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Abstract: In the last decade, adipose tissue has emerged as an endocrine organ with a key role in
energy homeostasis. In addition, there is close crosstalk between the adipose tissue and the liver,
since pro- and anti-inflammatory substances produced at the visceral adipose tissue level directly
target the liver through the portal vein. During surgical procedures, including hepatic resection
and liver transplantation, ischemia–reperfusion injury induces damage and regenerative failure.
It has been suggested that adipose tissue is associated with both pathological or, on the contrary,
with protective effects on damage and regenerative response after liver surgery. The present review
aims to summarize the current knowledge on the crosstalk between the adipose tissue and the
liver during liver surgery. Therapeutic strategies as well as the clinical and scientific controversies
in this field are discussed. The different experimental models, such as lipectomy, to evaluate the
role of adipose tissue in both steatotic and nonsteatotic livers undergoing surgery, are described.
Such information may be useful for the establishment of protective strategies aimed at regulating the
liver–visceral adipose tissue axis and improving the postoperative outcomes in clinical liver surgery.

Keywords: adipose tissue; liver; inflammation; steatosis; liver resection; liver transplantation;
lipectomy

1. Introduction

In the last decade, adipose tissue has emerged as an essential and highly active metabolic and
endocrine organ [1–3]. The basic function of adipocytes is to take up free fatty acids (FFA) from
circulating lipoprotein complexes and esterify them into triacylglycerides [4]. During times of metabolic
demand, hydrolysis of triacylglyceride releases FFA to generate adenosine triphosphate (ATP) [5].
These adipocyte processes, termed lipogenesis and lipolysis, respectively, are primarily governed
through hormonal pathways [6]. However, one of the most important characteristics of adipose tissue is
its function in whole-body energy homeostasis, mediated principally through the endocrine system [4].
Adipose tissue expresses and secretes a variety of bioactive molecules, known as adipokines, which may
exert their effects in adipose tissue and in other organs [7]. Adipokines include leptin, interleukin (IL)-6,
other cytokines, adiponectin, complement components, adipsin, plasminogen activator inhibitor-1
(PAI-1), and proteins of the renin–angiotensin system, among others [7]. Collectively, adipokines
modulate the crosstalk between adipose tissue and other metabolic organs, including the liver [8].
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Thus, adipokines directly target the liver through the portal vein [9] and have significant effects on
liver diseases [4].

The hypoxia and subsequent oxygen delivery restoration to the liver, namely, hepatic
ischemia–reperfusion (I/R), is one of the major pathophysiological events and causes of morbidity
and mortality in liver resections and transplantation, being more evident in the presence of hepatic
steatosis [10–14]. Despite the attempts to solve this issue, hepatic I/R is an unresolved problem in clinical
practice [15]. The cellular mechanisms involved in liver I/R injury are numerous and complicated [14],
which led to discrepancies in our understanding of this pathology [16]. For instance, the mechanisms
underlying I/R injury in conditions of cold ischemia associated with liver transplantation (LT) are
different from those that occur in conditions of warm ischemia associated with liver resections.
In addition, hepatic steatosis is associated with an increased postoperative complication index and
mortality after liver resection and transplantation, and the mechanisms responsible for hepatic damage
and regenerative failure are different in steatotic versus nonsteatotic livers [15]. The investigations
focused on the role of adipose tissue are of clinical and scientific relevance since the prevalence of
obesity ranges from 24–45% of the population and consequently is expected to increase the number of
steatotic livers submitted to surgery, which poorly tolerate I/R damage, resulting in liver dysfunction
and regenerative failure [17–23]. In addition, it has been reported that adipose tissue exerts both
pathological or, on the contrary, protective effects on damage and regenerative response [24]. It should
be noted that functional differences between lean and obese adipose tissue have been extensively
described [25–27] and summarized, as seen in Figure 1. Briefly, adipose tissue from lean individuals is a
connective tissue of low density with small insulin-sensitive adipocytes that secrete adipokines involved
in energy homeostasis, angiogenesis, and antioxidant processes. However, the rigidity of adipose
tissue from obese individuals is caused by the increment of connective fiber content. Hypertrophic
insulin-resistant adipocytes secrete different inflammatory mediators, resulting in adipose tissue
dysfunction, impaired angiogenesis, and cell death [25–27]. Moreover, obesity induces changes in the
secretion of adipokines from adipose tissue to the circulation [28–30] and increases the inflammatory
response and oxidative stress in adipose tissue [31–35]. Therefore, investigations focused on evaluating
the liver–adipose tissue axis in steatotic and nonsteatotic livers subjected to hepatic resections or
transplants are highly useful in the establishment of specific therapies to prevent both hepatic I/R
injury and regenerative failure in liver surgery.

In the first part of this review, we highlight the actual knowledge of the crosstalk between the
adipose tissue and the liver during liver surgery. In addition, the different experimental models and
pharmacological strategies aimed at regulating potential dysfunctions in the adipose tissue–liver axis
in liver surgery are presented, focusing on the strengths and limitations. Clinical results on the role of
adipose tissue in the postoperative outcomes after liver surgery are also discussed.
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Figure 1. Schematic illustration of functional differences between lean and obese adipose tissue. 
Abbreviations: IL, interleukin; NO, nitric oxide; TNFα, tumor necrosis factor α. 
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tissue inflammation is a well-recognized sign of obesity [36,37], one of its major consequences being 
the alteration of the secretion of adipokines that drain to the liver via the portal vein, a notion known 
as the "portal theory" [37–39]. This dysfunctional adipose tissue–liver axis is supported by the 
specific disruption in adipocytes of inflammatory mediators (apoptosis antigen 1 or cluster of 
differentiation 95; Fas/CD95) and/or inflammatory signals (c-Jun N-terminal kinase-1, JNK1) in 
different mouse models, resulting in protection against hepatic steatosis [40,41]. 

It has been suggested that lipids are the preferred energy substrate for nonsteatotic livers in 
conditions of partial hepatectomy (PH) without I/R [42–44]. Briefly, hypoglycemia that follows PH 
induces catabolism of peripheral adipose stores followed by hepatic accumulation of systemically 
derived fat and subsequent liver regeneration [45–47]. This is supported by the fact that glucose 
administration could block the mobilization of fatty acids from adipose tissue by the liver to obtain 
energy [48]. Parameters of lipid metabolism have been reported during hepatic regeneration: 
esterification rate of fatty acids from adipose tissue is higher and lipogenesis is raised [49,50]. In fact, 
the remaining liver after PH expresses the lipoprotein lipase, which could take up fatty acids from 
circulating triacylglycerides [51]. Moreover, different studies have described that mice lacking lipid 
metabolism-associated genes have reduced hepatic adipogenesis and regeneration liver failure 
[52,53]. In line with this, the surgical relevance of the lipid lowering effect of omega-3 fatty acids has 
been studied in steatotic livers in the setting of hepatic I/R injury without PH [54] or in PH without 
I/R [55] (Figure 2). It should be noted that the process of liver regeneration requires careful 
regulation of lipid accumulation. In fact, Yang et al. suggested that Smad interacting protein-1 (SIP1) 
(a key factor linked to the transforming growth factor-β (TGF-β), bone morphogenetic protein 
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Abbreviations: IL, interleukin; NO, nitric oxide; TNFα, tumor necrosis factor α.

2. Relevance of Adipose Tissue in Experimental Models of Liver Resection

Crosstalk between the adipose tissue and the liver is an important event both in the physiological
function of the liver and in the development of liver diseases [4]. Indeed, adipose tissue inflammation
is a well-recognized sign of obesity [36,37], one of its major consequences being the alteration of
the secretion of adipokines that drain to the liver via the portal vein, a notion known as the “portal
theory” [37–39]. This dysfunctional adipose tissue–liver axis is supported by the specific disruption in
adipocytes of inflammatory mediators (apoptosis antigen 1 or cluster of differentiation 95; Fas/CD95)
and/or inflammatory signals (c-Jun N-terminal kinase-1, JNK1) in different mouse models, resulting in
protection against hepatic steatosis [40,41].

It has been suggested that lipids are the preferred energy substrate for nonsteatotic livers in
conditions of partial hepatectomy (PH) without I/R [42–44]. Briefly, hypoglycemia that follows PH
induces catabolism of peripheral adipose stores followed by hepatic accumulation of systemically
derived fat and subsequent liver regeneration [45–47]. This is supported by the fact that glucose
administration could block the mobilization of fatty acids from adipose tissue by the liver to obtain
energy [48]. Parameters of lipid metabolism have been reported during hepatic regeneration:
esterification rate of fatty acids from adipose tissue is higher and lipogenesis is raised [49,50]. In fact,
the remaining liver after PH expresses the lipoprotein lipase, which could take up fatty acids from
circulating triacylglycerides [51]. Moreover, different studies have described that mice lacking lipid
metabolism-associated genes have reduced hepatic adipogenesis and regeneration liver failure [52,53].
In line with this, the surgical relevance of the lipid lowering effect of omega-3 fatty acids has been
studied in steatotic livers in the setting of hepatic I/R injury without PH [54] or in PH without I/R [55]
(Figure 2). It should be noted that the process of liver regeneration requires careful regulation of lipid
accumulation. In fact, Yang et al. suggested that Smad interacting protein-1 (SIP1) (a key factor linked
to the transforming growth factor-β (TGF-β), bone morphogenetic protein (BMP), and Wnt signaling
pathways) is one of the mechanisms involved in the hepatic lipid accumulation and, consequently,
in the process of liver regeneration under PH without I/R [56] (Figure 2). It is well known that in
order for the liver to regenerate, the provision of fatty acids, phospholipids, and cholesterol to the
liver is essential for the maintenance of the rate of formation of the membranes of dividing liver
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cells [50,51]. On the other hand, important questions for steatotic livers arise from these data since
further studies will be required to elucidate whether steatosis may be reduced to avoid the vulnerability
of steatotic livers to I/R and the regenerative failure, or instead if drugs aimed at increasing the levels
of hepatic triglycerides should be used during surgery and thus conserve the energy required for
liver regeneration.

The studies mentioned above in liver surgery have been reported in settings of I/R without PH or
in PH without I/R. However, it should be noted that in the clinical setting, PH is usually performed
under vascular occlusion. Thus, if our aim is the establishment of new protective strategies in the
clinical setting of hepatic resection, the experimental conditions used at the bench-side should simulate
as close as possible the clinical reality. Fortunately, some studies have evaluated the contribution of
adipose tissue to liver injury and regeneration in PH with I/R conditions. Firstly, Mendes-Braz et al.
demonstrated that the relevance of adipose tissue in hepatic damage and regeneration depends on
the type of liver [57]. In this sense, adipose tissue is not required for the regeneration of nonsteatotic
livers subjected to PH with I/R. In contrast, it is necessary to promote regeneration and reduce injury in
steatotic livers. Taking these data into account, glucose or lipid emulsion was administered in obese
and lean animals undergoing PH + I/R. Glucose or lipid treatment in nonsteatotic livers protected
against hepatic damage and regenerative failure. In obese animals, glucose treatment did not protect
steatotic livers against damage but improved their regeneration. However, lipid treatment conferred
protection against damage and regenerative failure [57]. Mendes-Braz et al. suggest that in addition to
the function of adipose tissue as a lipid precursor for new membrane synthesis, the requirement of
systemic adipose stores during regeneration of steatotic livers might be based on the endocrine role of
adipose tissue as a source of different adipokines, which are essential signals for liver regeneration [57].

In addition to the studies related to the role of adipose tissue as a source of energy substrates or
inductors of hepatic lipid accumulation, other studies have investigated the potential contribution of
adipose tissue as a source of bioactive molecules such as visfatin, cortisol, and soluble forms of the
VEGF receptor 1 (sFlt1).

Elias-Miró et al. found the injurious effects of visfatin in PH with I/R and that steatotic livers
were more vulnerable to upregulated visfatin than nonsteatotic livers. The administration of visfatin
exacerbated damage and regenerative failure in steatotic livers following PH with I/R. Treatment
with resistin maintained low levels of visfatin in steatotic livers by blocking its hepatic reuptake from
adipose tissue and consequently prevented the injurious effects of visfatin on hepatic damage and
regenerative failure [58] (Figure 2).

In pathologic states, adipose tissue may also secret a range of hormones including cortisol, which
may be taken up from the circulation by the liver [1,59]. Cornide-Petronio et al. reported that in
instances of PH with I/R, the contributory potential of adipose tissue (as a cortisol source) is dependent
on baseline liver status (steatotic versus nonsteatotic livers). In such surgical conditions, the authors
found that cortisol levels in adipose tissue and liver were elevated only in obese animals [59]. In addition,
cortisol administration under PH with I/R conditions exacerbated hepatic damage and regenerative
failure only in obese animals. Indeed, in obese animals, alterations in enzymatic regulation of cortisol
metabolism caused cortisol accumulation in steatotic livers, whereas in lean animals, compensatory
mechanisms mainly based on the clearance of hepatic cortisol were shown to prevent intrahepatic
cortisol and its deleterious effects [59].

Interestingly, Bujaldon et al. recently examined the effects of vascular endothelial growth factor
type A (VEGFA) on damage and regeneration in steatotic and nonsteatotic livers submitted to PH
with I/R. The authors reported that VEGFA levels were decreased in both steatotic and nonsteatotic
livers after surgery, but the exogenous VEGFA administrated was only able to reach nonsteatotic livers,
reducing the incidence of postoperative complications following surgery. Unexpectedly, the authors
found that circulating VEGFA was sequestered by the high circulating levels of the sFlt1 released from
adipose tissue, so VEGFA could not reach the steatotic liver to exert its effects, ultimately exacerbating
damage and regenerative failure [60]. Thus, the concomitant administration of VEGFA and an antibody
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against sFlt1 was required to avoid binding of sFlt1 to VEGFA. This was associated with high VEGFA
levels in steatotic livers and protection against damage and regenerative failure [60] (Figure 2).
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Figure 2. Strategies aimed at regulating hepatic damage and regenerative failure considering the adipose
tissue–liver crosstalk during partial hepatectomy (PH) with or without I/R [54–60]. Abbreviations: I/R,
ischemia–reperfusion; PH, partial hepatectomy; sFlt1, soluble form of the VEGF receptor 1; SIP1, smad
interacting protein 1; VEGFA, vascular endothelial growth factor type A.

3. Relevance of Adipose Tissue in Experimental Models of Liver Transplantation

To our knowledge, the relevance of adipose tissue (as a source of fatty acids and related lipid
substrates as well as bioactive molecules) on lipid metabolism, hepatic damage, and regeneration
associated with transplantation remains to be elucidated (Figure 3). In addition, the few experimental
studies on LT [61–63] have described the levels of adipokines in the liver but not in adipose tissue.
In this vein, it has been demonstrated in experimental studies that adiponectin, resistin, and visfatin
levels were not modified in recipients when nonsteatotic livers were subjected to transplantation,
whereas in recipients of steatotic liver grafts, the presence of hepatic steatosis down-regulated both
adiponectin and resistin levels under such surgical conditions, whereas no changes in visfatin levels
were observed [61,62]. The role of adipose tissue as a potential source of adiponectin, resistin,
or visfatin was unexplored. Nevertheless, the effects of such bioactive molecules on hepatic damage
and regenerative failure were investigated in steatotic and nonsteatotic livers under PH with I/R
conditions. As expected, hepatic damage in recipients of steatotic liver grafts was unaltered under
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pharmacological regulation of visfatin. However, the treatment with either exogenous adiponectin or
resistin in steatotic liver grafts improved the postoperative outcomes after transplantation. In addition,
the activation of adenosine monophosphate-activated protein kinase (AMPK) by pharmacological
drugs such as AICAR (cell-permeable adenosine analog that is a selective activator of AMPK) or
ischemic preconditioning (PC)—which increased both adiponectin and resistin in steatotic liver
grafts of recipients submitted to transplantation—resulted in protection against hepatic damage [62].
In experimental models of ex vivo LT, it has been reported that the addition of leptin to preservation
solutions was able to increase the signal transducer and activator of transcription-3 levels and to reduce
damage in nonsteatotic grafts submitted to transplantation [63].
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Figure 3. Strategies aimed at evaluating the role of adipokines on hepatic damage and regenerative
failure in LT [61–63]. The adipose tissue–liver crosstalk during LT is still unknown. Abbreviations:
AICAR, Cell-permeable adenosine analog that is a selective activator of AMPK; LT, liver transplantation;
PC, preconditioning.

All the studies mentioned above [61–63] reported the levels as well as the role of adipokines
in liver grafts in experimental models of LT. However, the levels of adipokines in adipose tissue
as well as the potential involvement of adipose tissue in the hepatic levels of adipokines following
transplantation were not evaluated in such studies. In our view, further investigations to address this
issue are of clinical and scientific relevance. In fact, in clinical practice, most of the liver grafts are
obtained from brain-dead donors [64]. It is well known that brain death is associated with cerebral
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trauma and usually caused by hypoxia [65]. In addition, an experimental study aimed at evaluating
the role of adipose tissue in the metabolism of rats with brain injury showed that resistin levels were
increased in subcutaneous fat of rats with traumatic brain injury [66]. Moreover, it should be taken
into account that adipose tissue is considered to be an important source of adipokines, such as leptin,
adiponectin, and resistin, and that adipokines directly access the liver from adipose tissue through the
portal vein [9,67]. Therefore, the relevance of adipose tissue in the hepatic damage associated with
transplantation should be considered in further experimental research of LT to elucidate whether the
regulation of adipose tissue functions could improve the quality of donor organs and postoperative
outcomes after transplantation.

Altogether, the current knowledge emphasizes the relevance of further characterizing the role
of mediators released from peripheral adipose tissue on damage and regenerative failure in both
steatotic and nonsteatotic livers undergoing surgery. All of this is required to provide novel therapeutic
approaches that can be transferred to clinical liver surgery and consequently increase the number of
available donors for transplantation and improve recovery for patients subjected to liver resections.

4. Relevance of Adipose Tissue in Patients Undergoing Liver Surgery

Interestingly, the extent of visceral adipose tissue as well as serum levels of adipokines have been
evaluated in patients undergoing general surgery. Nevertheless, from our knowledge, pharmacological
modulation of adipokine actions has not been reported in the clinical practice of liver surgery [68–71].
Indeed, the significance of visceral adipose tissue remains controversial in the surgical setting [71].

In liver resections associated with hepatocellular carcinoma (HCC), preoperative visceral adiposity,
as well as low muscularity (since obesity might be associated with a decrease in muscle mass), was closely
related to postoperative death and HCC recurrence [72–74]. In addition, it has been reported that
greater fat accumulation in skeletal muscle has been associated with a worse prognosis and survival
after PH in patients with HCC, even with adjustment for other known predictors [75]. Moreover,
prospective studies and meta-analyses have suggested that obese patients have increased risk and a
poorer prognosis for many types of cancer [72–74]. All of these results in PH are in line with those
observed in living donor liver transplantation (LDLT), since patients with a high degree of muscle
steatosis and visceral adiposity show worse survival rates after transplantation compared with patients
without obesity or with normal musculature [76]. Nevertheless, these findings are challenged by
opposite observations. Indeed, preoperative abdominal computed tomographic (CT) scans in patients
undergoing major hepatic resection associated with cancer suggest that obesity does not correlate with
poor outcomes after major surgery [77]. Interestingly, neither preoperative visceral adiposity nor low
muscularity were poor prognostic factors in patients undergoing liver resection for colorectal liver
metastases [78]. In addition, some studies focused on liver resections of different cancer types showed
that patients with a higher body mass index (BMI) survive longer than normal-weight patients after
surgery [79–82]. It should be noted that CT measurement enables specific quantification of visceral
adipose tissue, which is not reflected by BMI.

The contradictory results in clinical practice, the so-called obesity paradox, might occur due to
the different methodologies used to evaluate and measure adipose tissue [71], but different types of
surgery (resection vs. transplantation) as well as liver pathologies should also be noted.

Changes in adipokine levels in patients subjected to PH have been reported, suggesting that
early-phase elevation of serum levels of hepatocyte growth factor (HGF), leptin, and macrophage
colony-stimulating factor (M-CSF) could be associated with the acceleration of liver regeneration [83].
In line with this, plasmatic adipokines after LDLT have been mainly reported as biochemical markers
to evaluate the risk of fibrosis progression in patients transplanted due to hepatitis C [84]. However,
in these studies, the role of adipose tissue as a source of adipokines was not evaluated.
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5. Experimental Strategies to Evaluate Adipose Tissue in Liver Surgery

5.1. Lipectomy

The literature describes the surgical excision of adipose tissue (lipectomy) to evaluate the function
of adipose tissue in physiological conditions and different pathologies [37,40,41]. However, few studies
have attempted to discern the role of adipose tissue on adipokine levels and hepatic damage and
regenerative failure in liver surgery of PH with I/R [56–60], and no studies have evaluated the effects of
a lipectomy in livers submitted for transplantation (Figure 4).
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triphosphate; I/R, ischemia–reperfusion; LT, liver transplantation; PH, partial hepatectomy; sFlt1,
soluble form of the VEGF receptor 1; VEGFA, vascular endothelial growth factor type A.

The results obtained using lipectomy in PH with I/R indicate that, in contrast with nonsteatotic
livers, adipose tissue is required for liver regeneration and to reduce damage in the presence of
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steatosis [57] (Figure 4). Interestingly, adipose tissue does not seem to be an energy source for the
nonsteatotic liver since ATP levels were unchanged after lipectomy [57]. Regarding adipokines, removal
of adipose tissue using lipectomy in lean animals undergoing PH with I/R resulted in plasmatic and
hepatic levels of adiponectin, resistin, visfatin, and cortisol, similar to those observed under PH with
I/R conditions [57–59]. The levels of sFlt1 were reduced in plasma in lean animals lipectomized and
undergoing PH + I/R, indicating that adipose tissue might be a potential source of sFlt1 [60]. As it
has been suggested that circulating VEGFA is sequestered by the sFlt1 released by adipose tissue
in lean animals in conditions of PH + I/R [60], this was associated with increases in hepatic VEGFA
(Figure 4). In obese animals, the reduced hepatic ATP levels were more evident than in lean animals.
However, similar to that occurring in lean animals, adipose tissue does not seem to be an energy
source for the steatotic liver, since ATP levels were unchanged after lipectomy. Adipose tissue seems
to be an adiponectin source for the steatotic liver, since the induction of lipectomy in obese animals
reduced both plasmatic and hepatic levels of adiponectin compared with the results obtained under
PH with I/R conditions [57]. The contribution of adipose tissue as a source of resistin was irrelevant
since obese animals undergoing PH with I/R showed high levels of plasmatic and hepatic resistin
levels, whereas these resistin levels were unaltered under lipectomy conditions [58] (Figure 4). In obese
animals undergoing PH with I/R, the visfatin levels were increased and reduced in liver and plasma,
respectively. When adipose tissue was removed in obese animals undergoing PH with I/R, circulating
visfatin levels were reduced, whereas hepatic visfatin accumulation was unaltered [58]. Thus, PH with
I/R induced the release of visfatin from adipose tissue to circulation and reduced the generation of
visfatin by the liver [58]. In obese animals undergoing PH with I/R, plasmatic and hepatic cortisol
levels were increased [61]. In contrast, lipectomy in obese animals reduced cortisol levels in plasma but
not in the steatotic liver [59], although the potential contribution of adipose tissue in the hepatic levels
of cortisol of obese animals cannot be discounted. Indeed, changes in the enzymes engaged in cortisol
generation and clearance were detected in adipose tissue of obese animals undergoing PH with I/R [59].
The reduced plasmatic levels of sFlt1 in obese animals lipectomized and undergoing PH with I/R were
more evident than in lean animals [60]. This increased the circulating VEGFA bioavailability and,
consequently, increased the opportunity of VEGFA to be taken up by the steatotic liver [60] (Figure 4).

Reduced adiponectin and resistin levels were observed only in steatotic livers when obese animals
were subjected to LT [62] (Figure 4). The role of adipose tissue on hepatic adipokine levels, hepatic
damage, and regeneration following LT remains to be elucidated. In our view, given the key role
of adipose tissue in steatotic and nonsteatotic livers undergoing PH with I/R, strategies based in the
adipose tissue removal should been used to study the crosstalk liver–adipose tissue in LT, mainly in
the presence of steatosis.

5.2. Transgenic Animal Models

The use of transgenic animal models has improved our understanding of the pathophysiology
of adipose tissue. The main focus of transgenic animal models has been the expression or knockout
of selected genes, specifically in adipose tissue, identifying and characterizing promoter regions
that confer adipose–tissue specific expression [7]. For instance, to target both white and brown
adipose tissue, the promoters for adipocyte lipid binding protein aP215 and for phosphoenolpyruvate
carboxykinase are usually used, whereas to target only brown adipose tissue, the mitochondrial
uncoupling protein-1 (UCP-1) promoter is used [85–87]. In our view, the potential applications of
transgenic animal models with overexpression or knockout of adipose tissue-selected genes might
be of scientific and clinical interest to evaluate the adipose tissue–liver axis in hepatic resections and
transplantation, since in different surgical conditions, hepatic diseases might be improved by directly
targeting adipose tissue, rather than liver tissue per se.
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6. Conclusions

The role of adipose tissue on damage and regenerative failure in experimental liver surgery
depends on the type of surgical procedure (PH with or without I/R) as well as the type of liver (steatotic
versus nonsteatotic) submitted to liver surgery. This should be taken into account for the establishment
of protective strategies modulating the liver–adipose tissue axis, which would be specific for each
surgical procedure and type of liver, as it has been reported in the present review. Further clinical
studies and appropriate methods for adipose tissue measurement will be required to elucidate the
significance of visceral adipose tissue in the clinical scenario of surgical hepatic resections. The use of
experimental models of lipectomy as well as transgenic animal models with expression or knockout of
adipose tissue-selected genes might be of scientific and clinical relevance to elucidate the contribution of
the adipose tissue–liver axis, as well as the role of adipose tissue as an energy substrate and/or a source
of different adipokines and hormones in livers subjected to transplantation. This would provide novel
therapeutic approaches to be transferred to clinical conditions to improve the post-transplantation
outcomes and consequently increase the number of available donors for transplantation.
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HCC Hepatocellular carcinoma
HGF Hepatocyte growth factor
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M-CSF Macrophage colony-stimulating factor
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PAI-1 Plasminogen activator inhibitor-1
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sFlt1 Soluble form of the VEGF receptor 1
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TGF-β Transforming growth factor-β
TNFα Tumor necrosis factor α
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