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Abstract

Modern genomics sequencing techniques have provided a massive amount of protein

sequences, but experimental endeavor in determining protein structures is largely lagging

far behind the vast and unexplored sequences. Apparently, computational biology is playing

a more important role in protein structure prediction than ever. Here, we present a system of

de novo predictor, termed NiDelta, building on a deep convolutional neural network and sta-

tistical potential enabling molecular dynamics simulation for modeling protein tertiary struc-

ture. Combining with evolutionary-based residue-contacts, the presented predictor can

predict the tertiary structures of a number of target proteins with remarkable accuracy. The

proposed approach is demonstrated by calculations on a set of eighteen large proteins from

different fold classes. The results show that the ultra-fast molecular dynamics simulation

could dramatically reduce the gap between the sequence and its structure at atom level,

and it could also present high efficiency in protein structure determination if sparse experi-

mental data is available.

Introduction

In modern biology and medicine, it is a major challenge to determine a protein tertiary struc-

ture from its primary amino acid sequence, and it has significant and profound consequences,

such as understanding protein function, engineering new proteins, designing drugs or for

environmental engineering [1–3]. Nowadays, more and more protein sequences are being pro-

duced by genomics sequencing techniques. Despite tremendous efforts of community-wide in

structural genomics, protein structures determined by experiments, such as X-ray crystallogra-

phy, NMR spectroscopy or Cryo-EM, cannot keep the pace with the explosive growth of pro-

tein sequences [4]. Since it requires numerous time and relatively expensive efforts,

experimental determination of protein structures is lagging behind, and the gap between

sequences and structures is widening rather than diminishing [5].

Amino acid sequences contain enough information for specifying their three-dimensional

structures [6], thus which provides the principle for predicting three-dimensional structure

from its sequence. Accordingly, in the past decades, computational prediction of protein
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structures has been a long-standing challenge, and a number of computational methods have

been contributed to bridge the gap, which may be able to be reduced or filled if the approaches

can provide predictions of sufficient accuracy [5]. As efficient models, template or homology

modeling methods [7–9] utilize the similarity of the query sequence (target) to at least one pro-

tein of known tertiary structure, and protocols in these methods enable to accurately predict

protein three-dimensional conformation from its amino acid sequence. However, template or

homology models cannot work if there is no determined structure in the same protein family

as that of the query sequence. Only relying on the amino acid sequence and no structural tem-

plate, de novo approaches depend on an effective conformation-searching algorithm and good

energy functions to build protein tertiary structures.

Nowadays, de novo predictors remain restricted to small proteins, and most of them are

extremely difficult to achieve on large proteins because of the vast conformational space and

computational bottlenecks [10, 11]. Some of these de novo approaches rely on assembling pro-

teins from short peptide fragments, which are derived from known proteins based on the

sequence similarity [8, 9]. For example, Rosetta utilizes sequence-similar fragments by search-

ing against three-dimensional structure databases followed by fragment assembly using empir-

ical intermolecular force fields [12]. Although many striking de novo advances have been

achieved, such methods have worked on smaller proteins that have less than 100 amino acids

[13, 14], unfortunately, the de novo structure prediction problem is still unsolved and presents

a fundamental computational challenge, even for fragment-based methods [13].

Here we describe an approach, termed NiDelta, to predict protein tertiary structure from

amino acid sequence. NiDelta models a protein structure from its amino acid sequence pri-

marily involving three steps: (a) predicting torsional angles (ϕ, ψ) based on the convolutional

neural network (CNN); (b) capturing residue contacts based on evolutionary information; and

(c) sampling conformation space by ultra-fast Molecular Dynamics simulation.

Materials and methods

In this section, the developed NiDelta is described in details. The framework of NiDelta is

illustrated in Fig 1. As shown, for a given target sequence, NiDelta will prepare two main

restraints, which are predicted torsion angle and residue-contacts for launching a coarse-

grained molecular dynamics (CGMD)—Upside [15] for sampling conformation space. As

illustrated in the Fig 1, there are two stages to process data: 1) training the Phsior, and 2) esti-

mations of residue-contacts. In the stage of building the Phsior, we construct a non-redun-

dant sequence data set from RCSB PDB library and culled it through PICSCES [16]. Then, a

deep convolutional neural network [17] (termed Phsior, a module in Sibe web-server [18]

will be trained using the fine-tuned data set (not include the 18 proteins as shown in

Table 1). Thereafter, the trained Phsior is used to predict torsional angles (ϕ, ψ) of a given

query amino acid sequence.

The data set was not used to prepare the MSA. On the other hand, the MSA that is used to

infer the residue-contacts was obtained by searching against the UNIREF100 database by

HMMER suite (Jackhmmer). Then the obtained MSA will be trimmed and filtered to remove

invalid sequences and keep the efficient sequences that enhance the quality of DCA estimation.

On the other hand, for the same query sequence, we search it against UNIREF100 database

[19] by HMMER [20] to obtain an alignment of multiple sequences. Then the obtained MSA

will be trimmed and filtered to remove invalid sequences and keep the efficient sequences that

enhance the quality of estimating residue-contacts. Accordingly, residue contacts are inferred

from the multiple sequence alignment, which encodes co-evolutionary information contribut-

ing to coupling relationship between pairwise residues. Then the Upside [15] is launched for
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Fig 1. The system flowchart that is used for predicting protein tertiary structure. At the first stage, NiDelta constructs both training dataset and MSA for Phsior and

residue-contacts estimator, respectively. The predicted torsion angles (ϕ, ψ) and estimated residue-contacts are used as restraints for parallelly launching 500 Upside
simulations, each of which starts with an extended model represented by a simplified structure for sampling its conformation space.

https://doi.org/10.1371/journal.pone.0205819.g001

Table 1. Details of the benchmark proteins and accuracy of predictions achieved by the proposed approach.

Protein name L Fold N Cα-RMSDcrt Cα-RMSDbest Ref. PDB

CrR115 134 α/β 6.0k 4.57 (0.60) 2.51 (0.79) 2lcgA

ER553 141 α/β 98k 4.11 (0.67) 3.11 (0.76) 2k1sA

C-H-RAS P21 166 α/β 574k 4.08 (0.75) 2.98 (0.77) 5p21A

HR2876B 107 α/β 6.9k 4.52 (0.64) 3.42 (0.69) 2ltmA

CG2496 115 α/β 19.8k 2.80 (0.75) 2.19 (0.80) 2kptA

Thioredoxin 105 α/β 214k 2.88 (0.73) 2.12 (0.80) 1rqmA

CheY 130 α/β 887k 8.08 (0.57) 4.21 (0.64) 1e6kA

Ribonuclease HI 143 α/β 63.8k 9.46 (0.42) 5.47 (0.56) 1f21A

Isomerase 108 α + β 68.4k 5.17 (0.57) 3.34 (0.68) 1r9hA

OR36 134 α/β 6.2k 6.42 (0.47) 4.08 (0.68) 2lciA

MTH1958 136 β 43.9k 7.94 (0.37) 4.77 (0.63) 1tvgA

SgR145 173 α/β 771k 6.87 (0.51) 4.99 (0.63) 3merA

Tpx 167 α/β 185k 3.03 (0.77) 2.38 (0.83) 2jszA

YwIE 150 α/β 40.6k 3.42 (0.76) 2.52 (0.82) 1zggA

FluA 173 β/α 15.9k 7.09 (0.50) 5.02 (0.59) 1n0sA

Rhodopsin II 222 α 3.4k 5.68 (0.64) 5.24 (0.65) 2ksyA

Savinase 269 α/β 102k 6.83 (0.65) 5.17 (0.69) 1svnA

MBP 370 α/β 200k 8.85 (0.51) 6.49 (0.64) 1dmbA

L, Protein length; N, Number of sequences obtained by jackhmmer method; Cα-RMSDcrt, RMSD in full length of the centroid structure of the largest cluster compared

to the native shown in Å(TM-score); Cα-RMSDbest, RMSD in full length of the best structure compared to the native shown in Å (TM-score).

https://doi.org/10.1371/journal.pone.0205819.t001
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protein conformation samplings with the restraints of predicted torsion angles based on con-

volutional neural network and contacts derived from evolutionary information.

Torsional angles prediction

The benchmark dataset for Phsior is collected from RCSB PDB library and pre-culled through

PISCES [16]. The library of native protein crystal structures was generated by the PISCES

(November 6, 2017) with the following conditions: (1) sequence percentage identity� 50%;

(2) resolution� 1.8Å; (3) R-factor� 0.25; (4) sequence length� 50. In the dataset, there are

10,586 chains used as the sequence library. The experimental values of the (ϕ, ψ) angles are

extracted by STRIDE program [21], and the N- and C-terminal residues are neglected because

of the incompleteness of four continuous backbone atoms [22].

Phsior is a real-value predictor developed based on the convolutional neural network for

predicting the torsion angles (ϕ, ψ). Briefly, the architecture of Phsior is illustrated in Fig 2 (see

also S1 Text). Phsior extracts three types of sequence-based features involving position-specific

scoring matrices (PSSM), secondary structure (SS), and solvent accessibility (SA). The PSSM is

generated by PSIBLAST [23] search of the query against a non-redundant sequence database

with 20 log-odds scores taken at each position. The secondary structure (SS) is predicted by

PSI-PRED [24], with the three states defined as alpha-helix, beta-strand, and coil. The solvent

accessibility (SA) is predicted by the neural networks [25]. These three kinds of features will be

normalized and used as inputs of the CNN model.

Phsior begins with a simplistic baseline to predict torsion angles (ϕ, ψ) by employing a

fixed-size context window of 17 amino acids through two convolutional layers and two fully-

connected layers (as illustrated in Fig 2). Phsior predicts the torsion angles (ϕ, ψ) of the central

amino acid via the final fully-connected layer.

As inputs of the deep network, data is normalized to the range of 0.0 to 1.0. Then we use a

window size of 17 to include the neighborhood effect of close amino acids. The data produces a

probability map of 35 × 24. The convolutional layers in Phsior are to detect recurrent spatial

patterns that best represent the local features, while max-pooling layers are to down-sample the

features for increasing translational invariance of the network. The fully connected layers are to

integrate for the outputs and then make the final predictions for the torsion angles (ϕ, ψ).

Fig 2. The architecture of Phsior. The feature extraction stage includes convolutional and max-pooling layers. The first convolutional layer consists of 16x 5-filters,

which slide along the input feature matrix. The second and third convolutional layers work on successive convolutions from previous layers. Following the filters, two

fully connected layers are presented to integrate and make final predictions of ϕ and ψ.

https://doi.org/10.1371/journal.pone.0205819.g002
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In Phsior, a convolutional filter can be interpreted as sliding along the input feature matrix,

sharing and/or re-using the same few weights on each local patch of the inputs. Fig 2 illustrates

the convolutional layers that work on an example amino acid from training samples. In partic-

ular, the first convolutional layer in Fig 2 consists of the 5-filters which is repeated several

times as it slides along the feature matrix. Generally, local properties of the input data are

important, the small filters show their capability in learning and maintaining information

derived from the amino acid sequence at different scales.

In the output layer of Phsior, sine and cosine are employed to remove the effect of angle

periodicity. Predicted sine and cosine values are converted back to angles by using the equa-

tion α = tan−1[sin(α)/cos(α)].

Weights of Phsior are randomly initialized according to a zero-centered Gaussian distribu-

tion with a standard deviation of 5=
ffiffiffiffi
N
p

(N is the number of inputs in each layer). Details of

each layer in Phsior are shown in S1 Table.

Residue contact prediction

Recently, residue-contacts lead de novo prediction in a fast progress, like direct coupling analy-

sis (DCA) [26–28], protein sparse inverse covariance (PSICOV) [29] or Gremlin [30, 31] those

are all able to disentangle such indirect correlations, and extract direct coevolutionary cou-

plings. These have been found to accurately predict residue-residue contacts—provided a suffi-

ciently large MSA.

Co-evolutionary information encoded in the amino acid sequences highly contributes to

residue contacts [26, 27, 29–31]. Accordingly, we estimate pairwise residue contacts from pro-

tein multiple sequence alignment (MSA). Firstly, we prepared the MSAs for each studied pro-

tein by searching the query sequence against the UniRef100 database [19] using the

jackhmmer method [20]. The obtained MSAs were trimmed based on a minimum coverage,

which satisfies two basic rules: (1) in the MSA, if the total number of gaps at a single site is

more than 50% of the total number of sequences, the site will not be considered in the estima-

tion of residue-contacts; and (2) the percentage of aligned residues between the query and the

obtained sequence less than a given threshold (� 30% gaps) will be deleted from the MSA.

After filtering the MSA, we start to estimate coupling scores between pairwise residues

according to the direct coupling analysis (DCA) algorithm [5, 26, 27, 32]. Given the MSA, we

can easily compute the single site frequency fi(Ai) and joint frequency fij(Ai, Aj). To maximize

the entropy of the observed probabilities, we can calculate the effective pair couplings and sin-

gle site bias to meet the maximal agreement between the distribution of expected frequencies

and the probability model of actually observed frequencies.

PiðAiÞ ¼
X

Akjk¼i

PðA1;A2; � � � ;ALÞ ¼ fiðAiÞ

PijðAi;AjÞ ¼
X

Ak jk¼i;j

PðA1;A2; � � � ;ALÞ ¼ fijðAi;AjÞ

8
>><

>>:

ð1Þ

Maximizing the entropy of the probability model, we can get the statistical model as fol-

lows,

PðA1;A2; � � � ;ALÞ ¼
1

Z
exp

X

i<j

eijðAi;AjÞ þ
X

i

hiðAiÞ

( )

; ð2Þ

where Z is a normalization constant, eij(�, �) is a pairwise coupling, and hi(�) is a single site bias.

The parameters eij and hi are estimated by limited-memory BFGS algorithm [33]. Accordingly,
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the mathematical definition of the score in pseudo-likelihood maximization Direct-Coupling

Analysis (plmDCA) approach [34] is formulated as follows,

DIij ¼
Xm

Ai ;Aj¼1

Pdir
ij ðAi;AjÞ ln

Pdir
ij ðAi;AjÞ

fiðAiÞfjðAjÞ

 !

; ð3Þ

where DIij is the direct coupling score between pairwise amino acids at the ith and jth sites in

the MSA, and Pdir
ij is the effective pairwise probability [27]. The top-ranked set of DIij are con-

verted to contacts between pairwise residues [26, 34].

Ultra-fast molecular dynamics simulation

In the proposed method, we launched a coarse-grained molecular dynamics simulation

(CGMD, termed Upside) [15] for sampling the conformation space of a given target sequence.

In the Upside, the model is presented by a reduced chain representation consisting of the back-

bone N, Cα, and C atoms. The Upside launches dynamics simulations of the backbone trace

including sufficient structural details (such as side chain structures and free energies). The

inclusion of the side chain free energy highly contributes to the smooth the potential governing

the dynamics of the backbone trace [15].

In the Upside, only the N, Cα, and C atoms for each residue undergo dynamics. An addi-

tional term is also added to capture desolvation effects by computing the number of side chains

within a hemisphere above the Cβ (a derived position from the backbone positions). This sim-

ple representation of the protein allows for molecular dynamics much fast on a smooth land-

scape. The force field in the Upside is defined as follows,

V ¼
X

i

Vrama
i ð�i;ciÞ þ

X

i;j2backbone&side� chain

Vij þ
X

i

venv
i ðNiÞ ð4Þ

where
P

iV
rama
i ð�i;ciÞ is backbone Ramachandran potential from TCB (turn, coil or bridge)

Ramachandran probability models in the NDRD backbone library, and Vij is pairwise potential

among 5 backbone atoms (C, Cα, N, O, H) and 20 side-chain atoms. And environment term is

kinds of solvation energy based on the number of atoms from side-chain and Ni is defined as

follows,

Ni ¼
X

j;ji� jj>2

X

wi

pðwiÞSðjyiðwiÞ � yCb
i j � ð8

�AÞ; ð1 �AÞÞSðangleðyiðwiÞ � yCb
i ; d

Cb
i Þ þ 0:1; 1Þ: ð5Þ

In this study, the predicted torsion angles (ϕ, ψ) and the inferred residue contacts are used

as restraints to run Upside simulations from an extended structure. In the Upside, the pairwise

potential used in this study that is sum of two sigmoid functions with Miyazawa-Jernigan (MJ)

potential [35] is employed without the multi-position side chains (refer to [15] for more

details). The potential function is formulated as

V ¼
ein

1þ expððr � rinÞ=winÞ
þ

eout
1þ expððr � routÞ=woutÞ

; ð6Þ

where, for the side-chain, ein = 3, rin is the distance between pairwise amino acids, win = 0.2, eout
is MJ energy, rout = 6.5, wout = 0.2. For the backbone hydrogen bond and backbone-side-chain

hydrogen bonds, the settings are: ein = 6, rin = 1.4, w0 = 0.1, eout = −4, rout = 2.5, wout = 0.125.

For the ith residue, we provide ranges for both ϕi and ψi, and in this study, we set the ranges

as follows: �i 2 ½�
pred
i � 20

�

; �
pred
i þ 20

�

� and ci 2 ½c
pred
i � 20

�

;c
pred
i þ 20

�

�. This strategy

guides the Upside sample the Ramachandran map distribution for the secondary structures.
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On the other hand, the contacts provide distant restraints for pairwise residues in spacial,

which contribute to sample the tertiary structures. According to the design of experiment con-

ducted, we select top 2L residue contacts. The distance of Cβ-Cβ between pairwise residues that

is less than or equals to 7.5Å in the contact potential function makes non-covalent stronger,

while it is greater than 7.5Å will make the interaction weaker, as shown in Eq C of S1 Text. For

example, if the distance between the pairwise residues are less than or equal to 7.5Å, the Eq C

of S1 Text will produce stronger potential energy that reduce the dynamics in protein folding.

The Upside is configured by setting weights for hydrogen-bond energy, side chain radial scale

energy, side chain radial scale inverse radius and side chain radial scale inverse energy to -4.0,

0.2, 0.65 and 3.0, respectively. For each protein sequence, we launched 500 individual simula-

tions starting from the same extended conformation with a duration time of 500,000 and cap-

ture conformations at every 500 frames.

Results and discussion

As described in the methods, we sought to provide a template-free prediction system for fold-

ing proteins. The approach only depends on sequence information without any structural tem-

plates or fragment libraries. We demonstrate the predictive ability of the developed system on

a set of candidate structures of proteins over a range of protein size and different folds. The

details of eighteen proteins that are collected from the benchmark models of more than 100

residues in refs. [11, 26] are reported in Table 1. According to pre-calculations, each target has

less than 50% identity and similarity to each sequence in the training dataset. As illustrated in

the table, we present the protein name, PDB id in RCSB database, length of each protein

sequence, protein folds, the number of sequences in each MSA, centroid and best Cα-RMSD

with corresponding TM-score (computed by TM-score software [36]). All the comparisons of

Cα-RMSD and TM-score are computed in full length of each target protein.

We first compare the predictions on the torsion angles (ϕ, ψ) of the target proteins listed in

Table 1 among Anglor [22], Spider2 [37], and our model Phsior over the eighteen target pro-

teins. For a fair comparison, a criterion is defined by the mean absolute error (MAE) to vali-

date the predicted angles (ϕ, ψ), and the MAE is to measure the average absolute difference

between the experimentally determined and predicted angles. Accordingly, the MAE is formu-

lated as follows,

MAE ¼
1

N

XN

i¼1

ðPi � EiÞ
2

ð7Þ

where N is the number of residues (excluding N- and C-terminals) in a protein. Pi is the pre-

dicted value for ith residue, and Ei is the experimental value of jth residue in the protein.

As illustrated in Fig 3 (see also S1 Fig), the proposed Phsior and Spider2 [37] are in compa-

rable performances on the target proteins listed in Table 1. They were all better than those of

Anglor [22]. The MAE of torsion angle (ϕ, ψ) predicted by Anglor on each protein was almost

three times of that of Phsior and Spider2, especially on the transmembrane protein Rhodopsin

II (PDB ID: 2KSY), the difference remains the largest among all the comparisons. As we know,

Anglor is a combined predictor of support vector machine and simple feedforward artificial

neural network, while Phsior and Spider2 are based on the deep neural network. Accordingly,

the better performances could be a result of the powerful capability of the deep learning tech-

nique. Although Phsior was slightly better than that of Spider2 on several benchmark targets,

as shown in Fig 3, Phsior is more stable on the predictions.

Since the residues in a region of protein chain are more likely to be related than indepen-

dent amino acid far away, this ‘locality’ make the prediction ability of the CNN method more
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powerful. The CNN model can capture the dependences of amino acids in the same chain,

which can result in much information of ‘locality’ among resides. Moreover, the proposed

strategy of the predicted torsion angles (ϕ, ψ) can guide the Upside to efficiently sample confor-

mation space at high speed. Accordingly, in the developed system, the predictions of Phsior are

preferred and used as restraints in the Upside.
The quality of the predictions by Phsior is roughly good to contribute to the restraints for

the Upside simulation, although there were also several not so good predictions (worse than

those of Spider2). However, this did not mean that we could simply use the predicted torsion

angles (ϕ, ψ) as starting for the Upside simulation. Instead, we found it efficient to pre-defined

a range for each torsion angle to launch Upside simulations (S1 Text).

We further investigate whether co-evolving sequences can provide sufficient information to

specify a good model for assessing blind predictions of protein tertiary structures close to their

crystal structures. The predicted residue-contacts mostly correlated with the native ones. As

numerous studies [38–40] shown, residue-contacts are significantly important to model the

tertiary structure of a protein. The more accurate the predicted residue-contacts are, the better

the tertiary model is. In the developed NiDelta, these predicted residue-contacts are used as

rough restraints to guide and accelerate the molecular dynamics simulation (Upside). How-

ever, the inferences from the MSA always included noises and false positive predictions, which

meant that they could not be simply used for the Upside. Instead, we found it efficient and

important to generate a potential by sigmoid-like function for the Upside. As shown in Eqs (4)

and (5) and (C) of S1 Text, the contacts are converted to a potential that makes the Upside
much robust to the noises in the residue-contacts (see also S1 Text).

For the most of 18 proteins, the estimated residue-contacts include several sparse but informa-

tive true positive predictions, making them useful restraints for the Upside sampling. Only for the

protein OR36 (PDB ID: 2LCI) did NiDelta fail to infer a residue-contact map (S2 Fig), this could

result from less diversity in its MAS. Although the bad residue-contacts occur, the Upside can be

robust to the noises to perform simulation based on Ramachandran map distribution, which

could result from the strategy designed in the NiDelta for the predicted torsion angles (ϕ, ψ).

As shown in Fig 4, nine representative residue contacts estimated from the MSAs present to

compare to the corresponding native ones (see also S2 Fig). The estimated residue-contacts

include noises, which (significantly incorrect predictions) are highlighted in green circles in

Fig 4. As illustrated, the predicted residue-contacts include numerous noises, that is, many of

Fig 3. Comparison on the MAE of the predicted torsion angles (ϕ, ψ) among Anglor, Spider2, and Phsior.

https://doi.org/10.1371/journal.pone.0205819.g003
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Fig 4. The predicted residue-contacts for highlighted targets. All the residue-contacts (top 2L) used in the Upside simulations are shown in blue filled squares. The

native and estimated residue-contacts are in red and blue, respectively. The dots in green circles are noises (false positive inferences).

https://doi.org/10.1371/journal.pone.0205819.g004
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them are incorrect predictions, but the models built by NiDelta are not affected so much,

which results from the good potentials used in the MD simulation. That is, the developed

NiDelta is guided by the predicted restraints but not highly dependent on the restraints. For

instance, there are five groups of incorrect predictions (noises) in the inferred residue-contacts

of the HR2876B protein (PDB ID: 2LTM). The noises possibly led the misfolding of the

unstructured regions of the protein as shown in Fig 5. The similarity can also be found in the

Thioredoxin (PDB ID: 1RQM) and the YwIE (PDB ID: 1ZGG) proteins.

Immediately after predicting the torsion angles and residue-contacts, it is straightforward

to assign the ranges for the angles (ϕ, ψ) and the potentials for interactions between pairwise

residues, respectively. Then we launch the ultra-fast coarse-grained molecular dynamics

(Upside [15]) with the restraints of predicted torsional angles and residue contacts (S1 Text).

For each protein sequence, 500 Upside simulations (trajectories) were performed, starting

from the unfolded structure. We collected the trajectories for analyzing, and last 50 structures

captured from each simulation trajectory were selected from 500 trajectories for clustering

(total number is 25,000). As illustrated in S4 Fig, the developed approach can fold a large pro-

tein in several CPU hours. We conducted a clustering analysis of the structures using fast_pro-
tein_cluster software [41] to cluster the structures and calculate the tightness of those clusters,

which represent conformational ensembles predicted from each protein sequence. For further

study, centroids of the top 5 clusters were selected as our “blind predicted models”. The clus-

tering results are illustrated in Fig 6. The biggest cluster has the strongest tightness on the most

target proteins (except proteins CG2496, CheY, Ribonuclease HI and Savinase).

To visualize how the structural agreement between the predicted models and the native

structure, for nine representative cases, we plotted the proteins corresponding to the best pre-

dictions against their Cα-RMSD relative to the experimental reference structures (Fig 5, and

see also S3 Fig). The comparison between EVfold [26] and the developed NiDelta on the 18

benchmark proteins as listed in Table 1 is presented in S2 Table. We collected the top 1 predic-

tions from EVfold webserver and the RMSDs and TM-scores of the predictions are illustrated

in S2 Table. As illustrated in Fig 5, structural results of the NiDelta for nine representative test

proteins. In the figure, ribbon models of the lowest Cα − RMSD structure (green) (calculated

with the Upside) superimposed on the corresponding experimental structure (red). For exam-

ple, as an interesting representative, the C-H-RAS P21 protein p21 (PDB ID: 5P21) involves in

a growth promoting signal transduction process [42]. As shown Fig 4(C), although there were

noisy predictions in the restraints of torsion angles (ϕ, ψ) (Fig 3 and S1 Fig) and residue-

Fig 5. Highlighted predicted structures. Visual comparisons on nine of the target proteins (the native and predicted

structures are in red and green, respectively).

https://doi.org/10.1371/journal.pone.0205819.g005
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residue contacts (Fig 4(C)), The best Cα-RMSD of 3 Å model of the C-H-RAS P21 protein is in

the same fold with TM-score of 0.76, and also the centroid model of the largest cluster is blind

prediction of Cα-RMSD of 4.1 Å and TM-score of 0.75, which indicates that the Upside can be

able to fold a large protein and robust to the noises although the existing noises may mislead

the simulation in sampling its tertiary structure (e.g. the prediction of the OR36 protein, see

Part A in S2 and S3 Figs). As illustrated in Fig 5(F), the structure of the Thioredoxin protein

(PDB ID: 1RQM) consists of a central core of a five-stranded β-sheet surrounded by four

exposed α-helices [43]. Although the noises and false positive predictions exist in residue con-

tacts (Fig 4), the best Cα-RMSD of the predicted model is 2.1Å, and its corresponding TM-

score is as high as 0.8, which mean that the model is almost structurally identity to the native

fold. The successful predictions can be also found in the centroid model in top 1 cluster of the

Cα-RMSD is 2.9Å and TM-sore 0.73 (Table 1). The blind predictions obtained from the clus-

tering results show that most of the 500 folding simulations converged to similar groups with

strength tightness (Fig 6). This could result from that the Phsior providing more accurate

Fig 6. Top five clusters of each target proteins listed in Table 1. The biggest clusters are colored in red, while other

clusters are represented in blue.

https://doi.org/10.1371/journal.pone.0205819.g006

NiDelta: De novo protein structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0205819 November 20, 2018 11 / 17

https://doi.org/10.1371/journal.pone.0205819.g006
https://doi.org/10.1371/journal.pone.0205819


angles (ϕ, ψ) help the Upside robust to the noises and inaccurate information. As shown in Fig

5(I) (red), the tertiary fold of the YwlE protein (PDB ID: 1ZGG) is a twisted central four-

stranded parallel β-sheet with seven α-helices packing on both sides, in which the active site is

favorable for phosphotyrosine binding [44]. The results of the YwlE protein in Figs 4(I), 3 and

6 further demonstrate that Upside has a strong predictive ability in folding a protein with inac-

curate restraints, even with incorrect information.

Three models (three proteins of more than 200 residues) corresponding to each of the cen-

troid of the biggest clusters are illustrated in Fig 7. The Cα-RMSD values of the centroids com-

pared to the known structures are 5.7Å, 6.8Å, and 8.9Å for Rhodopsin II, Savinase, and MBP

proteins, respectively. The protein Rhodopsin II is a membrane protein predicted by the pro-

posed system. For the top ranked predicted model (5.2Å Cα-RMSD with full length alignment,

as shown in the center in Fig 7(A)), the terminal helix is misaligned, but the orientations of

other six helices are in an excellent agreement with those of the crystal structure. As illustrated

in the right of Fig 7(B), the centroid model is also misaligned in the terminal helix, but it pro-

vided more structural details as shown in the helices 5 and 6. The structure of the Savinase

Fig 7. Visual comparisons on three target proteins with more than 200 residues. The highlighted structures from left to right are the

native, the structures of the best Cα-RMSD, and the centroid of the biggest cluster, respectively.

https://doi.org/10.1371/journal.pone.0205819.g007
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protein chosen as the protein of interests has an α/β fold consisting of 9 helices and 9 strands,

which is a representative of subtilisin enzymes with maximum stability and high activity [45].

The model of the best Cα-RMSD has correct topography of seven β-strands and eight α-heli-

ces, while there are six β-strands and seven α-helices in the centroid model. Flexibility in the

conformation occurs in the C-terminal region of Savinase protein [45], which makes the pre-

diction particularly challenging. As shown, both the models of the best Cα-RMSD and centroid

capture the structural information. As shown in Fig 7(C), the largest protein tested in the

benchmark test is the maltodextrin binding protein (MBP), which is from Escherichia coli

serving as the initial receptor for both the active transport of and chemotaxis toward a range of

linear maltose sugars [46], with 370 amino acids. It is significantly larger than proteins that can

be predicted by other de novo computational approaches [26]. With the predicted angles (ϕ, ψ)

and residue-contacts, the Upside can achieve a blind model of Cα-RMSD 8.9Å and TM-score

0.51, which indicates that the model is in about the same fold [36] and efficiently predictive

ability of the proposed approach in the particularly challenging de novo structure prediction of

large proteins. Accordingly, a strength of the proposed method is demonstrated here is that,

based on the centroids of those top 5 clusters, we can potentially develop iterative predictions

for larger proteins by collecting centroid models and extracting the informative restraints

from previous round of simulations as refinements.

Conclusion

This study presents a way of integrating predicted torsion angles & residue contacts within an

ultra-fast molecular dynamics simulation (Upside) to achieve de novo structure prediction on

large proteins. We have tested the proposed approach on the proteins of more than 100 resi-

dues and different folds, and also have achieved the agreement of the predictions with the

native structures of the benchmark proteins. Statistically determined residue-contacts from

the MSAs and torsion angles (ϕ, ψ) predicted by deep learning method provide valuable struc-

tural restraints for the ultra-fast MD simulation (Upside). The Upside provides a simulation

with high computational efficiency, which allows users predict structures of large proteins in

several CPU hours, get highly accurate models, and details of partial protein folding pathways.

Depending on a portion of structural restraints predicted and estimated from the amino acid

sequence, the proposed methodology makes the Upside a perfect computational platform for

de novo structure prediction of large proteins.

Although pairwise couplings statistically inferred from protein multiple sequence align-

ment is a breakthrough in contribution to computational protein structure prediction, there

are a number of limitations. For example, residue-residue contacts cannot be estimated if

there are no enough as diverse as possible multiple sequences in an alignment of a protein fam-

ily. Additionally, even when we have sufficient sequences, the pairwise contacts contain false

positive predictions that may result in incorrectly building the 3D structure of a protein.

Another limitation, applicable to all existing approaches, is predicting the torsion angles (ϕ, ψ).

It is challenging to accurately predict torsion angles. Phsior, designed based on deep convolu-

tional neural network, is able to predict the angles, but it is difficult to make accurate predic-

tion of each pair (ϕ, ψ). Although we have provided a strategy to handle the inaccurately

predicted torsion angles and noised residue-residue contacts, work that of more deep network

and iteratively passes information (e.g. averaged torsion angles and contact maps from top 2

structural clusters) collected from previous round of predictions to the next round is currently

underway for better predictions of large proteins.

The predicted models (of the best Cα-RMSD and centroid) are consistent with the

crystal structures of their natives, and the validation of our approach on eighteen large
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proteins suggests that the developed approach is capable in efficiently folding large protein

based on predicted restraints. Accordingly, we are confident that future refinement of the

approach will be successfully applied to very large proteins and complexes when experi-

mental restraints are available, such as chemical shift, sparse nuclear overhauser effect

(NOE) and cryo-electron microscopy (cryo-EM) maps. In summary, we introduce a

method NiDelta as a de novo prediction system for large proteins. We hope this approach

will find its place in the fields of both the protein structure prediction and determination in

the future.
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34. Ekeberg M, Lövkvist C, Lan Y, Weigt M, Aurell E. Improved contact prediction in proteins: using pseudo-

likelihoods to infer Potts models. Physical Review E. 2013; 87(1):012707. https://doi.org/10.1103/

PhysRevE.87.012707

35. Miyazawa S, Jernigan RL. Estimation of effective interresidue contact energies from protein crystal

structures: quasi-chemical approximation. Macromolecules. 1985; 18(3):534–552. https://doi.org/10.

1021/ma00145a039

36. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality.

Proteins: Structure, Function, and Bioinformatics. 2004; 57(4):702–710. https://doi.org/10.1002/prot.

20264

37. Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, et al. Improving prediction of second-

ary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep

learning. Scientific reports. 2015; 5:11476. https://doi.org/10.1038/srep11476 PMID: 26098304

38. Jones DT, Singh T, Kosciolek T, Tetchner S. MetaPSICOV: combining coevolution methods for accu-

rate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics. 2014; 31

(7):999–1006. https://doi.org/10.1093/bioinformatics/btu791 PMID: 25431331

39. He B, Mortuza S, Wang Y, Shen HB, Zhang Y. NeBcon: protein contact map prediction using neural net-

work training coupled with naïve Bayes classifiers. Bioinformatics. 2017; 33(15):2296–2306. https://doi.

org/10.1093/bioinformatics/btx164 PMID: 28369334

NiDelta: De novo protein structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0205819 November 20, 2018 16 / 17

https://doi.org/10.1093/bioinformatics/btu739
http://www.ncbi.nlm.nih.gov/pubmed/25398609
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1002/prot.340230412
https://doi.org/10.1371/journal.pone.0003400
http://www.ncbi.nlm.nih.gov/pubmed/18923703
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1006/jmbi.1999.3091
http://www.ncbi.nlm.nih.gov/pubmed/10493868
https://doi.org/10.1093/nar/gki633
http://www.ncbi.nlm.nih.gov/pubmed/15937195
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1103/PhysRevE.87.012707
https://doi.org/10.1103/PhysRevE.87.012707
https://doi.org/10.1093/bioinformatics/btr638
http://www.ncbi.nlm.nih.gov/pubmed/22101153
https://doi.org/10.1002/prot.22934
https://doi.org/10.1002/prot.22934
https://doi.org/10.1073/pnas.1314045110
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1103/PhysRevE.87.012707
https://doi.org/10.1103/PhysRevE.87.012707
https://doi.org/10.1021/ma00145a039
https://doi.org/10.1021/ma00145a039
https://doi.org/10.1002/prot.20264
https://doi.org/10.1002/prot.20264
https://doi.org/10.1038/srep11476
http://www.ncbi.nlm.nih.gov/pubmed/26098304
https://doi.org/10.1093/bioinformatics/btu791
http://www.ncbi.nlm.nih.gov/pubmed/25431331
https://doi.org/10.1093/bioinformatics/btx164
https://doi.org/10.1093/bioinformatics/btx164
http://www.ncbi.nlm.nih.gov/pubmed/28369334
https://doi.org/10.1371/journal.pone.0205819


40. Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin AM. Assessment of contact predictions in

CASP12: Co-evolution and deep learning coming of age. Proteins: Structure, Function, and Bioinfor-

matics. 2018; 86:51–66. https://doi.org/10.1002/prot.25407

41. Hung LH, Samudrala R. fast_protein_cluster: parallel and optimized clustering of large-scale protein

modeling data. Bioinformatics. 2014; 30(12):1774–1776. https://doi.org/10.1093/bioinformatics/btu098

PMID: 24532722

42. Barbacid M. Ras genes. Annual Review of Biochemistry. 1987; 56(1):779–827. https://doi.org/10.1146/

annurev.bi.56.070187.004023 PMID: 3304147
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