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It is becoming increasingly clear that the evolution of infectious disease is

influenced by host population structure. Theory predicts that parasites

should be more ‘prudent’—less transmissible—in spatially structured host

populations. However, here we (i) highlight how low transmission, the

phenotype being selected for in this in context, may also be achieved

by rapacious host exploitation, if fast host exploitation confers a local,

within-host competitive advantage and (ii) test this novel concept in a

bacteria–virus system. We found that limited host availability and, to a

lesser extent, low relatedness favour faster-killing parasites with reduced

transmission. By contrast, high host availability and high relatedness

favour slower-killing, more transmissible parasites. Our results suggest

high, rather than low, virulence may be selected in spatially structured

host–parasite communities where local competition and hence selection

for a within-host fitness advantage is high.

This article is part of the themed issue ‘Opening the black box: re-

examining the ecology and evolution of parasite transmission’.
1. Introduction
Owing to the importance of infectious diseases to human health, agriculture

and wildlife populations [1–7], it is critical that we better understand how ecol-

ogy shapes the evolution of life histories of infectious organisms. In particular,

host spatial population structure is ubiquitous in natural and managed popu-

lations. A growing body of theoretical models, observational studies and

experiments suggests that host population structure will select for ‘prudent’

parasites with lower rates of parasite transmission, because this strategy leads

to more-efficient exploitation of the susceptible local host population and

higher parasite densities. A reason for evolution towards lower transmission

rate in structured populations is due to local extinctions of infected hosts: a

higher transmission rate is selected until a critical point is reached beyond

which any further increase in transmission will cause the local cluster of

hosts to be wiped out very rapidly [8]. In addition to the direct fitness benefit

of low transmission in structured host populations, there is also an indirect fit-

ness benefit: host population structure increases parasite relatedness [9,10],

hence low transmission reduces competition between kin [9,11–19].

The above models [9,11–15], and many others [20–25], assume that trans-

mission is a positive function of within-host growth rate, which also affects

pathogen virulence (reductions in host fitness caused by the parasite). Natural

selection will favour an optimal level of virulence that tends to maximize para-

site transmission rate and minimize infected-host death rate because death of

the host ceases transmission [9,21,26]. Low transmission can therefore result

from both high and low within-host growth rate and hence virulence. However,

while mild parasites do not regulate the host population, high virulence may
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have negative consequences on host availability if infected

hosts die and/or recovered hosts cannot reproduce; hence

models typically predict that population structure will

select for low transmission and low virulence [8].

Many parasites, however, must kill their hosts to achieve

transmission, and in these contexts selection by definition

favours maximal virulence. These obligately killing parasites

are found among many groups of organisms, including bac-

teriophages, nuclear polyhedroviruses, bacteria, nematodes,

fungi and microsporidia [27]. They grow inside their host

and convert host biomass into parasite transmission stages

that are released into the environment when the host ruptures

[28,29]. However, obligate killing parasites face an analogous

virulence-transmission trade-off to parasites that need to trans-

mit from live hosts, in terms of the rate they kill their hosts.

Specifically, some intermediate rate of kill will maximize trans-

mission; too short, and there will be fewer propagules

developed inside the host before host death, and too long

inevitably reduces the rate of transmission [27]. Crucially, in

the case of obligate killing parasites, infected hosts are unlikely

to have opportunities to reproduce before they are killed, hence

in principle, selection for low transmission could be achieved

by fast and slow killing.

The optimal levels of parasite virulence and time to kill

will be affected by a range of ecological factors, including

extrinsic host mortality, host immune status and competition

with other parasite genotypes [27,30,31]. This latter selection

pressure is likely to be particularly relevant in structured

populations, because limited host availability may influence

the likelihood of coinfection of competing parasite genotypes.

Assuming competition between coinfecting parasites is

mediated purely by resource competition (as opposed to,

e.g. interference competition or intraspecific exploitation of

public goods [32–34]), then coinfection tends to favour

higher growth rates (and hence higher virulence or faster

time to kill) to maximize within-host competitive ability

[18,20,35,36]. If fast and slow killing have the same conse-

quences for disease transmission, the added advantage of

increased within-host competitive ability may, in some con-

texts, favour faster time to kill in structured host populations.

Here, we investigate if (i) faster killing can be favoured

over slow killing under conditions where there is limited

local host availability, and (ii) whether selection for time to

kill is altered by within-host competition between parasite

genotypes, using an obligately killing virus and its bacterial

host. We selected on standing variation in time to kill from

viruses evolved in a previous study, in which we showed

that faster-killing viruses are more competitive within hosts

but have lower transmission [36]. To allow us to indepen-

dently manipulate local host availability and relatedness,

both of which will be affected by host spatial structure, we

carried out selection in experimental metapopulations,

where hosts were limited or not and single or multiple viral

clones were inoculated into each subpopulation (high and

low relatedness).
2. Material and methods
(a) Experimental viral strains
We previously evolved 12 populations of an obligately killing

virus (bacteriophage f2) on its host bacterium Pseudomonas
fluorescens for 300 generations, under conditions of low or
variable multiplicity of infection (MOI), six lines evolved under

each treatment. Virus evolved under variable MOI killed host

cells faster in multiple infections, at the cost of reduced trans-

mission to new hosts. Virus evolved under low MOI had a

slower time to kill in multiple infections, resulting in lower

within-host competitiveness but increased transmission [36].

We isolated a single clone from each experimental population

to be used in subsequent experiments.

(b) Selection experiment
We evolved 24 metapopulations of f2 virus on P. fluorescens
for three transfers, approximately 20 phage generations. This

short time scale was sufficient for the experiment as we were

selecting on large amounts of standing variation from our pre-

viously evolved viral populations, rather than relying on de

novo mutation. Each metapopulation consisted of 12 subpopu-

lations (wells in microtitre plates) containing 200 ml Kings

Media B (KB) and 102 exponentially growing ancestral bacteria.

It was necessary to establish high MOI in all treatments because

our experimental viruses only kill host cells rapidly during mul-

tiple infections [36]. Thus, we inoculated each patch with 108

viruses. We previously demonstrated that coinfections readily

occur in this system under these conditions by using marked

phages [36,37].

Each metapopulation was established with 12 virus sub-

populations that varied in their time to kill (described above,

fast: 28.69+0.61 min, or slow: 36.54+0.32 min). Six replicate

metapopulations were founded with single (and unique) viral

clones in each subpopulation (high relatedness (genetically iden-

tical) treatments), while six metapopulations had 12 individual

subpopulations founded with one fast-killing clone and one

slow-killing clone, with each of the 12 viral clones used twice

per replicate metapopulation (low relatedness (genetically non-

identical) treatments). To manipulate host availability, half of

the metapopulations were transferred every 8 h and the other

half of the metapopulations were transferred every 24 h. In

both cases, hosts were a limiting resource, given the high MOI,

but lower growth rates over 24 h than 8 h during preliminary

work suggests that the former results in greater host limitation.

The experimental design is shown in figure 1.

In each transfer, we combined all the subpopulations within

a metapopulation to simulate global competition within spatially

structured populations, by thoroughly mixing the entire metapo-

pulation in a 10 ml falcon tube, treating with 10% chloroform

and centrifuging at 14 000 r.p.m. for 2 min to isolate the phage,

then isolated individual phage clones by plating dilutions of

phage populations onto KB agar plates with a semisolid overlay

P. fluorescens lawn. We then picked individual clones (phage pla-

ques) with sterile pipette tips, amplified them overnight in liquid

KB media plus 106 ancestral P. fluorescens so they reached the

same densities, then redistributed 108 phage into a fresh set of

wells containing 102 bacteria to reestablish the starting treatment

conditions. There were four treatments in total: (i) low related-

ness and high host availability, (ii) low relatedness and low

host availability, (iii) high relatedness and high host availability

and (iv) high relatedness and low host availability (figure 1).

At the end of the selection, we assessed the mean lysis time

(t50) of each of the populations of virus from each of the four

treatments.

(c) Measuring time to kill
We measured the population-level time taken for viruses to lyse

bacteria cells in each of our 24 metapopulations in a ‘one-step

growth experiment’ [38]. We added 108 phage to 102 exponen-

tially growing bacteria in 20 ml KB media and measured phage

density by plating onto bacterial lawns at time zero and then

at 5-min intervals from 25 min (we never observed increases in
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Figure 1. Experimental set-up. We manipulated viral relatedness and host availability in a fully factorial design. We started the experiment with diverse meta-
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virus clones from the plated mixture to (3) re-establish new subpopulations: the output of a subpopulation was consequently dependent on its productivity
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phage density prior to 30 min in our previous studies) [36]. Our

specific measure of lysis time was t50, the number of minutes

taken to reach 50% of maximal phage density during a single

synchronized growth cycle.

(d) Statistical analysis
We analysed variation in phage growth as a factorial generalized

linear model (GLM) with explanatory variable ‘relatedness’ (high

or low) and ‘time’ (8 or 24) and their interaction. We analysed

variation in phage population time to kill (t50) as a factorial

GLM with explanatory variables ‘relatedness’ (high or low)

and ‘host availability’ (unlimited or limited) and their inter-

action. We conducted pairwise comparisons of t50 with Tukey’s

pairwise comparison tests using function ‘glht’ in package ‘mult-

comp’ [39] in R. We carried out all analyses and drew all figures

using R v. 2.15.3.
3. Results and discussion
We started the experiment with viruses we had previously

evolved to vary in their time to kill. Faster-killing viruses

have greater within-host competitive ability, but lower

between-host transmission [36]. We first wanted to determine

whether the lower transmission of the faster-killing viruses

resulted in a higher net growth rate than that of the more trans-

missible, slower-killing virus when there is limited host

availability, and vice versa when hosts are abundant. To do

this, we assayed the relative growth rate of populations of the

experimental viruses over 8 and 24 h when host availability is

relatively unlimited and limited, respectively. As predicted,

(i) at 8 h when parasite growth is relatively unconstrained

by host availability, the slower-killing viruses had a higher

growth rate (figure 2) and (ii) at 24 h when parasite growth is

constrained by limited host availability, the faster-killing popu-

lations had a higher growth rate (figure 2, significant effect of

time� strain interaction F1,20¼ 7.84, p ¼ 0.012).

We next wanted to determine how competition between

genotypes and host availability might interact to determine

the relative success of faster-killing versus slower-killing
viruses, given that both relatedness and host availability

might be affected by spatial structure. To allow us to indepen-

dently manipulate local host availability and competition

between genotypes, we carried out selection in experimental

metapopulations, where hosts were more or less limited and

single or two viral clones (one fast and slow killing) were

inoculated into each patch (relatedness is relatively high or

low; r ¼ 1 or r , 1). Note that given the high ratio of viruses

to hosts, high and low relatedness refers to both within-

subpopulation and within-host scales. We found an inter-

action between host availability and relatedness, such that

when host availability was limited, fast time to kill (approx.

28 min) is favoured regardless of relatedness; whereas when

host availability was unlimited and relatedness was high,

time to kill was significantly slower (approx. 31 min;

figure 3, significant relatedness � host availability: F1,14 ¼

37.82, p , 0.001, Tukey’s pairwise comparisons, p , 0.001).

Consistent with previous correlative and experimental

studies [16–19], our experiment shows that limited host avail-

ability in spatially structured environments selects for

prudent, slow-transmitting parasites. Most theory and data

suggest that this also results in low virulence/slow time to

kill for obligate killers; but here we show low transmission

resulting from fast-killing viruses. It is important to empha-

size that our experimental design (specifically, selection on

standing variation) has constrained the outcome to lower

transmission being achieved by faster time to kill. Indeed,

previous experimental work demonstrating that parasites

can evolve to have lower transmission when infection

occurs locally [16] reported a correlated reduction in competi-

tive ability, which is consistent with a slower rather than

faster time to kill. The other experimental study reporting a

similar finding only measured infectivity and not correlated

life-history traits [17]. However, our results suggest that selec-

tion for low transmission may favour faster killing as

opposed to slow, because fast or slow killing can achieve

the same optimal level of transmission. Analogous argu-

ments can be applied to the evolution of high and low

virulence strategies if the strategies have equivalent impacts
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on parasite transmission and host population growth

rate, which may be the case if infected hosts are unable to

reproduce following infection and recovery.

In addition to the direct fitness benefit of low transmission

being a more-efficient host exploitation strategy in viscous

populations, there is an indirect fitness benefit that low trans-

mission reduces competition between kin [15]. We show both

processes can have independent and important effects,

although host availability appears to be more significant

than relatedness in this case. As within our previous study

[36], we found that faster time to kill was favoured in mixed

versus single clone (low versus high relatedness) infections

where parasite growth is less constrained. However, when

growth is more constrained by host availability, relatedness

had no effect: fast killing was always selected. These results

highlight how consequences of population structure, in this
case local host availability, can interact in their effect on para-

site life-history evolution. In summary, our key result is that

fast-killing parasites can be selected in spatially structured

populations because, like slow-killing parasites, they are less

transmissible and hence use their hosts ‘prudently’.
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