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Abstract: Emergent seizures are common in Alzheimer’s disease (AD), although the mechanisms mediating this are unknown. 
It is proposed that stress induced interleukin-18 (IL-18), via interferon-gamma (IFNy) and independently, increases indoleamine 
2,3-dioxygenase (IDO) and subsequent quinolinic acid (QA) in microglia. QA increases seizures and concurrently contributes to neuronal 
loss via excitotoxicity. The ApoE4 allele interacts with IL-18 polymorphisms to increase the risk of AD, and seems likely to potentiate 
the emergence of seizures. Concurrent changes in IDO and the kynurenine pathways at the blood-brain-barrier (BBB) have implications 
for treatment, including in the efficacy of different anti-hypertensives. Melatonin is proposed to inhibit these overlapping excitotoxic and 
neurodegenerative processes, and would be a useful adjunctive treatment.
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Alzheimer’s Disease and seizures
There is growing data showing an increased  association 
of seizures with Alzheimer’s, in both humans and ani-
mal models.1,2 Estimates of prevalence vary, but it 
seems that about 1.5% to 10% of people with Alzheim-
er’s may experience seizure activity, with the highest 
prevalence in early onset Alzheimer’s.3 This raises the 
question as to whether there is a  subtype of Alzheimer’s 
that is seizure associated and may be linked to differ-
ential changes and possibly to differential treatment.

Quinolinic acid (QA) is a possible mediator of both 
seizures and neuronal loss.4,5 In the brain,  microglia are 
the most likely source for QA. QA mediates  neuronal 
excitotoxicity via the N-methyl-D-aspartate receptor 
(NMDAr) and is usually induced by interferon- 
gamma (IFNy),6 although other factors are known 
to mediate an increase in the levels of indoleamine 
2,3-dioxygenase (IDO), and subsequently QA.7,8 One 
such factor is IL-18.

IL-18 is induced by stress,9 including in neurons.10 
It is cleaved within the cell by Caspase-1, like IL-1beta, 
and when released mediates an increase in IFNy.11 
Such Caspase-1 activation has upstream links to 
inflammasome induction, and therefore to wider 
models of neurodegeneration.12 It is therefore possible 
that IL-18, including via IFNy, could be associated 
with an increase in the levels of IDO activity and QA 
induction in microglia. IL-18 has been recently shown 
to increase glycogen synthase kinase 3-beta (GSK-3b) 
and tau hyperphosphorylation.13 Would variations in 
the levels of IL-18 be relevant to early onset seizure 
associated Alzheimer’s?

IL-18 has been shown to be increased in the brain 
in Alzheimer’s, and increased in the cerebral spinal 
fluid in mild cognitive impairment,14 and IL-18 
polymorphisms are associated with an increase in 
Alzheimer’s susceptibility, showing synergistic inter-
actions with the ApoE4 allele.15 Interestingly the 
ApoE4 allele, independent of dementia, is associated 
with an increase in the susceptibility to seizures.16 As 
to whether IL-18 polymorphisms or increases in IL-18 
would synergistically interact with the ApoE4 allele to 
induce an increase in seizures as well as Alzheimer’s 
remains to be examined. It would be expected that 
IL-18, via an increase in GSK-3b, would increase the 
hyperphosphorylation of tau and enhance Amyloid 
B (AB) production.17 Recent data shows that AB 

may prime microglia-like cells for a sub-threshold 
 concentration of IFNy to induce IDO/QA.18 60% of 
IDO induction in AB primed cells is mediated by an 
IFNy induced increase in tumor necrosis factor alpha 
(TNFa), and the  subsequent autocrine effects of TNFa. 
Previous data19 in this cell line show that AB effects 
are prevented when the sphingosine-1-phosphate 
receptor 1 (S1P1r) is k.o.’d. Would variations in the 
levels/ activity of the S1P1r be a significant modulator 
of such AB  priming for subsequent IFNy? This awaits 
experimental data, but it would  suggest that the effects 
of AB, like LPS or thrombin, in microglia is deter-
mined by an increase in the levels of GSK-3b and 
enhanced NADPH  Oxidase activation.20 This would 
then modulate the S1P/ Ceramide ratio, as part of 
wider oxidant status driven lipid raft  re-organization.21 
 Presumably factors that increase the levels of endog-
enous  anti-oxidants will modulate this oxidant driven 
priming and raft re-organization. A number of factors 
inhibit GSK-3b and NADPH  Oxidase in microglia, 
including lithium,22 resveratrol,23 and melatonin.24 All 
are associated with an increase in the phosphoryla-
tion, and inhibition, of GSK-3b, and therefore lead-
ing to an increase in NF-E2-related factor (Nrf-2) and 
endogenous  anti- oxidants. Modulation of microglia 
reactivity threshold may be mediated by this.

How IL-18 induced IFNy impacts on AB primed 
microglia awaits further experiments. However, it is 
possible that IL-18, independent of IFNy, can increase 
IDO, as shown in other cell types.25 Would IL-18 
directly mediate an increase in IDO? Some unpub-
lished data suggests that this could be so.26 As to 
whether AB primes microglia for IL-18, as it does for 
IFNy, remains to be determined. IL-18 seems to play 
a role in changing the most relevant factors  associated 
with Alzheimer’s through its impact on tau, AB and 
possibly microglia threshold. IL-18 is currently being 
investigated for impacts at the blood brain barrier 
(BBB). Should it induce GSK-3b and alter oxidant 
status in the BBB, then this could  overlap it to the 
effects of peripheral LPS, which mediates changes 
in RAGE (Receptor for Advanced Glycation End 
 Products) and LRP-1 (low density lipoprotein receptor-
related protein-1).27 Such changes lead to an increase 
in the influx and decrease in the efflux of AB over the 
BBB. Would IL-18,  perhaps in conjunction with AB, 
parallel such oxidant associated changes in the BBB?
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In human endothelia and pericyte lines, LPS leads 
to an increase in the levels of abluminally released 
kynurenine.28 This seems likely to be taken up by 
astrocytic end-feet and rapidly converted to kynurenic 
acid (KA). Such an increase in astrocyte KA is likely 
to mediate LPS induced depression. Would IL-18, 
with or without AB priming, modulate the IDO and 
kynurenine pathways at the BBB? Such  putative 
increases in KA would likely be anti-epileptic, 
although it would also induce cognitive impairment, 
as in schizophrenia as well as in Alzheimer’s.29 This 

is presuming KA release from astrocytes, perhaps in 
a targeted manner, to neurons. However, in an inflam-
matory context, where BBB changes are occurring, 
then microglia may have closer proximity to the BBB, 
in conjunction with perivascular macrophages,30 and 
the kynurenine produced could be driven to QA 
production, and therefore contribute to excitotoxicity, 
and seizure induction. An increase in kynurenine, 
QA and KA would suggest that more tryptophan is 
being driven down the kynurenine pathway, and less 
to serotonin and melatonin formation.

summary Figure. Showing the proposed pathways whereby stress and IL-18 polymorphisms mediate an increase in IL-18, with impacts concurrently on 
seizures neuroexcitotoxicity and neurodegeneration. Infection effects on RAGE activity and LRP-1 levels will lead to an increase in AB in the brain. Via 
the inhibition of the VEGFr2, then AB will inhibit the efficacy of Losartan/EXP3179, with concurrent changes in permeability. In microglia AB will lead to a 
decrease in the reactivity threshold, likely involving S1Pr activation, within the context of wider rearranged lipid raft complexes. AB will lower the threshold 
for IFNy induced IDO, perhaps in part via autocrine TNFa, leading to an increase in QA. IL-18 will be induced in both glia and neurons, via ROS induced 
inflammasome and Caspase-1 induction. Decreases in Dopamine, NE, and Ach will contribute to cognitive difficulties. The decrease in D and NE, via 
the loss of cAMP induction, may contribute to a decrease in astrocyte KA production. Such increases in IDO will drive tryptophan down the kynurenine 
pathway, leading to a decrease in the levels of serotonin and melatonin, further exacerbating mood and oxidant status. ApoE4 interacts with IL-18 poly-
morphisms in mediating an increase in sporadic Alzheimer’s, and this interaction may increase the likelihood of concurrent seizures, either directly and/
or indirectly via an increase in QA. Melatonin will have multiple sites of action, via changes in oxidant status in all cell types. Amyloid B and IL-18 effects 
are not shown in astrocytes for clarity.
Abbreviations: a7nAChr, alpha 7 nicotinic acetylcholine receptor; AB, amyloid B; ACh, acetylcholine; BBB, blood brain barrier; D, dopamine; GSK-
3b,  glycogen synthase kinase-3beta; IDO, indoleamine 2,3-dioxygenase; IFNy, interferon-gamma; IL-18, interleukin 18; IL-1b, interleukin-1beta;  
KA, kynurenic acid; KAT, kynurenine aminotransferase; Kyn, kynurenine; LRP-1, low density lipoprotein receptor-related protein-1; PHOX, phagocyte 
oxidase; P-tau, tau hyperphosphorylation; NE, norepinephrine; NMDAr, N-methyl- D-aspartate receptor; nSM, neutral SphingoMyelinase; QA, quinolinic 
acid; RAGE, receptor for glycation end-products; ROS,  reactive oxidant status; S1P1r, sphingosine-1-phosphate receptor-1; VEGFr2, vascular endothelial 
growth factor receptor 2.
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Such changes at the BBB are likely to impact on 
the effects of medications. For example, Losartan, via 
its active metabolite EXP 3179, mediates an increase 
in the Akt/pGSK-3b/Nrf-2/anti-oxidant paths. This 
is achieved via the induction of vascular endothelial 
growth factor (VEGF) and its effects at the VEGF 
receptor 2 (VEGF R2).31 AB directly blocks the 
VEGF R2,32 and so some of the anti-hypertensive and 
importantly anti-oxidant effects of Losartan will be 
lost. A shift to other anti-hypertensives may be useful. 
This would highlight the need for more dynamic and 
reactive prescribing, which in turn would be depen-
dent on a more detailed knowledge of the processes 
of change, including the changes that seizure induc-
tion may indicate.

Melatonin has also been shown to be  protective 
in Alzheimer’s,33 and has been shown to significantly 
decrease the levels of GSK-3b.34 Would a significant 
decrease in melatonin interact with seizure 
susceptibility in Alzheimer’s? No current data 
directly answers this, although melatonin is known to 
have anti-epileptic effects.35 Melatonin also reverses 
some of the other cellular changes that are associ-
ated with Alzheimer’s, including a decrease in the 
longevity protein sirtuin-1,36 a decrease in PGC-1a 
(peroxisome proliferator-activated receptor-gamma, 
coactivator-1alpha)37 and a decrease in oxidative 
phosphorylation.38 Would variations in melatonin be 
associated with seizure susceptibility, and perhaps 
the modulation of the IL-18/IFNy induced increases 
in IDO/QA in seizure associated Alzheimer’s? Mela-
tonin is known to modulate BBB permeability, and 
this may be relevant to changes in brain AB levels, 
as suggested above. Also the kynurenine aminotrans-
ferases (KATs) are sensitive to oxidative stress.39 
A decrease in KA arising from such oxidative modu-
lation may allow more kynurenine to form QA. Mela-
tonin would likely modulate this. There is one paper 
showing that astrocytes are able to produce melatonin 
when adequate serotonin is present.40 Given the anti-
seizure, anti-cortisol and cortisol modulating effects 
of melatonin,41 then such induction by astrocytes 
would be a potential local target for drugs to induce. 
It would seem likely that such astrocyte derived mela-
tonin would modulate seizures, stress/IL-18 as well 
as microglia and BBB oxidant status and associated 
changes, as shown in the Summary Figure.

In conclusion, an argument can be made for the role 
of stress induced increases in IL-18, perhaps via IFNy 
and/or AB priming, in the modulation of IDO in both 
microglia and endothelia. In microglia an increase in 
the levels of QA would be associated with both sei-
zures and neuronal loss, and these effects may be 
potentiated by the ApoE4 allele. As to whether such 
pathways constitute a sub-type of Alzheimer’s, or are 
differentially activated along a continuum in all people 
with Alzheimer’s remains to be determined. Further 
research on the processes may lead to a  better treatment 
strategy for this putative sub-type of Alzheimer’s.
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