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ia SHAP and Bayesian machine
learning optimizes pDNA and CRISPR
ribonucleoprotein delivery†

Rishad J. Dalal,a Felipe Oviedo,b Michael C. Leydenc and Theresa M. Reineke *a

We present the facile synthesis of a clickable polymer library with systematic variations in length, binary

composition, pKa, and hydrophobicity (clog P) to optimize intracellular pDNA and CRISPR-Cas9

ribonucleoprotein (RNP) performance. We couple physicochemical characterization and machine

learning to interpret quantitative structure–property relationships within the combinatorial design space.

For the first time, we reveal unexpected disparate design parameters for nucleic acid carriers; via

explainable machine learning on 432 formulations, we discover that lower polymer pKa and higher

percentages of benzimidazole ethanethiol enhance pDNA delivery, yet polymer length and captamine

cation identity improve RNP delivery. Closed-loop Bayesian optimization of 552 formulation ratios

further enhances in vitro performance. The top three polymers yield a higher signal and stable transgene

expression over 20 days in vivo, and a 1.7-fold enhancement over controls. Our facile coupling of

synthesis, characterization, and machine analysis provides powerful tools to quantitate performance

parameters accelerating next-generation vehicles for nucleic acid medicines.
Introduction

Nucleic acids are important therapeutics, yet issues with
delivery efficiency continue to hinder widespread advancement
in the clinic. Delivery systems are crucial to encapsulate and
protect these large and highly sensitive payloads and improve
tissue internalization ensuring efficacy.1,2 Current viral delivery
methods have struggled to overcome obstacles including
limited cargo capacity,3 manufacturing costs,4 and immunoge-
nicity.5,6 Nonviral delivery methods have been proven in
commercial formulations and offer facile, tunable, and inex-
pensive vehicles for exogenous nucleic acid medicines. Poly-
mers are established pharmaceutical formulation agents but
have been under-utilized for carrying nucleic acids in vivo due to
low performance.7 However, there exists limitless potential for
polymer delivery vehicles due to ease of chemical and physical
modulation along with affordable and scaled manufacturing.7,8

Controlled radical polymerization,9–15 post-polymerization
modication,16–18 and parallel synthetic techniques19–21 have
rapidly advanced and offer powerful tools to accelerate the next
generation of bioactive polymer libraries.17,22–24 To this end, the
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eld of machine learning25–27 coupled with parallel experimen-
tation is aiding analysis and understanding of data sets in
identifying the chemical, physical, and biological factors
involved in the performance enhancement of polymers.23,24,28–33

However, we are limited by the vast chemical space and
prediction of formulation chemistries indicating discrete
selection and optimization of next-generation systems. Indeed,
new machine learning models aimed at selecting and predict-
ing discrete parameters inuencing biological efficacy are
needed to advance the next frontier of personalized medicine.

To accelerate the advancement of next-generation nucleic
acid medicines, we present a facile method to generate cationic
polymers coupled with a machine learning workow as
a powerful tool to tailor nucleic acid delivery vehicles (Fig. 1).
Herein, we probe the effect of physicochemical properties on in
vitro delivery of plasmid DNA (pDNA) and CRISPR-Cas9 ribo-
nucleoprotein (RNP) payloads through SHapley Additive exPla-
nations (SHAP) analysis. We also utilize machine learning
through Bayesian Optimization (BO) to identify formulation
prediction for optimizing in vitro delivery. We present three
scaffold lengths to produce 36 copolymers containing system-
atic binary compositions of a hydrophobic cation benzimid-
azole ethanethiol (BET), along with the co-cations with
cysteamine (Cys), captamine (Cap), or 2-(diethylamino) etha-
nethiol (DiE), to examine their effect on performance. Our
model allows rapid comparison of 552 formulations across
numerous chemical and physical characteristics of the polymer
scaffolds: repeat units (RU), incorporation of BET, type of co-
cation, polymer pKa, polymer clog P, polyplex size,
Chem. Sci., 2024, 15, 7219–7228 | 7219
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Fig. 1 A tunable polymer scaffold for facile optimization of pDNA and RNP delivery performance. The polymers are modified with chemical
functionality tomodulate binding, delivery, and release. SHAP analysis, a machine learning technique, aids in understanding the structure–activity
relationships and identifying the polymer feature importance in expression and viability. A closed-loop Bayesian optimization further improves
performance. Polymers of interest were evaluated for pDNA delivery to the mouse liver.
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formulation ratio, and relative binding, to identify overarching
structure–property relationships benetting cellular delivery
(transfection) efficiency and cellular viability. We show that the
chemical parameters that dictate delivery performance differ as
a function of payload identity. Our predictive pipeline identies
three top performers in vivo, displaying higher and longer-term
transgene expression in the mouse liver compared to a well-
studied commercial control (JetPEI). Our powerful methods
presented herein provide advanced understanding of quanti-
tative structure–activity relationships important for rapid
preclinical development of next-generation nucleic acid
medicines.
Results and discussion
Polymer scaffold synthesis

Pentauorophenyl methacrylate (PFPMA) is known to poly-
merize under the reversible addition–fragmentation chain
transfer (RAFT) mechanism to control the degree of polymeri-
zation and dispersity of the backbone.16,34 PFPMA allows effi-
cient post-polymerization modication due to the labile nature
of the pentauoro group via amidation.16,17,34–36 We performed
synthesis to create three well-dened pPFPMA scaffold lengths
yielding short (Sh), medium (Md) and long (Lg) (N = 90, 190,
250) variants. Through amidation with allylamine, we obtain
poly(allylmethacrylamide) (pAMAm), a polymer backbone
decorated with pendent alkenes and responsive to the highly
7220 | Chem. Sci., 2024, 15, 7219–7228
efficient thiol–ene click chemistry.37 We create the library of
copolymers in a stepwise conjugation of functional groups.
First, four compositions of BET, ranging in incorporation from
0–45%, are obtained, and then each sample is split into three
and further saturated with either Cys, Cap, or DiE cations. Our
modular process allows for consistent BET incorporation (high
log P, possibly intercalating) and co-cation (promotes electro-
static binding) composition to be consistent across each sample
ensuring structural uniformity. Full characterization of the
polymer systems through 1H NMR, 19F NMR, ATR-FTIR, and
SEC-MALS is shown in Fig. S1–S4 and S7–S12.† Polymers are
named according to polymer RU_Cation_%BET (i.e.,
Sh_DiE_40).

Altering the protonation state and hydrophobicity of the
polymer systems has been shown to affect the ability of poly-
mers to bind and release nucleic acids, interact with cell
membranes, promote endosomal escape, and enable benecial
aggregation in vitro promoting particle settling onto cells.24,38–44

Using an autotitrator, we measured the pKa values (Fig. S13†) of
the small molecule thiols. The values for Cys, Cap, DiE, and
BET, respectively, were 8.10, 7.74, 7.68, and 5.90 (Fig. 2). It
should be noted that upon polymerization, neighboring group
effects suppress amine ionization resulting in a common
decrease of one pKa unit comparing monomer to polymer,
which is found aer measuring the pKa of all polymers.45,46 We
also calculated the octanol to water partition coefficient (clog P)
values of the monomers to be −2.70, −2.50, 1.74, and 2.40,
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 (A) Schematic of the poly(allylmethacrylamide) (pAMAm) polymer scaffold undergoing a stepwise thiol–ene post-polymerization
modification of the medium backbone with 20% BET and then further split into three to be saturated with the remaining cations (Cys, Cap, DiE).
The functional amines have a range of charge state (pKa) and hydrophobicity (clog P) characteristics. (B) A visual representation of the 36
polymers in the library showing the repeat units in the parent backbone (N = 90, 190, 250) and the range in BET incorporation within each
polymer set. (C) Table of data displaying the chemical characterization of all 36 polymers.
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respectively, for Cys, Cap, DiE, and BET (the more negative the
number, the higher the water solubility). The molar averages of
pKa and clog P of the copolymer systems based on the repeat
units and percent incorporation of the functional moieties are
shown in Fig. 2 and eqn (S2) and (S3).†
Polyplex physical characterization

For physical characterization and analysis of the polymer–
payload complexes (polyplexes), we used dynamic light scat-
tering (DLS) to determine the hydrodynamic radius (Rh) and
a dye exclusion assay to establish the relative binding affinity of
each polymer with the pDNA or RNP (Fig. 3B). We mixed poly-
mers with either payload in phosphate buffered saline (PBS, pH
7.4) at a given nitrogen (N, on polymers) to phosphate (P, on
nucleotides) (N/P) ratio (from either pDNA or guide RNA
(gRNA)). We observed that pDNA polyplexes formed with theMd
and Lg backbones were around 50 nm in size, while the Sh
backbone polyplexes ranged in size from 50 to 250 nm (Fig. S14–
© 2024 The Author(s). Published by the Royal Society of Chemistry
S16†). When the polymers were bound with RNP, the polyplex
sizes were considerably larger with all of the polyplex systems
being larger than 100 nm, ranging to 1000 nm (Fig. S17–S19†).
We also found that the RNP aggregates alone, which could be
the cause for these larger aggregates.

To compare the relative binding affinity of the polymers to
the payloads, wemixed a uorescent dye, PicoGreen, with pDNA
prior to forming polyplexes at various N/P ratios (Fig. S20–S22†).
Lower uorescence is linked to more dye excluded from the
pDNA, indicative of higher relative binding affinity.47 Similar to
previous reports, we found that higher steric bulk displayed
lower relative binding (bulk increases from Cys to Cap to DiE).17

Additionally, we show that stronger binding correlates with BET
composition, indicating possible intercalation of the pDNA.40,41

The Sh polymer backbones resulted in tighter binding
compared to the Md and Lg scaffolds. For RNP binding (Fig.
S23†), we used an OliGreen dye for RNP polyplexes. We found
similar trends with regard to steric bulk, i.e., Cys functionalized
polymers showed the tightest binding17 and that higher BET
Chem. Sci., 2024, 15, 7219–7228 | 7221



Fig. 3 (A) Data schematic showing the parallel characterization workflow on polymer formulations with pDNA and CRISPR RNP displaying
relative polymer–payload binding affinity, polyplex size (Rh), and in vitro assays with HEK293T cells monitoring GFP or mCherry expression. (B)
Heat maps of compiled data to visualize binding, polyplex size, % cells with GFP (pDNA) or mCherry (RNP) expression, and toxicity reported as %
cell viability. Diagrams show the polymer library with pDNA (top row, N/P 10) and RNP (bottom row, N/P 5). (C) Top expressing polymer of each
cation (DiE – red, Cap – orange, Cys – yellow) in comparison to the payload pDNA or RNP only (blue) and JetPEI polyplex (black) controls. Data
also shows the respective viability of each system.

Chemical Science Edge Article
incorporation results in higher dye exclusion from the gRNA.
We notice an opposite trend for polymer size however, where Lg
scaffold variants promote stronger RNP binding. While efficient
binding is important for payload encapsulation and protection,
strong binding is not always positively correlated with biological
delivery as payload release is important for performance.48

Overall, polyplex size and binding appeared to be correlated
with BET composition, cation bulk, and scaffold length.
7222 | Chem. Sci., 2024, 15, 7219–7228
Transfection performance and toxicity

Reporter gene assays, via uorescence output, are a facile tool to
assess the delivery of biological payloads. We employ two
transfection assays (Fig. 3A): (i) delivery of pDNA to HEK293T
cells exhibiting expression of a green uorescent protein (GFP)
and (ii) delivery of RNP that upregulates mCherry expression in
a modied HEK293T cell49 type, where the expression within
© 2024 The Author(s). Published by the Royal Society of Chemistry
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can be measured on a per cell count through ow cytometry. We
monitor cell health and metabolism through a cell counting kit
(CCK-8) viability assay. As an initial screen we transfect pDNA at
N/P ratios of 10 and 20 with the entire polymer library, and GFP
expression was probed forty-eight hours post transfection
(Fig. 3B and S24–S26†). We nd that increasing BET in the Sh
and Md scaffolds enhances transfection efficiency. The most
effective polymer is Sh_DiE_40 (polymer RU_Cation_%BET)
yielding 75% +GFP cells (Fig. 3C, le), similar to the JetPEI
control (77% +GFP cells). We notice that at a formulation of N/P
= 10, the Sh backbone exhibits higher viability, yet at N/P = 20,
higher cell death occurs (Fig. S28–S30†).

An RNP is a complex formed with gRNA and CRISPR-Cas9
protein, here also containing 2 nuclear localization signals
(NLS) to assist in nuclear translocation, that targets a precise
genome cut in HEK293T cells engineered with a traffic light
reporter (TLR) gene, reporting nonhomologous enjoining
(NHEJ) via an indel frameshi upregulating mCherry expres-
sion.49 We show RNP transfection and toxicity at N/P ratios of
2.5 and 5 in Fig. 3B, S31, and S33–S35.† Formulation ratios were
picked based on preliminary studies and standardized as
a basic screening level to create a standard for the Bayesian
optimization model to evaluate and optimize therefrom. We
notice that while the Cys polymers have the strongest RNP
binding, the Cap and DiE systems show signicantly higher
mCherry expression. Interestingly, Lg_Cap_0 at N/P 5 displays
the highest mCherry expression (Fig. 3C, right) with ∼6%
+mCherry. We note that only 1/3 of the indels cause the
+mCherry frameshi and expression with this assay, but its
facile application here allowed for rapid screening of the poly-
mer library and recognition of its limitations.49 The commercial
control, JetPEI, exhibits only 1% +mCherry cells, representing
a six-fold decrease from the highest performing polymer in our
library. Unlike our ndings for pDNA, BET did not improve
binding to RNP nor did it correlate with improving mCherry
expression (denoting possible intercalation with only DNA). We
discover a further deviating trend that higher editing is found
with the longest polymers. Further, we notice that cell viability
was much higher in this assay due to the lower N/P ratios.
Overall, our screening protocols identify promising formula-
tions that are highly effective at delivering pDNA and RNP while
balancing toxicity. Collectively, we show that polymer chem-
istry, physical properties, and payload identity signicantly
affect performance; indeed, quantitative discernment of the
physicochemical drivers of performance is complex and diffi-
cult, supporting the need for quantitative multifactorial anal-
ysis techniques to enable optimization more rapidly.
Polymer feature attribution through SHAP analysis

SHapley Additive exPlanations (SHAP),50 a machine learning
technique, is used to extrapolate predictive importance on
a givenmodel variable (or feature) on a particular output. A high
and positive SHAP value correlates with a high impact and
a positive effect on the output variable. We start with our
previous approach23,24 and then t a machine learning model
(details in the ESI†). To identify polymer and polyplex
© 2024 The Author(s). Published by the Royal Society of Chemistry
characteristics, our independent variables of scaffold RU, cation
type (encoded as a continuous variable based on chemical
ngerprints, as detailed in the ESI,† with Cys, Cap, and DiE
values of 0.42, 0.74 and 0.82 respectively), % BET, pKa, clog P,
polyplex size (Rh), formulation (N/P) ratio, and binding strength
are modeled to their effect on the dependent variables of
expression and viability. Based on our cross-validatedmodel, we
analyze SHAP values for both pDNA (Fig. 4A) and RNP (Fig. 4B)
payloads. We nd that for pDNA, polymer pKa, BET incorpora-
tion, and scaffold RU have the highest absolute SHAP values
across samples, which translate into a positive impact on GFP
expression. We compare the average SHAP values in a spider
plot (Fig. 4A) and show the level of impact each polymer feature
has on GFP expression and cell viability for pDNA polyplexes.
We show that lowering the pKa has a positive impact on GFP
expression, likely due to a higher buffering capacity promoting
endosomal escape.43,44 It should be noted that the decrease in
the polymer pKa is a result of an increase in BET incorporation,
where the co-cation aids in the initial binding at physiological
pH. The SHAP for cell viability delivering pDNA (Fig. 4A) shows
that lower formulation ratios and Md scaffold size, and higher
% BET incorporation have the highest impact. We plot the
SHAP values as a function of a given feature (SHAP dependency
plots) for pDNA expression and nd a linear dependence
correlating lower pKa, increasing BET incorporation (Fig. 4C:
le), and increasing clog P values (Fig. 4C: middle) to higher
SHAP values. Interestingly, when we compare the polymer
length, the Md length was the least effective. Higher percent-
ages of BET incorporation positively correlated with GFP
expression and cell viability. Oen, higher incorporation of
hydrophobic units can contribute to increased cellular inter-
nalization through membrane disruption but this oen causes
higher toxicity,23,38,39,51 which is not found with our system. For
pDNA delivery, we correlate the BET incorporation and
improved performance with lowering polymer pKa.

For RNP delivery, the mean SHAP values are shown in
a spider plot (Fig. 4B), detailing the impact of each polymer
feature on mCherry expression and cell viability. We nd
a positive correlation between the polymer length and increase
in mCherry expression. We nd that the Cys cation has the least
importance for both pDNA and RNP delivery, while RNP delivery
favors the Cap cation in the copolymer composition. Interest-
ingly, with RNP we nd that weaker binding polymers yield
higher correlations with mCherry expression. SHAP values
related to cell viability when delivering RNP (Fig. 4B) indicate
that again Md scaffold size and higher % BET incorporation
played the largest role in achieving higher cell viability. We
notice on the SHAP dependency plot that RNP delivery efficiency
is negatively correlated with binding and % BET, an opposite
trend to that found with pDNA (Fig. 4C: le), demonstrating the
intricacies of tuning polymer chemistry for specic biological
payloads. Overall, we nd that SHAP analysis quanties and
identies predictive correlations and fundamental insight into
the physicochemical components most inuential for delivery
of pDNA versus RNP. We show that lower pKa in conjunction
with higher BET incorporation in the Sh and Lg scaffold vari-
ants are important for pDNA delivery. However, for gene editing
Chem. Sci., 2024, 15, 7219–7228 | 7223



Fig. 4 SHAP values for physicochemical features related to expression and cell viability when delivering (A) pDNA or (B) RNP. Higher SHAP values
correlate with higher impact on the output variable. The feature value color bar corresponds to the normalized value of the feature of interest
(where low = blue; moderate = white; high = red). Each dot represents a polymer formulation. (A) Overlay spider plot showing the average
impact of individual polymer variables on expression and viability when delivering (A) pDNA and (B) RNP. The spider web plot is constructed by
taking themean SHAP value for a given feature across all samples and normalizing to themaximumSHAP value for each output variable. (C) SHAP
dependency plot values across two variables relating to expression.
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with RNP, the Lg polymers along with Cap and lower BET
incorporation are most inuential.

Batch Bayesian optimization

To efficiently explore the combinatorial design space and its
impact on expression performance outputs, we use batch BO.
The total design space with discrete choices of N/P, cation,
scaffold repeating units and BET incorporation spans over 5790
combinations, making manual exploration impractical. Using
BO, we learn a probabilistic model, “the optimization model”
(Fig. 5A, a Gaussian process model), which relates design vari-
ables to our target delivery efficacy and predicts outcomes of
discrete polymer formulations. Then, based on the predicted
mean expression and variability of the target variable in the
design space, we select a new batch, which we call a BO round,
of promising polymers to formulate and measure transfection
efficacy. Our round 1 dataset is dened by sampling the entire
polymer library at two N/P ratios, in triplicate, for each of the
7224 | Chem. Sci., 2024, 15, 7219–7228
pDNA and RNP payloads, resulting in sampling 432 formula-
tions (216 per payload). We complete two additional rounds of
transfections with the most promising polymer formulation
subsets dened by the batch BO model. Rather than uniform
sampling across the entire library for optimization, BO bene-
cially limits the number of experimental sample conditions
required by predicting the most promising polymer formula-
tions to sample for round 2. This consists of 72 formulation
ratios (36 per payload) for the model to improve predictive
sampling. Round 3 predicts 48 more discrete sample formula-
tions (24 per payload) to improve the mean expression output,
while hovering above a certain viability threshold (viability $

0.30). Aer three optimization rounds and sampling less than
10% of the design space, we did not observe further improve-
ment in the expression while at the same time the BO proposals
occurred frequently within the experimental resolution of the N/
P variable (∼1%), and thus we deemed our sequential optimi-
zation concluded. The “Analysis by machine learning” section
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 (A) Looped machine learning approach by tuning the N/P ratio based on polymer characteristics to effect delivery efficiency and cell
viability through Bayesian optimization. (B) Sequential optimization data from the 3 rounds of experimental expression of GFP (top) and mCherry
(bottom). (C) Parallel coordinate plots showing the copolymer compositions selected in rounds 2 and 3 and how this relates to the effective
expression of GFP (top) and mCherry (bottom).
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in the ESI† contains more information on the model and
sampling algorithms used for BO.

The progression of Fig. 5B presents our expression outputs
for pDNA and RNP cargos respectively. Each box plot corre-
sponds to the measured outputs aer transfection. For pDNA
(Fig. 5B, top), our model suggests a subset of polymer formu-
lations that results in the overall best polymer for the dataset in
round 2. The subset of polymer formulations chosen in round 3
was able to increase in overall expression, however no new
optimal formulations were found. For RNP, our model explores
a subset of promising polymers in rounds 2 and 3, which
outperform most of the initial polymers, but was similar to the
performance found in round 1. This is likely due to the degree
of error in the mCherry expression to noise ratio in the assay
making it slightly more difficult to rene. The parallel coordi-
nate plots (Fig. 5C) summarize the progression of the sequential
optimization to identify subsets of polymers that result in the
highest expression. For pDNA (Fig. 5C, top), our model directs
experimental sampling towards the cations of Cap and DiE,
higher BET incorporation, and intermediate N/P ratios than the
initial screen of 10 and 20, with the top three performing
polymers being Sh_DiE_40 (N/P 12.5), Sh_Cap_40 (N/P 10), and
Lg_Cap_25 (N/P 12.5). For RNP (Fig. 5C, bottom), our model
suggests sampling cations with Cap and DiE, lower BET incor-
poration, and polymers derived from the larger scaffolds, with
the top three performing polymers being Lg_Cap_0 (N/P 5),
Lg_Cap_15 (N/P 8.6), and Sh_DiE_0 (N/P 10). The trends we
outline from the parallel coordinate plots align well with the
SHAP analysis of the most distinct correlative features,
© 2024 The Author(s). Published by the Royal Society of Chemistry
displaying that our model is properly identifying the most
important physicochemical variables for prediction of future
polymer formulations. Overall, we reveal a two-fold benet of
our customized probabilistic BO model: (i) BO allows for nar-
rowing the amount of sampling and experimental time/expense
from vast possibilities, and (ii) BO identies optimal chemical
congurations and formulation ratios for given constructs
unique to a biological payload of choice.

In vivo delivery of pDNA

While polymeric vehicles are effective in vitro, the largest hurdle
is in vivo performance. It is well known that cellular responses
to various nanomedicines are not directly translatable and
reective through in vivo outcomes. This interplay oen
involves slow trial-and-error endeavors with exhaustive screen-
ings between polymer chemistry, cellular transfection/viability
assays, and ultimately, in vivo administration and therapeutic
quantication. In terms of in vivo delivery and human therapy,
the optimization process presented herein seeks to accelerate
the pain points of polyplex formulation and bioevaluation by
leveraging growing datasets of in vitro and in vivo response
outputs to monomer, polymer, and polyplex descriptor inputs.
The current work focuses on the systematic binary composi-
tions of a hydrophobic cation BET with three other cations Cys,
Cap, and DiE; the ease and versatility of this platform enable
researchers to examine hydrophobic effects, stimuli responsiv-
ity, charge patterning, and other known design factors in an
agile and generalizable manner for delivering any nucleic acid
or protein of interest.
Chem. Sci., 2024, 15, 7219–7228 | 7225



Fig. 6 (A) Kinetic hydrodynamic tail vein study showing the average radiance (p per s per cm2 per sr) emitted after polyplex administration to
mice over a 20 day study after delivery of a luciferase expressing pDNA (n= 3). (B) Table displaying average radiance values (p per s per cm2 per sr)
and a decay rate that displayed first-order kinetics of triplicatemice on days 1–6. (C) Images ofmice in triplicate showing the heatmap expression
on days 1, 2, 3, and 6 post injection. (D) Average weight of mice per sample group over 22 days. Day 0 is injection day. Statistical analysis was
conducted via one-way ANOVA followed by a post hoc Tukey test (ns: p > 0.05, *: p # 0.05, **: p # 0.01, ***: p # 0.001).

Chemical Science Edge Article
Predicted by SHAP and BO models, we selected our three top
performers, Sh_DiE_40, Sh_Cap_40, and Md_Cys_40, for pDNA
delivery in vivo (we selected N/P = 5 to minimize toxicity,
although the optimal N/P in vitro occurs at different N/Ps). We
chose these polymers, based on BO and diversity consider-
ations, as Sh_DiE_40 and Sh_Cap_40 are the best-performing
for each cation aer optimization and Md_Cys_40 has the
highest ratio of performance and uncertainty as estimated by
BO. Our polyplexes and controls (pDNA only and JetPEI) were
administered to mice via hydrodynamic tail vein injections in
triplicate and the expression was compared over a 20 day span
(Fig. 6A–C). The pDNA only control commonly promotes lucif-
erase expression through hydrodynamic injections due to the
large injection volume (5–10 wt%) over a small time period (4–8
s), inducing a pressure plug localizing to the liver (but generally
diminishes rapidly).52–54 While these injections can induce
stress to the mice, we nd that all mice survive the injections
with stable body weight over the 20 day span, indicating
formulation tolerance (Fig. 6D). We show that mice injected
with JetPEI polyplexes have the greatest loss of weight but
recover aer ∼6 days. The highest performing polymers yield
a smaller dip in weight over the rst 48 h, and an increase in
7226 | Chem. Sci., 2024, 15, 7219–7228
weight is found prior to injection at 96 h, which remain stable
over the 20 day span. While pDNA initially shows luciferase
expression it rapidly decays, 1.7-fold faster thanMd_Cys_40 and
1.6-fold faster than Sh_DiE_40 over a 6 day period (Fig. 6B). All
three of our optimized polymers show a slower decay rate and
outperform both controls. Polyplex formulations with
Sh_DiE_40 and Sh_Cap_40 outperform the controls at all
timepoints, however, Md_Cys_40 polyplexes decay in expres-
sion at a faster rate between days 10 and 20, dipping below
JetPEI. Sh_DiE_40 shows the highest radiance throughout,
outperforming all other formulations. Our data reveal the
discovery of polymer formulations that can bind, protect, and
deliver pDNA in vivo that shows stable and long-term expression
and stability over excretion over 20 days in the mouse liver. In
vivo studies with RNP formulations are forthcoming and will be
reported in a future follow-up study as they require specically
engineered reporter animal models.
Conclusions

Here, we demonstrate a streamlined synthetic method via
a facile post-polymerization modication yielding a polymer
© 2024 The Author(s). Published by the Royal Society of Chemistry
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library systematically exploring chemical composition and
physical parameters. Parallel assays combined with SHAP
analysis and BO through progressive sampling allow modeling
and quantitative understanding of features important to
increasing the effective transient expression of pDNA as well as
gene editing though the delivery of CRISPR-Cas9 RNP. Features
of lower polymer pKa and higher % BET increase pDNA delivery,
while polymer length and Cap cation identity are more effective
for RNP delivery. Additionally, our three top performing
copolymers selected by SHAP and BO display higher expression
in vivo with a 1.7-fold kinetic enhancement of transgene
expression over controls. Overall, facile tunable synthesis
combined with screening and machine learning are powerful
tools toward a data-driven materials discovery platform to
identify candidates for in vivo screening and will aid the selec-
tion for clinical nucleic acid therapeutic delivery.
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