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Abstract
Food-grade titanium dioxide  (TiO2) containing a nanoparticle fraction  (TiO2 NPs-nanoparticles) is widely used as a food 
additive (E171 in the EU). In recent years, questions concerning its effect on the gastrointestinal microbiota have been raised. 
In the present study, we examined interactions between bacteria and  TiO2. The study involved six pathogenic/opportunistic 
bacterial strains and four different-sized  TiO2 types: three types of food-grade E171 compounds and  TiO2 NPs (21 nm). 
Each bacterial strain was exposed to four concentrations of  TiO2 (60, 150, 300, and 600 mg/L  TiO2). The differences in the 
growth of the analyzed strains, caused by the type and concentration of  TiO2, were observed. The growth of a majority of 
the strains was shown to be inhibited after exposure to 300 and 600 mg/L of the food-grade E171 and  TiO2 NPs.

Keywords TiO2 NPs · Nanoparticles · E171 · Bacterial · Microbiota

Introduction

Titanium dioxide  (TiO2) is an oxide of white metal used as 
a food additive (E171) due to its whitening and brighten-
ing properties. Since it contains nano-fractions [1, 2], the 
additive raises increasing concerns about the risk of disrup-
tion of the intestinal barrier and dysbiosis of the intestinal 
microflora [3, 4]. For example, France was the first country 
to prohibit the use of this food additive for fear of its nega-
tive effects on the human organism [5].

Besides commensal bacteria, the gastrointestinal microbi-
ome is regularly exposed to food-borne (transient) bacteria, 
which may also come into contact with  TiO2 via ingestion or 
passage of food through the intestine [6, 7]. This may exert 
an effect on the resident microbiome and, consequently, on 
human health. Investigation of the interactions between bac-
teria and  TiO2 can provide considerable amounts of valuable 
information. There are only few studies assessing the inter-
actions of NPs with intestinal microflora and their effect on 
host health. Most research is focused on direct interactions 

with intestinal epithelial cells [8, 9] and a vast majority of 
studies concerned modified  TiO2.

In the present study, we focused on the effect of unmodi-
fied  TiO2 NPs applied in food production on selected patho-
genic and opportunistic intestinal bacteria (Table 1). The 
aim of the experiment was to reproduce, as accurately as 
possible, the probable conditions (i.e., bacterial and  TiO2 
concentrations) in which intestinal bacteria come into con-
tact with this food additive.

Material and Methods

Nanoparticles

Four types of  TiO2 were used in the study. Food-grade  TiO2 
(E171) was purchased from three Polish suppliers: Warchem 
Sp z o.o., Marki; Biomus, Lublin; and Food Colors, Piotrków 
Trybunalski (nos. 1, 2, and 3, respectively). For comparison 
purposes,  TiO2 NPs were purchased from Sigma-Aldrich 
(CAS Number: 718467-100G. Titanium (IV) oxide, nano-
powder, 21 nm) (no. 4). The characteristics of the studied 
 TiO2 are presented in our earlier work [10].
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Sample Preparation

Aqueous suspensions of each  TiO2 type were prepared daily, 
before each experiment, in deionized water (60, 150, 300, 
and 600 mg/L; a, b, c, and d, respectively). Next, each sam-
ple was subjected to 30-min sonication in an ultrasonic bath 
(25 °C, 250 W, 50 Hz).

Bacterial Cultures

Pure MRS media, as well as media with the addition of nan-
oparticles at four concentrations (a, b, c, d), were prepared. 
The growth of bacteria (Table 1) was controlled for 72 h by 
measurements of the optical density (OD) at 600 nm every 
2 h using Bioscreen C (Labsystem, Helsinki, Finland) as in 
Gustaw et al. [11]. Control variants were performed in each 
experiment (samples lacking bacteria or NPs). The compari-
son of these values showed the inhibitory properties of the 
particular types of nanoparticles and their concentrations. 
On the basis of the results obtained, growth kinetics values 
were determined using the PYTHON script for individual 
strains and each medium variant used (Supplementary mate-
rials, Fig. 2S1-2S6) [12].

Results

The monitoring of the bacterial growth for 72 h revealed the 
differences in the inhibition of the strains, depending on the 
type and concentration of  TiO2 (Figs. 1, 2; Supplementary 
materials, Fig. 1S1). The percentage inhibition was directly 
proportional to the increasing concentration of the nanopar-
ticles, in comparison with the control.

There were differences in the growth of E. coli, B. sub-
tilis, and S. anatum on the Luria–Bertani medium supple-
mented with the four different types of  TiO2 at the con-
centration of 300 mg/L (Fig. 1A, C, E) and relatively high 
differences at the exposure to the highest concentration of 
600 mg/L (Fig. 1B, D, F). Escherichia coli turned out to 
be the most resistant of these three species to the negative 

effects of the NPs, as no growth inhibition was detected at 
the concentrations of 30 and 150 mg/L, and the max OD 
value at the concentration of 600 mg/L decreased by half 
(Table 2). This was also visible in the growth kinetics of 
this strain, as the duration of the lag phase differed by only 
1 h at the highest concentration. In turn, B. subtilis proved 
to be almost as susceptible to growth inhibition as M. luteus. 
Evident growth inhibition was noted at the lowest concentra-
tion; however, this species adapted to the unfavorable envi-
ronment over time and exhibited a similar growth rate as 
that in the control.

The S. enterica and L. monocytogenes strains did not sub-
stantially inhibit the growth of bacteria after the application 
of all types and concentrations of  TiO2. The slightest dif-
ferences in the case of all other strains were noted after the 
application of the lowest concentrations (60 and 150 mg/L) 
(Fig. 1S1). The growth curve for the bacteria cultured on the 
medium supplemented with these two concentrations of all 
types of nanoparticles (1, 2, 3, 4) was similar to that in the 
control. An exception was the M. luteus strain, whose growth 
was inhibited already at the lowest concentration (60 mg/L) 
(Fig. 2A), and significant growth inhibition was noted after 
the exposure to nanoparticle 1 (Fig. 2). This strain exhibited 
substantial growth reduction in all experimental variants, 
and the increasing concentration was accompanied by an 
increasing percentage of growth inhibition, relative to the 
control, until the growth was suppressed completely at the 
highest concentration.

Discussion

This study demonstrated that the four different types 
of  TiO2 applied at the concentrations of 300 mg/L and 
600 mg/L inhibited the growth of four bacterial strains. 
Interestingly, at the 300 mg/L concentration, there were 
evident differences in the bacterial responses to the differ-
ent E171/NPs  TiO2 forms used in the experiment (Figs. 1 
and 2). As demonstrated in our work as well as by other 
authors in the past, both the type and concentration of  TiO2 
may have an influence on the outcome of the experiment. 
However, taking into account our results and the results 
of other authors cited in this discussion, it can certainly 
be assumed that, indeed,  TiO2 influences the growth of 
the discussed microorganisms. As reported by Sani et al. 
[13], the minimum inhibition concentrations of  TiO2 nan-
oparticles (anatase, purity < 99%) for L. monocytogenes 
(IBRC-M 10,671), E. coli  O157:H7 (IBRC-M 10,698), 
and S. enteritidis (IBRC-M 10,954) were 2, 3, and 3 mg/
mL, respectively. Bacillus subtilis (wild type 3610 strain) 
growth was slightly decreased by 13 μg/mL of  TiO2 NPs 
(Sigma-Aldrich, 700,347, anatase:rutile 80:20, < 150-nm 
particle size), after 72 h of cultivation (zones of inhibition 

Table 1  List of bacterial strains under study

Species and strain

1. Escherichia coli DH5α
2. Bacillus subtilis PCM 486
3. Micrococcus luteus DSM 20,030
4. Salmonella anatum ATCC 9270
5. Salmonella enterica ATCC 10,708
6. Listeria monocytogenes ATCC 35,160
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in soft-solid agar LB medium) [14]. Both food-grade E171 
 TiO2 NPs and Aeroxyde P25 (NM-105, mixed crystal-
line, 85% anatase:15% rutile, mean particle diameter of 
22 ± 1 nm) were added at 32–320 μg/mL to batch cultures 
in non-irradiated conditions induced dose-dependent inhi-
bition of the growth of E. coli K12 MG1655. In the case of 
food-grade E171 at 320 μg/mL,  TiO2 NPs caused complete 
inhibition of the growth of E. coli after 20 h of the cultiva-
tion [15]. Pure  TiO2 NPs (D = 13 nm) inhibited the growth 
of E. coli and Enterobacter cloacae, as shown using the 
disc diffusion method, but no sophisticated calculations 
using statistical tools were performed in that study [16].

In another study,  TiO2 NPs (40 ± 10 nm, 60 ± 10 nm, 
and 80 ± 10 nm) were tested against S. typhimurium and E. 
coli. At 50 μg/mL, the 40 nm, 60 nm, and 80 nm  TiO2 NPs 
induced 3.96, 4.45, and 7.15% cell death, respectively. At 
the concentration of 250 μg/mL,  TiO2 NPs caused a 10% 
increase in the killing rate, compared to 50 μg  TiO2/mL, 
but the trend was similar at both concentrations applied. 
Similar results were obtained for the S. typhimurium popu-
lation, where the killing percentage was nearly 3% at the 
50 μg/mL concentration and varied to 2 decimal places 
only. However, in the S. typhimurium population treated 
with  TiO2 NPs with mean diameters of 60 nm and 80 nm, 

Fig. 1  Growth of selected bacteria after application of four types of  TiO2 at the concentration of 300 (A, C, E), 600 (B, D, F) mg/L; E171 (nos. 
1, 2, 3),  TiO2 NPs (no. 4)
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the killing rate increased 2–threefold along with the higher 
dose of NPs applied (250 vs. 50 μg NPs/mL) [17]. Khan 
et al. [18] isolated from chocolate and characterized  TiO2 
NPs with an average size of ~ 40 nm. The isolated  TiO2 NPs 
decreased the growth of probiotic bacteria (Bacillus coagu-
lans, Enterococcus faecalis, and Enterococcus faecium) over 
a concentration range of 125, 250, and 500 μg/mL in vitro 
(plate method). At the concentration of 500 μg  TiO2/mL, 
NPs inhibited the growth of the probiotic formulation by 
66 ± 6.1% and 71 ± 5.6% in anaerobic and aerobic condi-
tions, respectively. Significant reduction in the count of E. 
coli (ATCC 8739), Salmonella paratyphi (ATCC 9150), 
and L. monocytogenes (ATCC 15,313) (reduction log CFU 
0.95 ± 0.01, 0.66 ± 0.01, and 0.58 ± 0.01, respectively) 
by  TiO2 NPs (15–50 nm, 0.1 mg/mL in the solution) was 
observed by Anaya-Esparza et al. [19]. Ripolles-Avila et al. 
[20] reported that both anatase (crystal phase, 7 nm) and a 
combination of anatase–rutile (80:20 wt/wt, 21-nm size) in 
the range from 0.78 to 100 μg  TiO2/mL of nutrient broth 
significantly reduced the growth of S. enterica var. enteridis, 
E. coli, S. aureus, and B. cereus in a dose-dependent manner. 
Sroila et al. [21] prepared 5-, 16-, and 26-nm  TiO2 NPs and 
showed that, in the dark, 1–6 nm  TiO2 NPs (crystal form of 
anatase, mean diameter 5 nm, at the highest concentrations 

applied equally to ~ 22.73 μg/mL) were efficient inhibitors 
of the growth of E. coli after 4 h of incubation. The authors 
concluded that  TiO2 NPs can diffuse into the cell membrane 
of E. coli and disorganize the cell membrane, leading to 
deformation of the cell and disorganization of intracellular 
structures. The minimum inhibition concentrations of  TiO2 
NPs (purity 99%, tetragonal shape, 10 ~ 25 nm in diameter) 
for the growth of E. coli, S. enteritidis, and L. monocy-
togenes were 2.00 ± 0.33, 2.50 ± 0.17, and 1.00 ± 0.14 mg/
mL, respectively [22]. Lately, Arezoo et al. [23] reported an 
inhibitory effect of  TiO2 NPs (with particle size < 20 nm), 
incorporated in sago-based starch film on the growth of E. 
coli and Salmonella typhimurium. However, in their experi-
ments, the film was complex and cannot be directly com-
pared with our studies.

As it can be seen, the above-cited authors reported on 
the reduction in the growth of bacteria in the presence of 
 TiO2. In selected cases, we obtained similar results as other 
authors, concerning the effective concentrations of  TiO2 
that may have an influence on bacterial growth [15, 17, 20], 
22. However, there are also some discrepancies between 
our results and other, above-cited works [13, 14, 19, 21]. 
These differences can be due to several reasons that must 
be discussed. First, the authors used various methods of 

Fig. 2  Growth of selected bacteria (M. luteus) after application of four types of  TiO2 at the concentrations of 60 (A), 150 (B), 300 (C), and 600 
(D) mg/L; E171 (nos. 1, 2, 3),  TiO2 NPs (no. 4)
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bacterial detection (qualitative disc method, zones of inhibi-
tion, absorbance measurement, etc.). Secondly, various tita-
nium dioxides were used (food-grade mixtures from various 
producers, with an undefined particle size distribution, or 
 TiO2 NPs with a well-defined size in a very narrow range). 
Thirdly, although we and the cited authors have tested bac-
teria of the same genus, the outcome may be species/strain 
dependent. Due to all these factors, the comparison of the 
results must be made with the awareness of their existence. 
Another issue is the analysis of how  TiO2 affects the growth 
of bacteria. Unfortunately, we do not have more detailed 
information yet, what factors determine the reduction of 
growth and propagation of bacteria in the presence of  TiO2, 
this knowledge is also not included in the cited works.

Last but not least, some studies demonstrated that  TiO2 
NPs had no influence on the growth of discussed microor-
ganisms. Escherichia coli (ATCC8099) was not inhibited by 
P25  TiO2 NPs (anatase–rutile, 21 ± 5 nm) at 0.15 mg NPs/
plate [24]. Similarly, Liu et al. [25] observed no inhibition of 
the growth of E. coli by pure  TiO2 NPs at 0.5 g/L in the dark 
and under the light. Rokicka-Konieczna et al. [26] showed 
no inhibition of the growth of E. coli K12 (ATCC 29,425) 
in the dark in the presence of 0.1 g/L of  TiO2 NPs (anatase, 
crystallite size 14 nm). Sethi and Sakthivel [27] showed no 
inhibition of the growth of E. coli by pure anatase (titania) in 
the dark in the presence of 0.5 mg/mL of  TiO2 NPs. Aguas 

et al. [28] showed no inhibition of the growth of E. coli by 
commercial  TiO2 (P25, anatase/rutile = 80/20) suspended in 
the solution at the concentration of 50 mg  TiO2 NPs/L. No 
inhibition of the growth of E. coli and S. paratyphi A in the 
dark was observed in the presence of  TiO2 NPs [29]. The 
average nanoparticle size specified by the authors based on 
their previous study was 8–20 nm [30].

Conclusion

The complexity and variability of microbiota species in 
each human impede the assessment of the effect of food 
additives on this ecosystem. The present study has demon-
strated inhibition of bacterial growth caused by both food-
grade E171 and  TiO2 NPs in most of the analyzed strains, 
at concentrations similar to those reported by a number of 
other authors. However, there are also discrepancies between 
works, concerning the effective concentrations of  TiO2. The 
methods of detection of microorganisms, the type of  TiO2 
(food grade or NPs), or species/strain variability may influ-
ence the outcome of the study. Due to these factors, it is 
necessary to check the mechanism of action of  TiO2 on the 
bacterial cell; therefore, further investigations in this field 
are indispensable for elucidation of the potential toxicity of 
NPs to the human microbiome.

Table 2  Bacterial growth 
parameters (600 mg/L); E 171 
(nos. 1, 2, 3),  TiO2 NPs (no. 4)

n.g., no growth

species Types of  TiO2 NPs Lag time 
(hours)

Max specific 
growth rate 
 (hours−1)

Doubling 
time (hours)

Max OD Min OD R2

M. luteus Control 6.67 0.16 4.38 0.83 0.02 1.00
1 n.g n.g n.g 0.14 0.00 n.g
2 n.g n.g n.g 0.12 0.00 n.g
3 n.g n.g n.g 0.17 0.00 n.g
4 n.g n.g n.g 0.04 0.00 n.g

E. coli Control 6.77 0.07 9.38 0.64 0.05 1.00
1 6.56 0.04 19.45 0.31 0.02 0.99
2 7.20 0.04 17.41 0.28 0.00 0.99
3 7.32 0.03 23.35 0.32 0.04 0.98
4 7.91 0.03 21.49 0.32 0.01 0.98

B. subtilis Control 6.77 0.07 9.38 0.64 0.05 1.00
1 n.g n.g n.g 0.19 0.02 n.g
2 n.g n.g n.g 0.21 0.00 n.g
3 n.g n.g n.g 0.19 0.00 n.g
4 n.g n.g n.g 0.17 0.00 n.g

S. anatum Control 7.82 0.19 3.57 0.91 0.00 0.97
1 0.00 0.06 11.63 0.62 0.02 0.98
2 0.00 0.07 9.65 0.74 0.03 0.99
3 0.00 0.07 9.66 0.65 0.02 0.98
4 0.00 0.04 15.45 0.70 0.05 0.96
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