2,088 samples). Raw microarray expression data were re-analyzed, and

normalized across arrays. We then performed an analysis of variance, using a linear

model that incorporated age, tissue type, sex, and disease state as effects, as well as

study to account for batch effects, and included binary interactions between factors.

Our results identified 3,735 statistically significant (Bonferroni adjusted p < 0.05) gene

expression differences between AD and healthy controls, which we filtered for biological

effect (10% two-tailed quantiles of mean differences between groups) to obtain 352

genes. Interesting pathways identified as enriched comprised of neurodegenerative

diseases pathways (including AD), and also mitochondrial translation and dysfunction,

synaptic vesicle cycle and GABAergic synapse, and gene ontology terms enrichment in

neuronal system, transmission across chemical synapses and mitochondrial translation.

Overall our approach allowed us to effectively combine multiple available microarray

datasets and identify gene expression differences between AD and healthy individuals

including full age and tissue type considerations. Our findings provide potential gene and

pathway associations that can be targeted to improve AD diagnostics and potentially

treatment or prevention.
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1. INTRODUCTION

Aging refers to the physiological changes that occur within
the body overtime (Lopez-Otin et al., 2013). These changes
are accompanied by deteriorating cell and organ function due
to cellular and immune senescence and DNA and protein
damage (Lopez-Otin et al., 2013; Van Deursen, 2014; Childs
et al., 2015). Aging causes an increased risk for diseases. Age-
related diseases are becoming a public health concern due to
an overall increase in the older population and the average
human life span in developed countries (Black et al., 2015;
Rowe et al., 2016). It is predicted that by the year 2050, the
number of Americans over 85 years of age will triple from
2015 (United Nations Department of Economic and Social
Affairs, 2015; Jaul and Barron, 2017). Larger percentages of
the elderly and their increased risk for diseases can affect the
economy, and social and health care costs (Dallmeyer et al.,
2017). For instance, immune system dysfunction and cognitive
decline due to aging increases the risk of neurodegenerative
diseases, such as Alzheimer’s disease (AD) (Jevtic et al., 2017;
Mattson and Arumugam, 2018). Previous research explored
brain aging and found notable changes in brain size , brain
structure and function (Drayer, 1988). Changes in the brain as we
age are also known as hallmarks of brain aging. These hallmarks
include: mitochondrial dysfunction, damage to proteins and
DNA due to oxidation, neuroinflammation due to immune
system dysfunction, reduction in brain volume size and gray
and white matter, and impaired regulation of neuronal Ca2+

(Drayer, 1988; Mattson and Arumugam, 2018). These alterations
render the aging brain vulnerable to neurodegenerative diseases,
such as AD.

AD, the most common form of dementia, is currently the 6th

leading cause of death (Taylor et al., 2017) in the United States
(US). In 2010, an estimate of 4.7 million people in the US had
AD, and the number of AD patients is expected to increase to
13.8million in 2050 and to 15million by 2060 (Hebert et al., 2013;
Brookmeyer et al., 2018;Matthews et al., 2018). As with other age-
related diseases, the risk of AD increases with age. AD is currently
characterized by the accumulation of amyloid-beta (Aβ) plaques
and neurofibrillary tangles due to tau protein modifications
(Masters et al., 2015). These two protein changes are the main
pathological changes in AD (Masters et al., 2015). Aβ is formed
when the amyloid precursor protein (APP) is cleaved by γ-
secretases and β-secretases. Cleavage of APP forms fragments of
Aβ which aggregate and deposit on neurons as plaques, which
causes neuronal death in conjunction with neurofibrillary tangles
(Masters et al., 2015).

While AD’s prevalence is on the rise due to increased life
expectancy, there is still no treatment available and diagnosis of
AD is challenging. How AD progresses is still not completely
understood (De Jager et al., 2018). New technologies are
available, such as positron-emission tomography (PET) imaging
and monitoring levels of Aβ and tau in cerebrospinal fluid
(Masters et al., 2015). Co-morbidities that can exist due
to aging, such as hippocampal sclerosis further complicate
AD diagnosis (Toepper, 2017). Furthermore, questions have
been raised regarding whether or not AD is simply an

accelerated form of aging due to them both being associated
with changes in cognition (Toepper, 2017). However, studies
have identified clear neurocognitive differences in cognition,
brain size and function in AD compared to healthy aged
subjects. For example, AD patients have more gray matter loss
compared to white matter, impaired verbal and semantic abilities
and more intense memory dysfunction compared to healthy
seniors (Toepper, 2017).

Pathological changes within the brain are observed prior
to clinical diagnosis of AD. In most cases AD cannot
be confirmed until postmortem examination of the brain.
Researchers are investigating novel biomarkers to detect for
earlier diagnosis before diseased individuals become functionally
impaired. Meta-analysis of microarray datasets is becoming
more popular for it provides stronger power to studies due
to larger sample sizes obtained through statistically combining
multiple datasets. Microarray data are also available in large
quantities on public online data repositories. In the case
of AD, Winkler and Fox performed a meta-analysis that
compared neurons within the hippocampus of AD patients
and healthy controls. They identified that processes, such as
apoptosis, and protein synthesis, were affected by AD and
were regulated by androgen and estrogen receptors (Winkler
and Fox, 2013). Researchers have also explored differences
in gene expression in Parkinson’s and AD subjects via a
meta-analysis approach (Wang et al., 2017), and identified
functionally enriched genes and pathways that showed overlap
between the two diseases (Wang et al., 2017). Most recently,
Moradifard et al. identified differentially expressed microRNAs
and genes when comparing AD to healthy controls via
a meta-analysis approach. They also identified two key
microRNAs that act as regulators in the AD gene network
(Moradifard et al., 2018).

In our investigation, our goal was to identify age, sex, and
tissue effects on gene expression variability in AD by comparing
age-matched healthy controls to AD subjects via a meta-analysis
approach. In this data-driven approach, we explored global gene
expression changes in 2,088 total samples (771 healthy, 868
AD, and 449 possible AD, curated from eight studies) from 26
different tissues, to identify genes and pathways of interest in AD
that can be affected by factors, such as age, sex, and tissue. Our
findings provide potential gene and pathway associations that can
be targeted to improve AD diagnostics and potentially treatment
or prevention.

2. METHODS

We conducted a meta-analysis using eight publicly available
microarray expression datasets (Table 1) from varying tissues
and microarray platforms on AD. We developed a thorough
computational pipeline (Figure 1A) that involved curating
and downloading raw microarray expression data, pre-
processing the raw expression data and conducting a linear
model analysis of the gene expression profiles. Statistically
different genes based on disease state were identified following
analysis of variance (ANOVA) on the linear model which
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TABLE 1 | Curated microarray datasets and the study description.

Database Accession number Controls AD Possible AD Platform Citation

GEO GSE84422 242 362 449 Affymetrix Human Genome U133A, B and Plus 2.0 Wang et al., 2016

GEO GSE28146 8 22 – Affymetrix Human Genome Plus 2.0 Blalock et al., 2011

GEO GSE48350 173 80 – Affymetrix Human Genome Plus 2.0 Berchtold et al., 2008

GEO GSE5281 74 85 – Affymetrix Human Genome Plus 2.0 Liang et al., 2007

GEO GSE63060 104 142 – Illumina HumanHT-12 V3.0 expression beadchip Sood et al., 2015

GEO GSE63061 134 139 – Illumina HumanHT-12 V4.0 expression beadchip Sood et al., 2015

GEO GSE29378 32 31 – Illumina HumanHT-12 V3.0 expression beadchip Miller et al., 2013

Array Express E-MEXP-2280 5 7 – Affymetrix Human Genome Plus 2.0 Bronner et al., 2009

FIGURE 1 | Alzheimer’s disease meta-analysis framework. (A) Simplified workflow used for the meta-analysis, (B) pipeline for curating microarray data, (C) pipeline for

pre-processing the microarray data, (D) methods used for meta-analysis of raw expression microarray data.
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compared gene expression changes due to disease state, sex,
age, and tissue. These genes were further analyzed using
a Tukey Honest Significant Difference (TukeyHSD) test
to determine their biological significance (Tukey, 1949).
In addition to the p-values, we also obtained the mean
differences between binary comparisons of groups (also
generated by the TukeyHSD), as a measure of biological
effect size. We examined the TukeyHSD results by filtering
by each factor, and identified up and down regulated
genes. We then selected genes that showed statistically
significant pairwise interactions between disease status and
sex, age and tissue. Using these genes, we used R packages
ReactomePA (Yu and He, 2016) and clusterProfiler

(Yu et al., 2012) to conduct gene enrichment and pathway
analyses of the differentially expressed genes (DEG). We
used BINGO in Cytoscape v.3.7.0 for gene ontology (GO)
analysis on each gene set for each factor (Shannon et al., 2003;
Maere et al., 2005).

2.1. Microarray Data Curation
We curated microarray expression data from two data
repositories: National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) (Edgar et al., 2002)
and Array Express (Brazma et al., 2003) (Figure 1B). We
searched these repositories by using entrez programming
utilities in Mathematica (Mias, 2018b; Wolfram Research,
Inc., 2017). In this search, we used the following keywords:
Homo sapiens, Alzheimer’s Disease and expression profiling
by array (Figure 1B). This search resulted in 105 datasets
from GEO and 8 from Array Express. We further filtered the
search results by excluding data from cell lines, selecting for
expression data from Illumina and Affymetrix microarray
platforms, and focusing on datasets that provided the ages
and sex of their samples (Figure 1B). After filtering through
the databases, we found seven datasets from GEO (GSE84422,
GSE28146, GSE48350, GSE5281, GSE63060, GSE63061,
GSE29378) and one dataset from Array Express (E-MEXP-
2280) to conduct our meta-analysis of expression profiling
to assess differences in gene expression due to disease state,
sex, age, and tissue (Table 1). The majority of samples from
AD subjects were collected post-mortem, from a variety of
brain banks, while the subjects from GSE63060 and GSE63061
voluntarily gave blood samples (Table S1). The criteria and
guidelines followed for diagnosis and sampling varied across
datasets (Table S1). Additionally, we downloaded the raw
expression data from each dataset, and created a demographics
file per study, which included characteristics about the samples
(Table 2). Our demographics file included information about
the subjects that was reported in all datasets. For example,
some studies reported the type of AD diagnosis for their
respective subjects, as well as the Braak stage and APOE
genotype, whereas others did not (Table S1). Therefore, to
ensure uniform annotation of the subjects, we re-annotated
subject information provided from the databases: For GSE28146,
we grouped the sub-types of AD, incipient, moderate and
severe, as AD because we did not have such classification
information for our other AD samples. We changed all

TABLE 2 | Patient characteristics for curated datasets.

Accession number Sex (M/F) Age range

GSE84422 302M/166F 60–103

GSE28146 12M/18F 65–101

GSE48350 124M/129F 20–99

GSE5281 102M/56F 63–102

GSE63060 88M/158F 52–88

GSE63061 107M/166F 59–95

GSE29378 38M/25F 61–90

E-MEXP-2280 7M/5F 68–82

the GSE29378 tissue types to hippocampus, relabeled the
“probable AD” disease state to “possible AD” in GSE84422,
only used AD and control subjects from the E-MEXP-2280
and GSM238944 with an age of >90 (not a definite age)
was removed from GSE5281. We should note also that
the 1,053 samples from the GSE84422 dataset included
different tissues from the same subjects, which were treated
independently—a paired-design was not incorporated in our
downstream analysis.

2.2. Pre-processing and Data
Normalization
We downloaded the raw expression data from the data
repositories in Mathematica (Wolfram Research, Inc., 2017)
and pre-processed each file in R (R Core Team, 2018) using
the appropriate R packages based on the microarray platform.
The affy package was used to pre-process all the .CEL data
files from Affymetrix (Gautier et al., 2004), and the limma

package for Illumina summary data files (Ritchie et al., 2015). We
performed background correction, normalization and annotated
and summarized all probes (Figure 1C). For the Affymetrix
expression data files, we used the expresso function with
the following parameters: robust multi-array analysis (RMA)
for background correction, perfect-match (PM) adjustment to
correct the perfect match probes, and ‘avdiff ’ for the summary
method to compute expression values (Gautier et al., 2004). We
also used the avereps function from limma to summarize
probes and remove replicates (Ritchie et al., 2015). For the
Illumina expression data, we corrected the background using
the NormExp Background Correction (nec) function from the
limma package for datasets where the detection p-values were
reported, we annotated and used the aggregate function from
the stats package in base R to summarize probes (Ritchie et al.,
2015; R Core Team, 2018). We merged all 8 datasets into one
large matrix file via common gene symbols. After merging the
datasets, we performed a BoxCox power transformation (Sakia,
1992) using the ApplyBoxCoxTransform function and data
standardization using the StandardizeExtended function
from the MathIOmica package (Mias et al., 2016; Mias,
2018b) (Figure 1C and also see ST2 of online Supplementary
Datasheet).
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2.3. Visualizing Variation Due to Batch
Effects
Merging expression data from different studies, array platforms
and tissues can introduce confounding factors and manipulate
interpretation of results. To address this, and assess whether
batch effects were evident and could be accounted for, we used
the ComBat function in the sva package in R (Johnson et al.,
2007; Nygaard et al., 2016) to adjust data for known batch
effects. In this study, the batch effect was the study (i.e. different
experiments/research groups), and we also found that there was
a one-to-one correspondence between study and platform. Using
expression data from prior to and post ComBat corrections, we
used principal component analysis (PCA) plots to visualize the
variability in the data and the effectiveness of possible batch effect
removal (Irizarry and Love, 2015).

2.4. Analysis of Variance
We modeled the merged expression data (see model breakdown
below) prior to running ANOVA (using the anova and aov

functions from the stats package in base R) to analyze
differences among the different study factors (Figure 1D)
(Pavlidis, 2003). We defined age group, sex, disease state, study
and tissue as factors.

x ∼

∑

i

xi +
∑

i,j;j>i

xi : xj (1)

where xi ∈ {age group, sex, tissue, disease status} and the factors
have the following levels:

• disease status = {control, possible AD, AD}
• sex = {male, female}
• age group = {under 60, 60–65, 65–70, 70–75, 75–80, 80–85,

85–90, 90–95, over 95}
• tissue = {amygdala, anterior cingulate, blood, caudate nucleus,

dorsolateral prefrontal cortex, entorhinal cortex, frontal
pole, hippocampus, inferior frontal gyrus, inferior temporal
gyrus, medial temporal lobe, middle temporal gyrus, nucleus
accumbens, occipital visual cortex, parahippocampal gyrus,
posterior cingulate cortex, precentral gyrus, prefrontal cortex,
primary visual cortex, putamen, superior frontal gyrus,
superior parietal lobule, superior temporal gyrus, temporal
pole}

• study = {GSE84422, GSE28146, GSE48350, GSE5281,
GSE63060, GSE63061, GSE29378, E-MEXP-2280}

The p-values following the ANOVA were adjusted using
Bonferroni correction for multiple hypothesis testing (Pavlidis,
2003). Genes with p-values < 0.05 were considered statistically
significant. We found statistically significant disease genes by
filtering on the disease status for p < 0.05. Additionally, we
used the enrichKEGG function in the clusterprofiler
package in R for Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis on these genes (Kanehisa and
Goto, 2000; Yu et al., 2012). We also performed Reactome
pathway analysis with the enrichPathway function in the
ReactomePA package in R (Yu and He, 2016). These packages
adjust p-values using the Benjamini Hochberg method for False

Discovery Rate (FDR) control. Enriched pathways with adjusted
p < 0.05 were considered statistically significant (Yu et al., 2012;
Yu and He, 2016) (see ST5 and ST6 of online Supplementary
Datasheet).

2.5. Identifying Up and Down Regulated
Genes by Factor
To identify which of the 3,735 genes that show biologically
significant differences, we conducted a TukeyHSD (using
the TukeyHSD function from the stats package in
base R) to determine statistically significant up and down-
regulated genes using the difference in the means of pairwise
comparisons between the levels within each factor (Tukey,
1949; Mias, 2018a). We carried out TukeyHSD testing on
the statistically significant disease genes we obtained from the
ANOVA. To account for multiple hypothesis testing in the
TukeyHSD results, we used <0.00013 (0.05/number of genes
ran through TukeyHSD) as a Bonferroni adjusted cutoff for
statistical significance.

We selected the TukeyHSD results from the disease status
factor, and focused on the “Control-AD” pairwise comparison
to assess statistically significant gene expression differences. To
assess biological effect, and select an appropriate fold-change-like
cutoff (as our results had already been transformed using a Box-
Cox transformation), we calculated the quantiles based on the
TukeyHSD difference of mean difference values (Table S2). We
used a two-tailed 10 and 90% quantile to identify significantly up
and down regulated genes (Table S2).

The DEG by disease status factor were subsequently used to
determine whether or not there was a sex, age, or tissue effect on
them. For sex, we used the DEG to filter the TukeyHSD results
for sex factor differences, identified statistically significant sex-
relevant genes based on p-value cutoff, and the computed 10
and 90% quantiles based on the difference of means between
male and female groups. We repeated the above steps for age
group, but focused only on the binary comparisons where all age
groups were compared to the<60 age group, which was used as a
baseline (i.e. computed the mean gene expression differences per
group comparison, i-<60, where i stands for any age group). This
was carried out to enable us to compare the progression with age,
relative to a common reference across all age groups. As for tissue,
we carried out the same steps as above to determined DEG based
on comparisons both a hippocampus-based baseline, as well a
blood-based baseline.

Following the identification of the DEG by disease status and
sex, we visualized the raw expression data for these genes in
heatmaps. In addition to this, we generated heatmaps using the
difference of means values (TukeyHSD) for the identified DEG
by age group (<60 baseline) and tissue (hippocampus and blood
as baseline).

To further investigate the significance of pairwise
interactions with disease status and the factors sex, age
and tissue, we used the identified statistically significant
(p < 0.00013, two-tailed 10 and 90% quantile) genes
from our post-hoc analysis for each factor, and filtered
our ANOVA results for statistically significant interactions
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(Bonferroni corrected p < 0.05, see also ST4 of online
Supplementary Datasheet).

2.6. Gene Ontology and Reactome
Pathway Analysis
For the disease and sex DEG sets, we used the R package
ReactomePA to find enriched pathways (Yu and He, 2016).
We also built networks to determine if genes overlapped across
pathways. Additionally, we used BINGO in Cytoscape for
GO analysis to determine the biological processes the genes
were enriched in Maere et al. (2005). Results were considered
statistically significant based on Benjamini-Hochberg adjusted
p-value < 0.05.

3. RESULTS

With our data selection criteria outlined in Figure 1B we
identified 8 datasets from GEO and Array Express to conduct
our meta-analysis to assess differences in gene expression due
to disease state, sex, age, and tissue (Table 1). We merged
the processed expression data by common gene names, which
gave us a total of 2,088 samples and 16,257 genes. The 2,088
samples consisted of 771 healthy controls, 868 AD subjects,
449 subjects reported as possibly having AD, 1308 females, and
780 males.

3.1. ComBat Batch Effect Visualization
Combining data from different platforms, tissues and different
laboratories introduces batch effects. Batch effects are sources
of non-biological variations that can affect conclusions. We
used the ComBat algorithm in R which works by adjusting
the data based on a known batch effect. For our analysis we
classified the study variable as our batch (the study and type
of platform are directly related). We used PCA to visualize
variation in the merged expression data before and after ComBat
(Figures 2, 3; Figures S1–S3). In Figure 2 before correcting
for batch effects, the datasets separate into four main clusters
with a variance of 54.3% in PC1 and 13% in PC2. Following
ComBat, those main clusters appear to be removed, with an
overall reduction in variation for both principal components.
We also looked at how the data separated by factor. In
Figure 2B, there are two clear groups and this separation is
accounted for when we look at the separation in the data by
tissue (Figure 3). In Figure 3, before correction the four groups
observed in Figure 2 are still evident. Following ComBat, the
tissues: amygdala and nucleus accumbens cluster together in
one group while all other tissues are in another. Batch effect
correction with ComBat was solely used for visualizing how the
expression data separates before and after ComBat correction—
i.e., the batch corrected expression data were not used in the
downstream analysis. We instead used a linear model to account
for confounding study effects. Visualizing and understanding
the variation within the expression data following the merge
confirmed the need to include the study as a factor in the linear
model analysis.

3.2. Analysis of Variance on Gene
Expression by Disease State
Using ANOVA we assessed the variance in gene expression
across the different factors in our linear model by including
the following factors and their pairwise interactions: age group,
study, tissue, sex and disease state (Pavlidis, 2003). Statistically
significant gene expression differences were determined using
a Bonferroni (Bland and Altman, 1995 adjusted p < 0.05)
(Pavlidis, 2003; Mias, 2018a). With our focus on differences
by disease status, we filtered genes based on the ANOVA
adjusted p-values for the disease factor. Selecting for statistical
significance by disease status we found 3,735 genes (see ST4

of online Supplementary Datasheet). We conducted GO and
pathway analysis on these genes. The KEGG pathway analysis
results are displayed in Table 3 (see ST5 of online Supplementary
Datasheet for full table). The analysis showed that the genes
are involved in Reactome pathways, such as the Mitochondrial
Translation Initiation (55 gene hits), Signaling by the B Cell
Receptor (61 gene hits), Activation of NF-kappaβ in B cells
(40 gene hits), Transmission across Chemical Synapses (83
gene hits) and Neuronal System (119 gene hits) (see ST6 of
online Supplementary Datasheet). The KEGGpathways that were
enriched for this gene set included neurodegenerative disease
pathways, such as Alzheimer’s (31 gene hits), Huntington’s (76
gene hits) and Parkinson’s (53 gene hits) (Table 3) Pathways.
We also had genes enriched in synaptic pathways including
Synaptic vesicle cycle (30 gene hits), Dopaminergic synapse (48
gene hits) and GABAergic synapse (34 gene hits) (Table 3).
In addition to synapses and neurodegeneration, the long term
potentiation (23 gene hits) pathway was associated with these
genes (see ST5 of online Supplementary Datasheet for full KEGG
pathway analysis results). To further explore the enriched genes
in the KEGG AD pathway, we used the TukeyHSD results to
determine whether genes were up- or down-regulated (see ST7
of online Supplementary Datasheet). To further assess the 73
gene hits identified in the enriched AD pathway we computed
their mean differences between AD and control subjects, and
used MathIOmica (Mias et al., 2016) tools to highlight them
in the AD pathway (Figure 4) (Kanehisa and Goto, 2000;
Kanehisa et al., 2016, 2017; Mias, 2018b) (see ST7 of online
Supplementary Datasheet for full table with difference of means).
For instance, the APOE and LRP gene were both found to
be up-regulated in AD subjects compared to healthy controls,
and in the KEGG AD pathway these genes are involved in Aβ

aggregation (Figure 4).

3.3. Up and Down- Regulated Gene
Expression in AD and Sex Specific
Differences
We conducted a post-hoc analysis (TukeyHSD) on the 3,735
statistically significant disease genes to identify factorial
differences and explore up- and down- regulation of genes.
We were particularly interested in the control compared
to AD gene expression differences, and how these could be
further sub-categorized to explore effects by sex, age and
tissue. We used a Bonferroni adjusted p-value cut off for
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FIGURE 2 | Principal component analysis of the study factor before (A) and after (B) batch correction with ComBat.

FIGURE 3 | Principal component analysis of the tissue factor before (A) and after (B) batch correction with ComBat.

significance (<0.000013) and the 10% two-tailed quantile to
determine significantly up and down regulated genes (Table S2).
In the Control-AD TukeyHSD comparisons, we found 352
statistically significant genes that we classified as up-regulated
(176 DEG) and down-regulated (176 DEG) in AD subjects
(or correspondingly up or down- regulated in controls)
if their mean differences were ≤ −0.0945 and ≥ 0.1196,
respectively (Table S2, see also ST8 of online Supplementary
Datasheet). The top 25 up- and down- regulated genes sorted
by the TukeyHSD adjusted p-values are outlined in Table 4

(Figure S4 and see ST8 of online Supplementary Datasheet).
After performing gene enrichment and pathway analysis with
the ReactomePA R package (Yu and He, 2016) on the 352
genes we built pathway-gene networks for the statistically
significant Reactome pathways (Benjamini-Hochberg adjusted
p < 0.05) (see ST13 and ST14 of online Supplementary

Datasheet). Some of the top 10 enriched Reactome pathways
from DEG down-regulated in AD include: Mitochondrial
translation elongation, Mitochondrial translation, Transmission
across chemical synapses, neuronal system (Figure 5 and
Figure S5). The network in Figure 5 illustrates that some genes
overlap across pathways—the difference of means from the
TukeyHSD results of these genes are indicated by the color
scale. The up-regulated genes in AD were enriched in pathways,
such as Extracellular matrix (ECM) organization and ECM
proteoglycans, Non-integrin membrane-ECM interactions
and potassium channel activation (Figure 6 and Figure S6).
Additionally, we used BINGO for GO analysis on the 352
disease DEG to determine the biological processes they are
involved in Figure S7. Some examples of significant terms:
Cell signaling development, nervous system development,
neuron differentiation, cell proliferation, response to chemical
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TABLE 3 | Top 25 KEGG Pathways using differentially expressed genes.

ID Description p-value p-adjusted value # of hits

hsa03050 Proteasome 1.55E-11 4.78E-09 31

hsa04723 Retrograde endocannabinoid signaling 3.46E-10 4.78E-08 66

hsa05010 Alzheimer’s disease 4.64E-10 4.78E-08 73

hsa00190 Oxidative phosphorylation 3.85E-09 2.98E-07 59

hsa05016 Huntington’s disease 1.60E-08 9.90E-07 76

hsa04714 Thermogenesis 2.54E-08 1.31E-06 86

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 2.98E-06 1.32E-04 57

hsa04721 Synaptic vesicle cycle 4.57E-06 1.77E-04 30

hsa05012 Parkinson’s disease 1.51E-05 5.18E-04 53

hsa04728 Dopaminergic synapse 6.48E-05 0.002003299 48

hsa04724 Glutamatergic synapse 1.58E-04 0.004085366 42

hsa05169 Epstein-Barr virus infection 1.59E-04 0.004085366 66

hsa04720 Long-term potentiation 1.73E-04 0.004119762 28

hsa04727 GABAergic synapse 2.31E-04 0.00506623 34

hsa01200 Carbon metabolism 2.46E-04 0.00506623 42

hsa01521 EGFR tyrosine kinase inhibitor resistance 3.12E-04 0.006031187 31

hsa04725 Cholinergic synapse 4.73E-04 0.008596289 40

hsa00270 Cysteine and methionine metabolism 5.56E-04 0.009547497 20

hsa04911 Insulin secretion 5.99E-04 0.009738112 32

hsa04713 Circadian entrainment 6.78E-04 0.01048273 35

hsa05033 Nicotine addiction 8.70E-04 0.012730978 18

hsa00650 Butanoate metabolism 9.06E-04 0.012730978 14

hsa03010 Ribosome 0.0010736 0.014423588 50

hsa04510 Focal adhesion 0.001159439 0.014927779 62

hsa04390 Hippo signaling pathway 0.001260878 0.015584456 50

stimulus, cell communication and brain and nervous system
development (Figure S7).

Of the 352 DEG in the above disease analysis, 46 genes were
differentially expressed by sex: 23 down- and 23 up-regulated
in males compared to females (Table S2) based on mean
differences (≤ −0.0864 and ≥ 0.2502 respectively) (Table S1).
We used the ReactomePA package to build a network of
enriched genes and pathways with sex differences (Figure S8)
(Yu and He, 2016). We found 6 pathways that were enriched
with the up-regulated gene list in males: Neuronal System,
Transmission across chemical synapses, neurotransmitter
receptors, and post-synaptic signal transmission, and GABA
A receptor activation (Figure S8 and also see ST9 of online
Supplementary Datasheet). Of these 46 genes that were
differentially expressed by sex (Figure S9), we further filtered
the ANOVA results to identify which of these genes showed
statistically significant interactions with disease (sex:disease,
Bonferroni corrected p < 0.05). We found one gene, chemokine
receptor type 4 (CXCR4), to have a statistically significant
pairwise interaction between disease status and sex (see ST4 of
online Supplementary Datasheet).

3.4. Aging and Tissue Differences in AD
Gene Expression
To determine if age or tissue had an effect on the DEG
by disease status, we filtered the 352 DEG in disease results
discussed above for age group and tissue comparisons. For

age effects, we used our TukeyHSD results that compared
age groups to <60 (served as the baseline). This allowed
us to explore if genes associated with AD change with age
by using a common reference group. We used the 352
DEG genes from disease status TukeyHSD results to find
sizable age effects in this gene set by selecting for statistical

significance and using the two-tailed 10% quantile filter (≤
−1.0477827 and ≥ 0.330869) to find significant DEG per age-
group pair comparison (Table S2). We found 396 significant

comparisons of age differences in 141 genes (see ST10 of
online Supplementary Datasheet). The 141 genes were plotted
across all age comparisons where < 60 was the baseline
to visualize expression changes and how the genes clustered

(Figure S10), indicative of distinct differences in expression
profiles due to aging. There is a cluster of genes down-regulated
in older age groups, specifically ages 65–80 compared to those

< 60. There also appears to be an overall trend of genes
associated with disease being up-regulated compared to < 60.
Of the 141 DEG by age group (Figure S10), we found 114

DEG that had a statistically significant interaction (Bonferroni
corrected p < 0.05) between disease status and age (Figure 7).
Changes in expression across each age group comparison (< 60
baseline) in the interacting genes were visualized, and the genes
clustered into 3 clear groups based on similarities in expression
patterns (Figure S10).

For tissue effects, we used hippocampus as our baseline
due to it being a known target of AD. In addition to filtering
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FIGURE 4 | Enriched genes from the ANOVA statistically significant disease status gene list (p-value < 0.05) found in the KEGG Alzheimer’s disease pathway

(hsa05010) [Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017]. The yellow shading represents up-regulated and the blue shading represents down-regulated in

AD samples. These genes were not yet filtered for biological significance.

for significance, we used again a two-tailed 10% quantile
filter ≤ −0.6359497 and ≥ 0.7932871 from the tissue-
specific means differences between tissue types (Table S2).
We found 167 comparisons with tissue differences (see
ST11 of online Supplementary Datasheet) from 125 genes.
Our heatmap of these genes show that differences do exist
across tissues when compared to hippocampus (Figure S11).
For example, nucleus accumbens has higher expression of
genes compared to the hippocampus, and putamen has
genes that are down-regulated compared to hippocampus
(Figure S11). The majority of the expression differences
appear to be found in nucleus accumbens and putamen
(Figure S11, see also ST11 of online Supplementary Datasheet).
From these 125 tissue specific (hippocampus) genes, we
found 13 to have a statistically significant (Bonferroni

corrected p < 0.05) interaction between disease and tissue
(Figure 8A).

We also assessed how gene expression changes in a given
tissue compared to blood (10 %quantile filter: ≤ −0.6359497
and ≥ 0.7932871) (Table S2), identifying 152 significant tissue
comparisons in 115 genes (see ST12 of online Supplementary
Datasheet). These 115 gene expression profiles across tissues
are visualized using the differences of means in Figure S11.
We again noticed similar trends in the blood comparisons as
had in the hippocampus comparisons, with nucleus accumbens
showing higher gene expression and putamen lowered expression
compared to blood (Figure S12). Finally, we found that
11 of these genes had a statistically significant (Bonferroni
corrected p-value < 0.05) interaction between disease and tissue
(Figure 8B).
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TABLE 4 | Top 25 up- and down-regulated genes in Alzheimer’s disease

compared to healthy controls.

Up-regulated Down-regulated

Gene Difference of means Gene Difference of means

ITPKB 0.1709575 RPA3 −0.1781622

ARHGEF40 0.1574220 NME1 −0.1755078

CXCR4 0.1907433 LSM3 −0.1527917

PRELP 0.1319160 MRPL3 −0.1577078

SLC7A2 0.1568425 PTRH2 −0.1205413

AHNAK 0.1304494 RGS7 −0.1778522

NOTCH1 0.1014441 GLRX −0.1622333

GFAP 0.1198343 RPH3A −0.2168597

HVCN1 0.1151989 BEX4 −0.1416335

LDLRAD3 0.1627433 COX7B −0.1726039

KANK1 0.0992824 NRN1 −0.1634702

HIPK2 0.1255059 PPEF1 −0.1430548

SLC6A12 0.1485253 PCSK1 −0.3127961

KLF4 0.1870071 ENY2 −0.1496523

ABCA1 0.1386346 CD200 −0.1537059

DDR2 0.1069751 NRXN3 −0.1203814

KLF2 0.1070143 GTF2B −0.1508171

GNG12 0.1318200 MRPS18C −0.1535766

POU3F2 0.1022426 NCALD −0.1858802

AEBP1 0.1498719 C11orf1 −0.1448555

IQCA1 0.1134073 DCTN6 −0.1222108

ERBIN 0.1309312 SEM1 −0.1765024

LOC202181 0.1184466 APOO −0.1384320

LPP 0.1072798 CCNH −0.1394853

NOTCH2 0.1213843 RAD51C −0.1280948

4. DISCUSSION

As debilitating as Alzheimer’s disease (AD) is, there is still no cure
available, and diagnosis is not confidently confirmed until death.
There are ongoing research efforts to find biomarkers and gene
targets for early detection and intervention in AD. In our study,
we investigated changes at the transcript level by conducting a
meta-analysis to analyze eight microarray expression datasets for
temporal changes in gene expression due to disease status. In
addition to this, we determined if sex, age, or tissue type had
an effect on gene expression changes in Alzheimer’s associated
disease genes.We pre-processed the eight datasets by background
correction, data normalization, and probe annotation. Following
this, the datasets were merged into a single dataset (by common
gene name) for the meta-analysis. This is the first meta-analysis
to explore over 20 different tissues and use a linear model to
identify linear and binary effects on gene expression. Our linear
model also adjusted batch effects by modeling for the study effect
and included age in the model as a linear time series. Modeling
with the study factor to account for batch effects was shown to be
necessary after exploratory visualization of the expression data
before and after combat batch effect correction using principal
component analysis to remove variation within the data that was
introduced due to different studies (Figures 2, 3).

4.1. Significant Gene Expression
Differences Due to Disease Status and
Biological Significance
We first identified statistically significant disease genes (p <

0.05; factor: disease status) from ANOVA (see ST4 of online
Supplementary Datasheet), and these genes included: APOE,
PSEN2, APOD, TREM2, CLU which all have been previously

associated with AD. APOE and APOD are members of the
apolipoprotein family that transport and metabolize lipids in

the central nervous system and play a role in healthy brain
function (Elliott et al., 2010). APOE is a strong, well documented,

genetic risk factor for AD, and polymorphisms in APOE have
been shown to affect age of AD onset (Masters et al., 2015).

APOD’s mechanism is still not completely understood (Elliott
et al., 2010), PSEN2 encodes presenilin-2, an enzyme that cleaves

APP, regulates production of Aβ ,and mutations are associated

with early onset (Masters et al., 2015). Mutations in CLU lead to

lower white matter and increases AD risk (Braskie et al., 2011;
Masters et al., 2015) and TREM2 was identified by a genome-

wide association study (GWAS) as a disease variant and risk
factor for AD (Masters et al., 2015). Our enrichment results of
the 3,735 genes (from ANOVA) were interesting due to them
having already been associated with AD in the literature (Table 3

and also see ST5, ST6 of online Supplementary Datasheet).
For instance, mitochondrial dysfunction has been previously

associated with AD and characterized to cause Aβ deposition,
higher production of reactive oxygen species and lowered ATP

production (Moreira et al., 2010; Onyango et al., 2016; Swerdlow,
2018). Researchers have also suggested that the immune system
plays a role in AD (Heppner et al., 2015; Van Eldik et al., 2016).
As for adaptive immune cells, their role in AD is still not clear,
however, adaptive immune cells have been shown to reduce AD
pathology (Marsh et al., 2016). The loss of B cell production can
exacerbate the disease (Marsh et al., 2016). Neurodenegenerative
diseases have also been described as having genes that overlap
(Wang et al., 2017;Moradifard et al., 2018). Neurodegeneration is
closely related to synaptic dysfunction and long term potentiation
becomes impaired with age and synaptic dysfunction (Prieto
et al., 2017). These results suggest that our meta-analysis is
producing disease-related results (Table 3 and also see ST5, ST6
of online Supplementary Datasheet).

We also identified the KEGG AD pathway as one of our
enriched pathways based on the 3,735 statistically significant
disease genes. To explore how these genes are regulated in the AD
pathway, we used the difference of means (using the TukeyHSD)
to create (Figure 4) which highlights 73 of the 3,735 genes from
our ANOVA analysis and their role in the KEGG AD pathway
(see ST7 of online Supplementary Datasheet). NAE1, also known
as amyloid precursor protein-binding protein 1 (APP-BP1), was
down-regulated in AD subjects and is involved in neuronal
apoptosis (Figure 4). The literature indicates that APP-BP1 is
necessary for cell cycle progression and activates the neddylation
pathway that drives apoptosis (Chen et al., 2000, 2003, 2007,
2012; Laifenfeld et al., 2007; Zhang et al., 2015). Down-regulation
of APP-BP1 has been associated with increased APP while over
expression of APP-BP1 leads to APP degradation (Chen et al.,
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FIGURE 5 | Pathway-gene network of top 10 enriched Reactome pathways from down-regulated genes in Alzheimer’s disease patients.

2000, 2003, 2007, 2012; Laifenfeld et al., 2007; Zhang et al., 2015).
TNFRSF6 was up-regulated in AD subjects (Figure 4, and this
gene produces the Fas antigen which plays a role in mediating
apoptosis (Feuk et al., 2000).

The KEGG AD pathway also highlights genes from our
analysis that are involved in APP processing and cleavage
(Figure 4). Specifically, BACE, PSEN, and APH-1 are all involved
in APP processing by coding for γ-secretase and β-secretase
(Figure 4). BACE is a β-secretase, that we found to be up-
regulated in AD subjects compared to controls (Figure 4). This
finding also supports previous reports that BACE is over-
expressed in AD brains, and plays a role in forming Aβ

(Vassar, 2004; Das and Yan, 2017). APH-1A and PSEN2 are a
part of the γ-secretase complex that finalizes cleavage and release
of APP to produce Aβ (Serneels et al., 2005; De Strooper
and Annaert, 2010; Jurisch-Yaksi et al., 2013). As shown in
Figure 4, in AD subjects there was a high production of APH-
1 while PSEN2 was down-regulated. This indicates that while
in a complex, the two genes may function differently. For
example, mutations in PSEN2 can lead to memory loss and loss
of synaptic plasticity (Saura et al., 2004). A better understanding
of the mechanistic behavior of the γ-secretase complex genes
can aid in the potential development of targeted therapeutics

for γ-secretase. Also in the AD pathway we found up-regulated
expression of APOE and LRP1 in AD subjects compared to
control subjects (Figure 4). These genes are both involved
in Aβ aggregation. LRP1 a known receptor of APOE and
promotes Aβ aggregation and migration across blood-brain
barriers (O’Callaghan et al., 2014).

As discussed above, mitochondrial dysfunction is a key
hallmark of AD. Genes from our meta-analysis that are in the AD
pathway are involved in the respiratory electron chain transport
complexes. For example, NDUFC2 (in CxI on Figure 4), SDHA
(in CxII on Figure 4), and COX5B, COX6A1, COX6C (in
CxIV) are all necessary for electron transport, but were down-
regulated in AD (Figure 4). In Figure 4, complexes I-IV of the
electron chain transport were all down-regulated in AD. Previous
work observed lower expression of 70% of genes that code
for subunits of the electron transport chain (Liang et al., 2007).
Reduced mitochondrial translation and lowered mRNA levels for
genes, such as cytochrome oxidase (COX), can lead to increased
oxidative stress, irregular calcium levels and decreased oxidative
phosphorylation (OXPHOS) (Chandrasekaran et al., 1994, 1997;
Parker et al., 1994; Markesbery, 1997; Liang et al., 2007; Bi et al.,
2018). Hence, changes due to mitochondrial dysfunction may
affect the pathology of neurodegenerative diseases, such as AD.
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FIGURE 6 | Pathway-gene network of top 10 enriched Reactome pathways from up-regulated genes in Alzheimer’s disease patients.

We also found ITPR3, a gene involved in the calcium
signaling pathway, was up-regulated in AD (Figure 4). ITPR3
is necessary for the release of Ca2+ from the endoplasmic
reticulum (Berridge, 2016). Increased expression of this gene
and calcium concentrations can cause memory loss and
neuron cell death (Figure 4) (Berridge, 2016). Additionally,
we found genes involved in tau phosphorylation to be up-
regulated in AD (Figure 4). Calpain (CAPN1, CAPN2) which
is activated by elevated levels of cytostolic calcium is up-
regulated as well as CASP7 (Ferreira, 2012). Together these
genes regulate tau phosphorylation and the formation of
neurofibrillary tangles, which eventually leads to neuronal cell
death (Figure 4).

In addition to enrichment in the AD pathway, our KEGG
results on the 3,735 genes included enrichment in Parkinson’s
disease and Huntington’s disease pathways. Because of this we
investigated if the three neurodegenerative disease signaling
pathways had any common genes in our gene list (Table 3).
We determined that AD had 49 genes that overlapped with
Huntington’s and 47 with Parkinson’s pathways respectively.
We also found that GNAQ, GRIN1, and PLCB1 are in both
Huntington’s and AD but not in Parkinson’s pathways, and

SNCA is in both Parkinson’s and AD but not Huntington’s
pathways. In filtering the statistically significant disease genes
for biological effect size (post-hoc analysis), PSEN2, APOE,
TREM, CLU, and other apolipoproteins did not make the cutoff
(based on their difference in means between the compared
AD/healthy groups).

Focusing on the 352 DEG that had a sizable biological
effect, the down-regulated genes in AD connect with the
pathology of the disease (Figure 5). Specifically, genes in the
Mitochondrial translation pathway that were down-regulated
in AD included MRPL15, MPRL13, and MRPL1, which are
all mitochondrial ribosomal proteins necessary for protein
synthesis (Pearce et al., 2013; Stelzer et al., 2016; Fabregat et al.,
2017). These genes may also be related to down-regulation
of the mitochondrial electron transport chain complexes
(Bonilla et al., 1999) in the KEGG AD pathway (Figure 4).
Translational elongation factors (EEF1E1 and EEF1A2) were also
down-regulated (Figure 5). Previous findings have indicated a
reduction in EEF1A expression in AD patients specifically in the
hippocampus (Beckelman et al., 2016). Genes down-regulated
in the Neuronal System pathway and Transmission across
Chemical Synapses included GABRA1, GABRG2, NCALD,
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FIGURE 7 | Heatmap with gene clustering to visualize age group effect (difference in means) on the differentially expressed disease (control-AD) gene list that have

agegroup:disease status interaction.

GAD1, and NEFL (Figure 5). GABRA1 and GABRG2 are
receptors in the gamma-aminobutyric acid (GABA) signaling
system that bind to GABA (inhibitory neurotransmitter) and

regulate chloride levels in the brain (Padgett and Slesinger, 2010;
Calvo-Flores Guzmán et al., 2018). In AD, the GABA signaling
system is dysregulated with changes in GABA expression in the
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FIGURE 8 | Heatmap with gene clustering to visualize tissue effect (difference in means) on the differentially expressed disease (control-AD) gene list that have

tissue:disease status interaction. (A) Difference in means using hippocampus as the baseline. (B) Difference in means using blood as the baseline.

hippocampus (Calvo-Flores Guzmán et al., 2018). NCALD is a
calcium sensor that is involved in neuronal calcium signaling
(Stelzer et al., 2016; Upadhyay et al., 2019). NEFL makes the

protein neurofilament light chain (Nfl), which has recently been
investigated as a fluid biomarker for monitoring AD disease
progression (Preische et al., 2019). Our results also included
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down-regulated genes PSMA3, PSMC6, and SEM1 that are part
of the proteasome complex (cell cycle progression and DNA
damage repair) (Tanaka, 2009; Stelzer et al., 2016; Kolog Gulko
et al., 2018) and replication factor protein, RPA3 (needed
to stabilize single stranded DNA during DNA replication)
(Lin et al., 1996; Stelzer et al., 2016), which are down-regulated
in the DNA Replication Pre-Initiation and M/G1 Transition
pathways. It has been reported that incomplete DNA replication
and irregular cell cycle events, such as abnormal cell cycle
reentry by neurons have been observed in AD brains and lead
to cell death (Yurov et al., 2011). Additionally, dysregulation of
the proteasome complex in AD is supported by the literature
(Checler et al., 2000; Salon et al., 2003; Oh et al., 2005; Bonet-
Costa et al., 2016). However, the role of the proteasome complex
in AD and how it is regulated is still not clearly understood
(Bonet-Costa et al., 2016), and merits further consideration.

Reactome pathway analysis on the up-regulated genes resulted
in some interesting pathways, such as ExtracellularMatrix (ECM)
Organization, ECM proteoglycans, Mesenchymal Epithelial
Transition (MET) activates PTK2 signaling, MET promotes
cell motility, Non-integrin Membrane-ECM interactions
and Syndecan Interactions, which all had overlapping genes
(Figure 5). CAPN3, COL21A1, EFEMP2, and ITGB8 were
only in the ECM organization pathway (Figure 6). COL21A1
has been described as being necessary for maintaining the
integrity of the ECM, and has been previously found to be
up-regulated in severe AD (Kong et al., 2009). Additionally,
changes in the ECM components and degradation with proteases
have previously been found to be associated with plaque
formation, which causes brain dysfunction (Dauth et al.,
2016; Sethi and Zaia, 2017; Sonbol, 2018). The up-regulated
genes in the potassium and Ca2+ channel pathways included
GNG12, KCNJ2, KCNJ16, and KCNJ10. In general, as potassium
channels open to increase potassium in the cells, calcium is
decreased by inhibiting the Ca2+ gated channels (Padgett and
Slesinger, 2010). Increased activity of the potassium channels,
especially the voltage-gated channels have been associated with
regulating microglia function and priming which in turn leads
to increased ROS production in AD (Rangaraju et al., 2015;
Thei et al., 2018).

We compared the 352 genes identified as differentially
expressed and exhibiting a biological effect with respect to
disease status to a recently publishedmeta-analysis in which 1400
differentially expressed disease genes were identified (Moradifard
et al., 2018). We determined that 136 DEG from our gene list
overlapped withMoradifard et al.’s findings., and 216 of our DEG
were not in their list (Moradifard et al., 2018). Genes that were
unique to our DEG list included GMPR, ABCA1, NOTCH1 and
2, GABRG1, HVCN1, CXCR4, HIP1, MRPS28, FOS.

The top up-regulated gene in AD from our meta-analysis,
ITPKB (Table 4) has previously been observed to have over-
expression in AD subjects. In a mouse model, the gene was
found to be over-expressed and connected to apoptosis, increased
(Aβ) production and tau phosphorylation (Stygelbout et al.,
2014). Additional DEG included CXCR4 (brain development and
neuronal cell survival in the hippocampus) (Stelzer et al., 2016;
Li and Wang, 2017), AHNAK (may have a role in development

of neuronal cells) (Gentil et al., 2005; Stelzer et al., 2016),
NOTCH1,and NOTCH2 (signaling pathway may be involved in
brain development) (Ables et al., 2011; Stelzer et al., 2016) which
were all up-regulated in AD subjects (Table 4). On the other
hand, RPA3 (DNA replication), NME1 (neural development)
(Owlanj et al., 2012; Stelzer et al., 2016), and mitochondrial
proteins MRPL3, MRPS18C (associated with mitochondrial
dysfunction observed in AD) were down-regulated in AD
samples (Table 4).

4.2. Sex, Age, and Tissue Effect on Disease
Status Biologically Significant Genes
For the sex factor, we determined that 46 of our DEG (23
up- and down-regulated in males compared to females) had
a sex effect, with 1 of them (CXCR4) showing a statistically
significant (p-value < 0.05) interaction between disease status
and sex. The enriched pathways from the up-regulated genes
(prior to selecting for interacting genes) in males are highlighted
in Figure S8. Furthermore, these genes involved in pathways,
such as Clathrin-mediated endocytosis (SNAP91, SH3GL2,
and AMPH), Neuronal System, Neurotransmitter receptors
postsynaptic transmission and Transmission across Chemical
Synapses (GABRG2, GABRA1, GAD1, and NEFL) were down-
regulated in females (Figure S8 and Table S3). Down-regulation
in genes, such as GABRG2, GABRA1, GAD1, and NEFL) was
previously discussed as being down-regulated in AD from our
DEG list for disease status (Figure 5).

Additionally, the current literature indicates that women are
at higher risk for AD (Seshadri et al., 1997; Vina and Lloret, 2010;
Podcasy and Epperson, 2016). This increased risk by sex is due to
the loss of estrogen protection (due to menopause) against (Aβ)’s
toxicity on the mitochondria (Vina and Lloret, 2010; Podcasy and
Epperson, 2016). Older women produce more reactive oxygen
species with the decline in estrogen levels (Vina and Lloret, 2010;
Podcasy and Epperson, 2016). Estrogen replacement therapy is a
treatment for AD, and it is being determined that estrogen works
by increasing the expression of antioxidant genes (Vina and
Lloret, 2010; Podcasy and Epperson, 2016). A recently published
meta-analysis also explored sex effects on AD gene expression
(Moradifard et al., 2018). Moradifard et al., found male and
female specific AD associated genes and genes that overlapped in
both sexes (Moradifard et al., 2018). Of the 46 disease associated
genes we found to be affected by sex, 22 were found in both
males and females, 9 only in males, and 5 only in females in
Moradifard et al gene list. Ten of our sex impacted disease
genes (CYBRD1, DIRAS2, FAM107B, FOS, GMPR, HVCN1,
ITIH5, MAPK, RNF135, SLC40A1) did not overlap with their
findings, and these genes have been previously associated with
oxidative stress, cell signaling and transport, apoptosis and AD.
For instance, GMPR was found to gradually increase as AD
progressed (Liu et al., 2018). It produces GMPR1 which is
associated with the phosphorylation of tau (Liu et al., 2018).

Focusing on the statistically significant pairwise interaction
between disease status and sex, we identified CXCR4 which
was up-regulated in females (Table S3). CXCR4 was also
up-regulated in AD (Table 4). CXCR4 has been previously
investigated for its role in AD and other neurodegenerative
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diseases (Bezzi et al., 2001; Li and Wang, 2017; Bonham
et al., 2018). CXCR4 is a chemokine receptor that binds to
CXCL12, and together they are involved in signaling pathways
for inflammation and neuronal system function (Bezzi et al.,
2001; Li and Wang, 2017; Bonham et al., 2018). CXCR4/CXCL12
together regulate synaptic plasticity, apoptosis, calcium levels,
microglia to neuron communication, neuronal signaling and
neuroinflammation (Bezzi et al., 2001; Li and Wang, 2017;
Bonham et al., 2018). Dysregulation of CXCR4 has been
associated with neurodegenerative diseases (Li and Wang, 2017;
Bonham et al., 2018). More specifically, up-regulation of CXCR4
in in a mouse model led to abnormal signaling in microglia and
tauopathy (Bonham et al., 2018).

Aging trends on the differentially expressed disease genes
were visualized in Figure S10 and Figure 7. Subjects grouped as
<60 were used as a baseline because on average, AD symptoms
start at ages 65 and older (Masters et al., 2015). We observed
clear age-related patterns when looking at the difference of
means between age cohorts (prior to selecting for interacting
genes) for the disease gene list (Figure S10 and see ST10 of
online Supplementary Datasheet). Highlighting a few of the
changes: SNAP91 which is involved in synaptic transmission
and associated with late onset (Zhang et al., 2013), STMN2
which is necessary for microtubule dynamics and neuronal
growth (Antonsson et al., 1998; Chiellini et al., 2008), and SST,
a neuropeptide that interacts with (Aβ) and can influence how
it aggregates (Hama and Saido, 2005; Solarski et al., 2018) were
all up-regulated in <60 age group (Figure S10 and see ST8 of
online Supplementary Datasheet). Also, STMN2 and SST have
both previously been associated with expression reduction due
to age(Stelzer et al., 2016; Solarski et al., 2018). ABCA1, GMPR,
HVCN1, ITPKB, NOTCH1 all had higher expression in older age
groups compared to the baseline.

Furthermore, visualizing the genes with a statistically
significant interaction (p-value < 0.05) between disease and age
group, we observed three distinct groups of genes with similar
patterns (Figure 7). Genes identified in group 1 in Figure 7

were down-regulated in ages 65–80 compared to the baseline
(<60 years old). Group 1 genes also displayed a slight increase
in relative expression from ages 85 and higher (Figure 7).
Reactome pathway analysis on the group 1 genes identified 3
enriched pathways that were statistically significant (FDR <

0.05): (i) MECP2 regulates transcription of genes involved in
GABA signaling (GAD1) (He et al., 2014; Fabregat et al., 2017),
(ii) Muscarinic acetylcholine receptors (CHRM1) (Ishii and
Kurachi, 2006; Fabregat et al., 2017) and (iii) Neuronal System
(CACNG3, GAD1, NEFL, GABRA1, GLRB, NRXN3, GABRG2,
and KCNQ2) (Purves D, 2001; Fabregat et al., 2017). Changes
in GABA signaling in AD was previously characterized as age-
dependent (Limon et al., 2012). The ionic response to GABA,
also reported as GABA currents, were reduced in AD, especially
in younger subjects with AD (Limon et al., 2012). We observe a
similar pattern in our meta-analysis for the GABA receptor genes
in group 1 (Figure 7). Genes within group 2 displayed a gradual
increase in expression with age (Figure 7). Reactome pathway
analysis did not identify statistically significant enrichment
for these genes. However, genes in group 2 include DDR2

(regulates TREM2, microglia and neurotoxic proteins) (Hebron
et al., 2017) , IP6K3 (Inositol phosphate metabolism) (Crocco
et al., 2016), and GJA1 (regulates known AD risk factor genes)
(Kajiwara et al., 2018). Additionally, genes in group 3 exhibited
significant up-regulation in gene expression for subjects 65–80
years with a gradual decrease in expression from ages 85 and
older (Figure 7). These genes are associated with the statistically
significant enriched pathway (FDR < 0.05), TRAF6 mediated
NF-kB activation (MAP3K1) (Yoshida et al., 2008; Fabregat et al.,
2017). Our findings highlight genes previously associated with
AD and their temporal trends, and also some additional genes
that experience age-effects (Figure 7 and Figure S10, and see
ST10 of online Supplementary Datasheet).

To investigate tissue-specific effects (prior to selecting for
statistically significant pairwise interactions between tissue and
disease status), we used hippocampus (232 samples) as a baseline
due to it being identified as one of the first regions to be affected
by AD (Masters et al., 2015). We also used blood (519 samples) as
a baseline to explore an underdeveloped non-invasive approach
to monitoring AD. In both analyses, we saw similar trends
with the nucleus accumbens (51 samples) and putamen (52
samples) showing greater differences in expression (Figures S11,
12). Focusing on the genes that showed a statistically significant
interaction between disease and tissue, we observed lower
expression of genes in tissues compared to the hippocampus and
blood with a slight increase in the primary visual cortex and the
putamen (Figure 8). As for the nucleus accumbens we observed
significantly higher expression for these interacting genes for
both hippocampus and blood baseline comparisons (Figure 8).
The statistically significant (p-value < 0.05) interacting genes
in Figure 8 include genes that are involved in development of
dendritic spines (C21orf91), normal brain function (SELENOP),
GABA signaling (GABRG1), and structure of actin cytoskeleton
(EPS8) (Menna et al., 2015; Pitts et al., 2015; Li et al., 2016;
Stelzer et al., 2016; Calvo-Flores Guzmán et al., 2018). In addition
to the shrinking of the hippocampus, decreases in volumes for
nucleus accumbens and the putamen have also been reported
(de Jong et al., 2008; Nie et al., 2017). The nucleus accumbens is
important for reward processing, and in AD has been associated
to impaired decision making and reduction in performance of
rewarding behaviors (Nobili et al., 2017). AD is also associated
with reduced dopamine levels and GABA signaling (Martorana
and Koch, 2014). Finally, the putamen (motor behaviors) and
primary visual cortex (visual processing) both have impaired
functions in AD (Halabi et al., 2013; Brewer and Barton, 2014).

The distribution of samples per tissue type was inconsistent
with hippocampus and blood having larger number of samples
compared to an average of around 55 samples per tissue in
other categories. These results show the potential of blood and
other tissues for monitoring gene expression changes in AD,
but also the need for further focused mechanistic studies in
different tissues.

4.3. Limitations of the Study
Using publicly available data introduced limitations to our
research design. Lack of uniform annotation and missing
information across datasets canmake conducting ameta-analysis
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on multiple datasets challenging. For example the subclass of
AD, details on cognitive status and APOE genotype were not
uniformly reported across the datasets used (Table S1). The
brain samples were from a variety of brain banks with varying
institutional review boards and standards, protocols and criteria
for AD diagnosis requirements (Table S1). Additionally, the
number of datasets used in our meta-analysis was limited by
poor annotations that could not meet our selection criteria,
and this in turn placed bounds to our sample size and power
of the study. Our analysis was also unbalanced: 2,088 samples
made up of 771 healthy controls, 868 AD subjects, 449 subjects
reported as possibly having AD, 1308 females and 780 males,
and the breakdown of age groups is also somewhat uneven.
One of our datasets (GSE84422) consisted of paired samples.
However, as the the other datasets did not include paired
samples, we did not incorporate a paired-sample analysis in
our study. The available public data used for our meta-analysis
also lacked diversity in samples, because in most datasets race
and ethnicity are not reported. This information would be
helpful particularly since AD has been reported by the CDC
to be more prevalent in African Americans (Steenland et al.,
2016; Centers for Disease Control and Prevention, 2018). In
addition, the use ofmicro-array expression data formeta-analysis
is a limitation in terms of not being able to query the entire
transcriptome or query novel genes. Also, in our merged dataset,
large variability was introduced in data due to the large number
of tissues (26) and methods used for extractions (study effect),
which we attempted to correct for by utilizing both as factors in
our model, and including binary interaction terms as well. An
additional limitation of our study is that we included datasets
that investigated gene expression changes in bulk tissue rather
than on the cell-type-specific level. Cell-type-specific expression
data that matched our inclusion criteria were not available to
include in this meta-analysis. Furthermore, single-cell data is
also only recently becoming available. A meta-analysis including
single-cell analysis expression data from specific cell types, such
as neurons, astrocytes and microglia would allow an improved
understanding of gene expression differences between AD and
healthy controls (Wang and Bodovitz, 2010; Stuart and Satija,
2019). Finally, to our knowledge, there were also a limited
number of RNA-sequencing (RNA-seq) datasets on GEO and
Array Express (23), and only one that matched our selection
criteria. Thus, we elected to carry out the analysis using the gene
expression array data. We anticipate that more RNA-seq data,
which can provide a more global view of the transcriptome, will
become available in the future.

4.4. Future Directions and
Recommendations
Our study provides gene lists by factor (disease status, sex, age,
and tissue) of differentially expressed genes. Our study is largely
descriptive, but also yields new gene candidates which we may
be studied further for their role in AD, including underlying
mechanisms using model systems. To expand on this research,
the use of RNA-seq data can reveal novel differentially expressed
genes, biomarkers and gene targets for AD. As more RNA-seq

data becomes available, a similar meta-analysis approach may
be applied, if such data are annotated to include the necessary
factors’ metadata for the analysis. In addition to RNA-seq,
implementing other omics technologies, such as proteomics
and metabolomics can help to fully describe the pathology of
AD, and identify additional biomarkers for early detection. To
promote more meta-analyses, we recommend that future studies
include more extensive, and structured standardized metadata
in their submissions, that will enable use of data. Including
data with racial diversity is also necessary. AD has higher
prevalence in African Americans (Steenland et al., 2016). Due
to reports of racial differences in AD, with an AD prevalence
breakdown of: 14% of African American population compared
to 12% in Hispanics and 10% in whites (Centers for Disease
Control and Prevention, 2018), including racial diversity in
future studies would help identify this potential variability in
susceptibility and identify if certain treatments might be better
suited in some races than others. Improving the representation
of races in clinical trials and molecular reports of AD can
help with health disparities within the field. Exploring the use
of easily accessible tissues, such as blood, to monitor changes
in target genes/biomarkers might also prove helpful for early
detection and provide a more systems-level understanding of
AD. Determining the best or novel biomarkers to track for AD
requires exploring also mechanistic aspects of the disease. For
example, monitoring exosomes and autoantibodies which can
be connected to the dysfunction of the immune system is one
mode of action that is being associated with AD (O’Bryant,
2016). Lastly, as omics technologies advance, implementing
personalized omics for early detection and treatment may prove
useful in improving individual AD outcomes with the increase in
the aging population.
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