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We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations
in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting
and suitable alternative to models with complex structures that involve the general case of several conditionally independent
diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to
different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible
and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for
Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was
considered as a factor of stratification in the model. The general model with stratification of the population performed better in
comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit
(c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial
scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have
positive results.

1. Introduction

A major challenge for diagnostic medicine is the deter-
mination of the true health status of an individual (sick
or healthy) in relation to a certain disease when the gold
standard test does not exist or its use is limited. Such problem
may occur especially when the gold standard technique is
an invasive procedure, risky, or financially costly and the
definitive verification for apparently healthy individuals is
thus neither practical nor ethical.

The development of statistical procedures for the estima-
tion of performance parameters (sensitivity and specificity)

of diagnostic tests is relatively straightforward when the gold
standard exists and is applied in all subject of sample under
investigation (see [1–3]). When the gold standard test does
not exist or its use is limited, the most widely used alternative
is the latent class modeling [4–8].

The latent class structure allows for modeling flexibility
for both frequentist and Bayesian approaches, and the
estimates of interest can be obtained based on numerical
methods. For instance, on has expectation-maximization
algorithms [9] in the case of the frequentist approach
and Gibbs sampling [10] and Metropolis-Hastings [11] al-
gorithms in the case of the Bayesian approach.
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Considering the conditional independence structure
between tests, that is, given the health condition of the
subject, the result of test k is independent of the result of
test k′, several researchers have developed and implemented
models that evaluate the performance of one or multiple
diagnostic tests considering a model structure with partial or
complete absence of a gold standard, sample stratification,
and inclusion of covariates.

Several of these studies have tested models in which
only subjects with positive results in at least one of the
tests are submitted to the gold standard. For instance,
Schatzkin et al. introduced a model to evaluate the relative
performance of two tests using a frequentist approach [12].
In a simulation study, Cheng et al. evaluated the average
coverage probability of the confidence intervals of these
model parameters [13], while Pepe and Alonzo proposed
the inclusion of a vector of covariates in this model [14].
Also, using a frequentist approach, Macaskill et al. presented
a model for the estimation of point and interval likelihood
ratios [15] and Walter proposed an alternative model able to
directly estimate these measures from the latent class [6]. The
Bayesian extensions of this model has developed by Van der
Merwe and Maritiz [16] and Martinez et al. [17].

Situations in which none of the sample subjects are
submitted to the gold standard are also widely reported in the
literature. Gastwirth et al. proposed Bayesian modeling for
the case of only one test and low disease prevalence, and they
called attention to the fact that care should be taken when
choosing a prior distribution [18]. Johnson and Gastwirth
added transformations in the parameters to this model [19].
Joseph et al. applied Bayesian modeling based on the Gibbs
sampling algorithm to the case of two diagnostic tests [4].
Leisenring and Pepe developed a logistic regression model for
the case of one test in the presence of a covariate vector [20].
Using a frequentist approach, Albert et al. proposed a model
including a finite mixture of distributions and covariates
based on a random effect model [21]. Rathouz et al.
presented a conditional logistic regression model including
missing covariate data [22]. Martinez et al. first developed an
extension of the model proposed by [4] including a covariate
vector based on Metropolis-Hasting algorithms [23], and
then a generalization to the case of L tests and M covariates,
which were applied to a problem with three diagnostic tests
(L = 3) and two covariates (M = 2) [8].

To evaluate the performance of two conditionally inde-
pendent diagnostic tests, Hui and Walter developed, from the
frequentist point of view, a model based on the stratification
of the sample into two strata, considering different disease
prevalences in each stratum but similar sensitivity and
specificity values [24]. Johnson and Gastwirth discussed the
applicability of this method to other datasets [25]. Enøe et
al. proposed a Bayesian extension of this model based on
a Gibbs sampling scheme [7]. According to Toft et al., it is
important to find a stratifying factor which does not violate
the assumption of constant sensitivity and specificity among
the strata. When this assumption is questionable is indicated
find another stratifier factor, preferably from a practical
criterion, and to consider a model that allows inclusion of
covariates [26].

The model in [24] is known as the Hui-Walter paradigm
and has been widely discussed and applied in the literature
using frequentist and Bayesian approaches, (see e.g., [8, 17,
23, 26–34], among others), but without including the general
case of L tests, M covariates, and V strata in the model
structure which is properly proposed here.

Based on the above statement, the main aim of this paper
is to present a Bayesian latent class approach when any of the
subjects of the sample under investigation is subjected to the
gold standard for evaluating the performance of L imperfect
tests applied to V subsets and considering the presence of M
covariates.

The paper structure is as follows. Our general model is
present in Section 2, including the covariate case as well as the
inferential procedure. Section 3 presents the results of a small
simulation study where the general model is compared to its
concurrent particular cases. Section 4 presents the results of
our modeling applied to a real dataset on Chagas’ disease.
Section 5 presents the final comments.

2. Model: Full Absence of Gold Standard

We present in this section a latent class modeling considering
the population stratified on the assumption of Hui and
Walter [24] and full absence of gold standard.

2.1. Performance Parameters. In the study of the performance
of diagnostic tests, the probability of a test k to yield a positive
result (Tk = 1), given that the individual has the disease (D =
1), is known as the sensitivity of test and is mathematically
expressed as Sek = P(Tk = 1 | D = 1), k = 1, 2, . . . ,L. If
test k is not 100% sensitive, it will fail to detect the disease
in some individuals known to be sick. The proportion of
negative results of test among sick individuals is known as
the false-negative rate (FNRk = 1− Sek).

The specificity of test k refers to the probability of this test
to yield a negative result (Tk = 0), given that the individual
does not have the disease (D = 0), and it is expressed as
Spk = P(Tk = 0 | D = 0), k = 1, 2, . . . ,L. If test k
is not 100% specific, it will falsely indicate the presence of
disease in individuals known to be healthy. The proportion
of positive results among healthy individuals is known as the
false-positive rate (FPRk = 1− Spk).

2.2. Stratification. According to Singer et al. [27], consider-
ing the assumption of the model of Hui and Walter [24] in
which the population is divided into V strata with different
disease prevalences (ξv = Pv(D = 1); v = 1, 2, . . . ,V),
but with similar performance of the tests among strata
(Sek, Spk; k = 1, 2, . . . ,L), the likelihood function of the
observed data can be described as

L(θ) =
V∏

v=1

nv∏

i=1

⎡
⎣ξv

L∏

k=1

Sektikv (1− Sek)(1−tikv)

+(1− ξv)
L∏

k=1

Spk
(1−tikv)

(
1− Spk

)tikv
⎤
⎦,

(1)
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where, θ = (ξv, Sek, Spk), nv is the number of known subjects
in the vth stratum, and tikv is the observed result of the kth
test in the vth stratum to ith individual.

When none of these L diagnostic tests can be considered
to be the gold standard for the disease in question, the true
but unknown health status of the ith subject (0: healthy or
1: sick) in the vth stratum, called Yv, can be modeled from
a Bernoulli(τiv) distribution with success probability τiv =
Pv(D = 1 | Ti1 = ti1, . . . ,TiL = tiL). Then some algebraic
work is given by

τiv =
(
ξv
∏L

k=1
Setikvk (1− Sek)(1−tikv)

)
/

(
ξv
∏L

k=1
Setikvk (1− Sek)(1−tikv)

+(1− ξv)
∏L

k=1
Sp(1−tikv)

k

(
1− Spk

)tikv)
.

(2)

Combining the likelihood function of observed data
(1) with the likelihood function of latent variable Y =
(Y1,Y2, . . . ,YV ), after some algebra, we obtain the aug-
mented likelihood function of the latent class model for
the general case of L conditionally independent tests and V
strata, given by

L(θ) =
V∏

v=1

nv∏

i=1

L∏

k=1

[
ξvSektikv (1− Sek)(1−tikv)

]yiv

×
[

(1− ξv)Spk
(1−tikv)

(
1− Spk

)tikv](1−yiv)

.

(3)

2.3. Including Covariates. The model structure including
M covariates can be constructed by linking the covariate
matrix W = (W1, W2, . . . , WM) to the mean function of the
response variable g(θ|D) from the linear predictor ν = W′η
according to the relation θ = g(ν) = g−1(W′η), where g is a
monotone and differentiable function, g−1 is a link function,
θ = (ξv, Sek, Spk) is the vector of original parameters, and η
is the new vector of parameters of dimension p.

On the basis of the logit link function, the relations of the
vector of covariates Wc (c = 1, 2, . . . ,M) with the original
parameters of interest θ are given by

ξv = g−1(νvc) =
exp

{
αv +

∑M
c=1 γvcWic

}

(
1 + exp

{
αv +

∑M
c=1 γvcWic

}) ;

Sek = g−1(ν1kc) =
exp

{
α1k +

∑M
c=1 γ1kcWic

}

(
1 + exp

{
α1k +

∑M
c=1 γ1kcWic

}) ;

Spk = g−1(ν0kc) =
exp

{
α0k +

∑M
c=1 γ0kcWic

}

(
1 + exp

{
α0k +

∑M
c=1 γ0kcWic

}) ,

(4)

where, αv, α1k and α0k, correspond to the intercepts of the
logit link functions (4) for the prevalence in the vth stratum
and sensitivity and specificity of the kth test, respectively

(v = 1, 2, . . . ,V , k = 1, 2, . . . ,L), that is, the estimates of
these parameters when all covariates are null. We have γ1kc

and γ0kc indicating how much the cth covariate influences the
sensitivity and specificity, of the kth test, respectively and γvc
the disease prevalence in the vth stratum (c = 1, 2, . . . ,M).
Therefore, the new vector of parameters η = (αv,α1k,α0k, γvc,
γ1kc, γ0kc) will have dimension p = (M + 1)(2L +V).

Replacement of the logit links (4) with their respective
original parameters θ = (ξv, Sek, Spk) in the augmented
likelihood function (3) results in the augmented likelihood
function:

L
(
η
)∝

V∏
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nv∏
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⎡
⎣

exp
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c=1 γ0kcWivc
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⎞
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×
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(5)

Model (5) covers a wide spectrum of latent class model.
The frequentist framework proposed by Hui and Walter
[24], Bayesian approach proposed by Joseph et al. [4] and
Martinez et al. [8] are some particular cases of our model
(5), when (L = 2, M = 0, V = 2), (L = 2, M = 0, V = 1)
and (L, M = 2, V = 1), respectively.

2.4. Inference. For inference, we adopt a fully Bayesian
approach. This choice was based on the complex structure of
this model, which may have many parameters to be estimated
depending on the configuration adopted. Also, if necessary
or appropriate, expert opinion may be included in modeling
via a prior distribution.

This approach is by no means the only modeling
method, but it is the first and natural step that has the
advantage of simplifying calculations, especially in view of
the computational implementation of the Markov Chain
Monte Carlo (MCMC) algorithms.

2.4.1. Priors. Assuming independence between the param-
eters of the vector η and following Dendukuri and Joseph
[35] and Menten et al. [36], we consider the normal
distribution N(μ, σ2) to model a prior knowledge about each



4 Computational and Mathematical Methods in Medicine

of the parameters of interest the vector η. Since μ and σ2

hyperparameters known location and scale of the normal
distribution:

π
(
η
) =

V∏

v=1

L∏

k=1

M∏

c=1

N
(
μαv , σ

2
αv

)
N
(
μγcv , σ

2
γcv

)

N
(
μα1k , σ

2
α1k

)
N
(
μγ1kc , σ

2
γ1kc

)

N
(
μα0k , σ

2
α0k

)
N
(
μγ0kc , σ

2
γ0kc

)
.

(6)

2.4.2. Conditional Posteriors. Irrespective of the form of the
priors considered, the joint posterior distributions of the
parameters are analytically intractable. We overcome this
computational difficulty by using the Metropolis-Hastings
algorithm [11], which allows us to simulate observations
from nontrivial joint distributions by generating random
samples successively from the full conditional distributions
for the unknown parameters. The full conditional posterior
densities for the parameters which are used in each step of
the iterative sampling-based algorithms are given by

αv | η(αv), D ∼ N
(
μαv , σ

2
αv

)× ψ(αv)

γcv | η(γcv), D ∼ N
(
μγcv , σ

2
γcv

)
× ψ(γcv

)

α1k | η(α1k), D ∼ N
(
μα1k , σ

2
α1k

)× ψ(α1k)

γ1kc | η(γ1kc), D ∼ N
(
μγ1kc , σ

2
γ1kc

)
× ψ(γ1kc

)

α0k | η(α0k), D ∼ N
(
μα0k , σ

2
α0k

)× ψ(α0k)

γ0kc | η(γ0kc), D ∼ N
(
μγ0kc , σ

2
γ0kc

)
× ψ(γ0kc

)
,

(7)

where, ψ(αv), ψ(γcv), ψ(α1kv), ψ(γ1kvc), ψ(α0kv) and ψ(γ0kvc)
are given by

ψ(αv)
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(8)

Convergence of the Metropolis-Hastings algorithm to a
stationary distribution was evaluated using the reduction
factor proposed by Gelman and Rubin [37].

3. Simulation Study

A small simulation study was performed in order to confront
the performance of the general model proposed with previ-
ous models which can be seem as its the particular cases.

We considered a situation with three tests under inves-
tigation (L = 3), stratified in two stratums (V = 2), in
presence of a dichotomous covariate (M = 1) for a sample
with 150 observations. From (9) and (10) we calculated the
probabilities Pv|W ,D as well as their respective quantity of
elements Xv|W ,D, for each combination of results of the L
tests under investigation in the stratum v conditioned on the
dichotomous covariate W = {0, 1} health condition of the
subject D = {0, 1}, which are given by

Pv|W=w,D=1(T1v = t1v, . . . ,TLv = tLv |W = w,D = 1)

=
L∏

k=1

Setikvk|w
(
1− Sek|w

)(1−tikv),

Pv|W=w,D=0(T1v = t1v, . . . ,TLv = tLv |W = w,D = 0)

=
L∏

k=1

Sp(1−tikv)
k|w

(
1− Spk|w

)tikv ,

(9)

where Sek|w and Spk|w are the sensitivity and specificity rates
of the kth test on the wth covariate level, respectively. And
tikv is the result of the kth test in the vth stratum for the ith
subject:

E
(
Xv|W ,D

) = nv
[
ξvPv|W=w,D=1(T1v = t1v, . . . ,TLv

= tLv |W = w,D = 1)

+ (1− ξv)Pv|W=w,D=0(T1v = t1v, . . . ,TLv

= tLv |W = w,D = 0)].
(10)

For generation of the dataset, we considered prevalence
sensitivity and specificity rates as shown in (Table 1).

The proposed model (5) was adjusted to simulated
dataset for four special cases: SSensI (L = 3, V = 1, M = 0);
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Table 1: Settings used for the simulation of artificial data.

Covariate (W)

W = 0 W = 1

Stratum V V

Parameter 1 2 1 2

ξv|W 0.10 0.60 0.30 0.90

Se1|W 0.50 0.60

Se2|W 0.75 0.80

Se3|W 0.90 0.95

Sp1|W 0.60 0.50

Sp2|W 0.80 0.75

Sp3|W 0.95 0.90

ξv|W : prevalence rates in vth stratum to covariate W ; Sek|W and Spk|W :
sensitivity and specificity of kth test in vth stratum to covariate W .

SSensII (L = 3, V = 2, M = 0), SSensIII (L = 3, V = 1,
M = 1), and SSensIV (L = 3, V = 2, M = 1).

Following Martinez et al. [8], the hyperparameters of
the normal distributions in (6), referring to the respective
intercepts, were determined from the respective estimates
of θ = (ξv, Sek, Spk), obtained from the particular model
without covariates considering noninformative Beta priors
(Uniform: Beta(1, 1)) for each parameter of the vector θ.
For instance, in this fitting, the sensitivity of test presented
a 95% credible interval of (91.71%–99.99%); thus, the value
of the location hyperparameter μα01 for the intercept of this
test, in the logit model (4), was considered to be the mean
of the two results between eμα01 /(1 + eμα01 ) = 0.9153 and
eμα01 /(1 + eμα01 ) = 0.9999, that is, μα01 = (2.4 + 9.2)/2 = 5.8.
All scale hyperparameters for the intercepts were defined
as 50% of the respective location hyperparameter, with
σα01 = 0.5 × 5.8 = 2.9 for this test. The location and scale
hyperparameters, referring to the respective parameters γ1kc,
γ0kc, and γvc, were fixed at 0 and 100.

We considered two parallel MCMC chains of 50, 000
iterations were run, with the first 5, 000 iterations of each
chain being discarded and the remaining iterations being
selected at intervals of 45. Thus, a final independent and
identically distributed stationary sample with a size equals
to 2, 000 of conditional posterior distributions (7) was
obtained for each particular case (SSensI, SSensII, SSensIII,
and SSensIV).

In order to decide for the best model to be fitted, we
considered the information criteria proposed by Akaike
[38] (Akaike’s information criteria, AIC) and Schwarz [39]
(Bayesian information criterion, BIC). These criteria have
been discussed by Raftery [40], Kuha [41], and Posada
and Buckley [42], among others. We also consider the
deviance information criterion (DIC), which was proposed
by Spiegelhalter et al. [43] and subsequently discussed by
Kateri et al. [44] and Shriner and Yi [45], among others.
Iliopoulos et al. suggested a Bayesian approximation for AIC
and BIC [46]. Basically, these criteria quantify the deviation
of the fitted model from the observed data. Model presenting
the lowest AIC, BIC, and DIC values leads to the best fitting.

The Metropolis-Hastings algorithms, their convergence
evaluation, and the AIC, BIC, and DIC criteria can be
easily implemented in software R, which is freely available
at http://www.r-project.org/, by researchers with moderate
computer programming knowledge. The codes build for the
present study can be requested by e-mail from the authors.

In addition to presenting estimates closer to the nominal
(Table 1), the general model proposed demonstrated, from
the information criteria, superior performance than the
structures without stratification of the population and the
absence of covariates (see Table 2).

4. Application: Chagas Disease Data

To illustrate the proposed model, we consider a study on the
performance of diagnostic tests used in screening for Chagas
disease. A sample of 90 blood donors from a blood center in
the region of Triângulo Mineiro, Brazil, was considered.

The participants were selected randomly from the three
serology strata (SI: 30 donors selected among those with
positive serology; SII: 30 donors selected among those with
negative serology; SIII: 30 donors selected among those with
inconclusive serology in the ELISA screening test). This study
was approved by the UFTM Ethics Committee (protocol
number. 464).

The ELISA test used for Chagas’ disease screening at the
time of blood donation was repeated and the participants
were submitted to the following five other diagnostic tests:
four serological tests including indirect immunofluorescence
(IIF), indirect hemagglutination (IHA), which uses red
blood cells covered with soluble T. cruzi antigen (performed
at the Central Laboratory of UFTM), conventional and
recombinant ELISA, which use CRA—and FRA—specific
membrane antigens of T. cruzi (kit from Biomanguinhos
Laboratory Fundação Oswaldo Cruz/FIOCRUZ, Brazilian
Ministry of Health). The fifth test was the Hemoculture a
parasitological test (blood culture in T. cruzi-specific) which
is 100% specific. However, none of these tests is a gold
standard for the detection of Chagas’ disease.

In addition to the application of these six tests, the
following epidemiological data were obtained from the
donor records in order to evaluate their influence on the
performance parameters of the diagnostic tests: age (≤ 30,
> 30 years), gender (male, female), and presence (yes, no) of
at least two of three epidemiological risk factors (origin from
an endemic region, a contact with the vector transmitting
Chagas’ disease, and a family history of Chagas’ disease).

On the basis of a practical need, where it is desired
to estimate the prevalence rate of T. cruzi infection among
donors serologically inconclusive, we consider the serology
at the time of donation as a stratifying factor in our model,
where the first stratum (SI) is composed of donors with
negative or positive serology and the second stratum (SII)
is composed of donors with inconclusive serology at the time
of screening.

However, to judge whether this decision was adequate,
we consider here three particular cases of the model (5),
hereafter called model ModI (V = 1: no stratification),

http://www.r-project.org/
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Table 2: Selection of models based on the AIC, BIC, and DIC.

Model p AIC BIC DIC

SSensI: (L = 3, V = 1, M = 0) 7 1108483.0 1108514.0 1125999.0

SSensII: (L = 3, V = 2, M = 0) 8 1069892.0 1069927.0 1125833.0

SSensIII: (L = 3, V = 1, M = 1) 14 308389.8 308451.5 309236.4

SSensIV: (L = 3, V = 2, M = 1) 16 167959.7 168030.1 46198.1

p: number of parameters in the model.

Table 3: Location and scale hyperparameter values of the normal
prior distributions (6) for model ModII (L = 6, M = 3, V = 2).

Sensitivity
α1k ∼ N(5.8, 2.0) k = 1, 2, 3, 5, 6

α14 ∼ N(−0.5, 0.25)

γ1kc ∼ N(0, 100) c = 1, 2, 3, k = 1, 2, 3, 4, 5, 6

Specificity

α0k ∼ N(3.5, 2.0) k = 1

α0k ∼ N(6.5, 3) k = 2, 3, 6

α0k ∼ N(100, 1E − 100) k = 4

α0k ∼ N(2, 1) k = 5

γ0kc ∼ N(0, 100) c = 1, 2, 3, k = 1, 2, 3, 5, 6

γ0kc ∼ N(0, 0) c = 1, 2, 3, k = 4

Prevalence
αv ∼ N(0.5, 0.25) v = 1

αv ∼ N(−2, 1) v = 2

γvc ∼ N(0, 100) c = 1, 2, 3, v = 1, 2

c = 1: AGE-age (≤30, >30 years); c = 2: GEN-gender (male, female);
c = 3: RFE-presence of at least two of three risk factors epidemiological
(origin from an endemic region, contact with the vector transmitting the
disease and family history of Chagas’ disease); Stratum I (v = 1) donors
with negative or positive serology and Stratum II (v = 2) with inconclusive
serology in the screening test; γ1kc : effect of the cth covariate on the
sensitivity of kth test; γ0kc : effect of the cth covariate on the specificity of kth
test; γvc : effect of the cth covariate on disease prevalence in vth stratum.

ModII (V = 2: two strata, SI: negative or positive serology at
the time of screening; SII: inconclusive serology), and ModIII
(V = 3: three strata, SI: negative serology at the time of
screening; SII: positive serology; SIII: inconclusive serology),
in all cases, we consider six tests (L = 6) and three covariates
(M = 3).

The location and scale hyperparameters for model ModII
were obtained as described in Section 3 except for the α04

related to blood culture test (HEMO) which has a specificity
of 100% And they are shown in Table 3.

4.1. Model Summary. Following the sensitivity study, based
on the Bayesian approximation of AIC and BIC criteria as
well as on the DIC, the model with stratification of the
population structure showed superior performance to the
structure without stratification as we can see from Table 4.

The results reported and discussed here refer to the
posterior inferences obtained for the particular case ModII
(L = 6, M = 3, V = 2) of the proposed model (5), which
better fits the data according our model comparison criteria,
and then it is considered as our working model.

Table 5 shows the estimates of the 56 parameters
regarding the effects of the cth covariate: age, gender, and
the presence of at least two of three epidemiological risk

factors (origin from an endemic region, a contact with the
vector transmitting Chagas’ disease, and a family history
of Chagas’ disease) on the sensitivity (γ1kc) and specificity
(γ0kc) of the kth diagnostic test and on disease prevalence
(γvc) in the vth stratum. The posterior probability estimates
most distant from zero indicate an effect of the cth covariate,
with these estimates being significant when the 95% credible
interval (P2.5%; P97.5%) obtained for each parameter does
not contain zero.

With respect to the effect of the cth covariate on the
original parameters θ = (ξv, Sek, Spk), we observed a
significant effect of all covariates on the specificity (βck) of
all tests, except for blood culture, which is 100% specific
according to expert opinion. Regarding the prevalence of
Chagas’ disease, a significant effect of all covariates γcv on
all strata was observed, except for the age and presence of
at least two of three risk factors epidemiological (origin from
an endemic region, contact with the vector transmitting the
disease, and family history of Chagas’ disease) covariates in
the stratum II (inconclusive serology, see, Table 5).

The following covariates exerted nonsignificant effects on
the sensitivity of the tests: presence of at least two of three risk
factors epidemiological (yes, no) for ELISA, blood culture
(HEMO), and rec-ELISA; age group (≤ 30;> 30 years) for
blood culture and rec-ELISA. On the other hand, the gender
(male, female) had a significant effect on the sensitivity of all
tests (see Table 5).

4.2. Practical Results. Table 6 shows the estimates of the
original parameters, sensitivity (Sek), and specificity (Spk)
for the kth test.

The estimates of disease prevalence (ξv) in the vth
stratum are shown in Table 7. In both tables, the results
are presented according to each level of the three analyzed
covariates. In summary, the lowest sensitivity was observed
for the blood culture test (HEMO) in donors younger
than 30 years (29.59%). And the highest sensitivity was
observed for the ELISA in female donors older than 30
years (99.53%). Despite closely similar nominal values, the
sensitivity rates of the serological tests (IIF, IHA, and c-
ELISA) were significantly higher in donors older than 30
years, female donors, and donors with presence of at least two
of three risk factors epidemiological. In contrast, the blood
culture test (HEMO) and the rec-ELISA, presented higher
sensitivity only for female donors. The ELISA, IIF, IHA, c-
ELISA, and rec-ELISA tests were found to be significantly
more specific in donors younger than 30 years, male donors,
and donors with presence of at least two of three risk factors
epidemiological.
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Table 4: Selection of models based on the AIC, BIC, and DIC.

Model p AIC BIC DIC

ModI: (L = 6,M = 3,V = 1) 52 813.09 943.08 719.88

ModII: (L = 6,M = 3,V = 2) 56 511.39 651.38 402.03

ModIII: (L = 6,M = 3,V = 3) 60 756.49 906.48 638.13

p: number of parameters in the model.

Table 5: Summary of the posterior probability estimates obtained for the parameters that measure the effect of the cth covariate on the
sensitivity and specificity of kth test and on disease prevalence in vth stratum, using model ModII (L = 6,M = 3,V = 2).

Sensitivity (αck) Specificity (βck)

Test Parameter Mean P2.5% P97.5% Test Parameter Mean P2.5% P97.5%

ELISA

α11 5.91 3.03 8.79

ELISA

α01 3.47 1.80 5.10

γ111 0.50 0.02 0.96 γ011 −1.92 −2.79 −0.94

γ112 0.51 0.03 1.00 γ012 −2.10 −2.90 −1.14

γ113 0.50 −0.01 0.96 γ013 −2.12 −2.89 −1.11

IIF

α12 5.79 2.89 8.82

IIF

α02 6.51 3.01 9.73

γ121 0.51 0.04 0.99 γ021 −2.08 −2.89 −1.02

γ122 0.49 0.00 0.98 γ022 −2.12 −2.89 −1.16

γ123 0.50 0.02 1.00 γ023 −2.12 −2.89 −1.10

IHA

α13 5.77 2.76 8.65

IHA

α03 6.56 2.88 10.01

γ131 0.51 0.03 0.99 γ031 −2.10 −2.86 −1.05

γ132 0.49 0.01 0.97 γ032 −2.11 −2.91 −1.11

γ133 0.51 0.04 0.98 γ033 −2.12 −2.85 −1.15

HEMO

α14 −0.50 −0.78 −0.22

HEMO

α04 100 100 100

γ141 0.38 −0.06 0.84 γ041 0 0 0

γ142 0.45 0.02 0.89 γ042 0 0 0

γ143 0.31 −0.12 0.74 γ043 0 0 0

c-ELISA

α15 5.76 2.87 8.75

c-ELISA

α05 2.00 1.01 2.97

γ151 0.51 0.02 1.00 γ051 −1.91 −2.77 −0.94

γ152 0.49 0.04 0.97 γ052 −2.11 −2.90 −1.07

γ153 0.49 0.00 0.98 γ053 −2.08 −2.85 −1.11

rec-ELISA

α16 5.72 2.82 8.70

rec-ELISA

α06 6.50 3.16 10.03

γ161 0.21 −0.18 0.74 γ061 −2.08 −2.87 −1.05

γ162 0.54 0.07 1.00 γ062 −2.09 −2.90 −1.03

γ163 0.46 −0.05 0.97 γ063 −2.11 −2.88 −1.09

Prevalence (γcv)

Stratum Parameter Mean P2.5% P97.5% Stratum Parameter Mean P2.5% P97.5%

I

α1 0.50 0.21 0.81

II

α2 −2.01 −2.92 −1.03

γ11 0.51 0.11 0.91 γ21 0.41 −0.04 0.84

γ12 0.43 0.00 0.85 γ22 0.49 0.03 0.94

γ13 0.69 0.28 1.12 γ23 0.43 −0.02 0.89

P2.5%: 2.5th percentile; P97.5%: 97.5th percentile; ELISA: enzyme-linked immunosorbent assay; IIF: indirect immunofluorescence; IHA: indirect
hemagglutination; HEMO: blood culture; c-ELISA: conventional ELISA using the Biomanguinhos kit; rec-ELISA (recombinant ELISA using the
Biomanguinhos kit and CRA and FRA antigens); c = 1: AGE-age (≤30, >30 years); c = 2: GEN-gender (male, female); c = 3: RFE-presence of at least two
of three risk factors epidemiological (origin from an endemic region, contact with the vector transmitting the disease, and family history of Chagas’ disease);
Stratum I (v = 1) donors with negative or positive serology and Stratum II (v = 2) with inconclusive serology in the screening test; γ1kc : effect of the cth
covariate on the sensitivity of kth test; γ0kc : effect of the cth covariate on the specificity of kth test; γvc : effect of the cth covariate on disease prevalence in vth
stratum.

Overall, in the present study, sensitivity rates of 99.25%,
99.12% and 99.13%, and specificity of 95.89%, 99.30%
and 99.36% were obtained for ELISA, IHA, and IIF tests,
respectively. However, analysis of the estimates obtained
with the present model according to each covariate level

resulted in sensitivity rates of 98.77%, 98.52%, and 98.56%,
respectively, for donors younger than 30 years, of 98.76%,
98.58%, and 98.60% for male donors, and of 98.78%,
98.55%, and 98.56% for donors with presence of at least
two of three risk factors epidemiological. Specificity rates
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Table 6: Sensitivity and specificity of the six diagnostic tests according to each level of the three covariates obtained with model ModII
(L = 6,M = 3,V = 2).

Sensitivity Specificity

Test Covariates Mean P2.5% P97.5% Mean P2.5% P97.5%

ELISA

General 0.9925 0.9537 0.9998 0.9589 0.8577 0.9940

AGE- ≤ 30 years 0.9877 0.9261 0.9998 0.9919 0.9614 0.9993

AGE- > 30 years 0.9953 0.9704 0.9999 0.7952 0.5007 0.9647

GEN-male 0.9876 0.9255 0.9998 0.9941 0.9771 0.9994

GEN-female 0.9953 0.9707 0.9999 0.7604 0.3585 0.9609

RFE-no 0.9878 0.9252 0.9998 0.9941 0.9740 0.9994

RFE-yes 0.9952 0.9713 0.9999 0.7592 0.3625 0.9566

IIF

General 0.9913 0.9472 0.9999 0.9936 0.9529 0.9999

AGE- ≤ 30 years 0.9856 0.9112 0.9998 0.9987 0.9928 1

AGE- > 30 years 0.9945 0.9677 0.9999 0.9605 0.7202 0.9996

GEN-male 0.9860 0.9128 0.9998 0.9991 0.9940 1

GEN-female 0.9943 0.9650 0.9999 0.9559 0.6674 0.9996

RFE-no 0.9856 0.9171 0.9998 0.9991 0.9937 1

RFE-yes 0.9945 0.9650 0.9999 0.9561 0.6845 0.9996

IHA

General 0.9912 0.9406 0.9998 0.9930 0.9468 1

AGE- ≤ 30 years 0.9852 0.9038 0.9997 0.9988 0.9924 1

AGE- > 30 years 0.9945 0.9667 0.9999 0.9588 0.7063 0.9997

GEN-male 0.9858 0.9087 0.9997 0.9990 0.9932 1

GEN-female 0.9943 0.9638 0.9999 0.9570 0.6813 0.9997

RFE-no 0.9855 0.8989 0.9997 0.9990 0.9920 1

RFE-yes 0.9945 0.9619 0.9999 0.9560 0.6992 0.9997

HEMO

General 0.3782 0.3140 0.4442 1 1 1

AGE- ≤ 30 years 0.2959 0.1936 0.4110 1 1 1

AGE- > 30 years 0.4715 0.3537 0.6006 1 1 1

GEN-male 0.4014 0.3328 0.4677 1 1 1

GEN-female 0.4467 0.3511 0.5396 1 1 1

RFE-no 0.3116 0.2077 0.4275 1 1 1

RFE-yes 0.4526 0.3317 0.5823 1 1 1

c-ELISA

General 0.9911 0.9461 0.9998 0.8703 0.7333 0.9513

AGE- ≤ 30 years 0.9853 0.9055 0.9997 0.9747 0.9179 0.9951

AGE- > 30 years 0.9944 0.9630 0.9999 0.5181 0.2540 0.8044

GEN-male 0.9861 0.9189 0.9997 0.9795 0.9360 0.9954

GEN-female 0.9941 0.9625 0.9999 0.4744 0.1936 0.7790

RFE-no 0.9858 0.9175 0.9997 0.9791 0.9345 0.9955

RFE-yes 0.9942 0.9605 0.9999 0.4805 0.1946 0.7862

rec-ELISA

General 0.9908 0.9435 0.9998 0.9941 0.9591 1

AGE- ≤ 30 years 0.9886 0.9294 0.9998 0.9990 0.9939 1

AGE- > 30 years 0.9923 0.9558 0.9999 0.9606 0.7286 0.9996

GEN-male 0.9848 0.9129 0.9997 0.9991 0.9940 1

GEN-female 0.9942 0.9659 0.9999 0.9588 0.6933 0.9997

RFE-no 0.9851 0.9073 0.9997 0.9992 0.9944 1

RFE-yes 0.9941 0.9646 0.9999 0.9590 0.7259 0.9997

P2.5%: 2.5th percentile; P97.5%: 97.5th percentile; ELISA: enzyme-linked immunosorbent assay; IIF: indirect immunofluorescence; IHA: indirect
hemagglutination; HEMO: blood culture; c-ELISA: conventional ELISA using the Biomanguinhos kit; rec-ELISA (recombinant ELISA using the
Biomanguinhos kit and CRA and FRA antigens); AGE-age (≤30, >30 years); GEN-gender (male, female); RFE-presence of at least two of three risk factors
epidemiological (origin from an endemic region, contact with the vector transmitting the disease, and family history of Chagas’ disease).



Computational and Mathematical Methods in Medicine 9

Table 7: Prevalence rates of Chagas’ disease in each of the three
strata according to each level of the three covariates obtained with
model ModII (L = 6,M = 3,V = 2).

Prevalence

Stratum Covariates Mean P2.5% P97.5%

I

General 0.6215 0.5516 0.6915

AGE ≤ 30 years 0.4975 0.3723 0.6237

AGE > 30 years 0.7298 0.6277 0.8136

GEN-male 0.5169 0.3899 0.6380

GEN-female 0.7138 0.6006 0.8054

RFE-no 0.4527 0.3238 0.5729

RFE-yes 0.7634 0.6619 0.8471

II

General 0.1277 0.0512 0.2633

AGE ≤ 30 years 0.0909 0.0310 0.2022

AGE > 30 years 0.1811 0.0693 0.3700

GEN-male 0.0845 0.0276 0.2035

GEN-female 0.1935 0.0705 0.3837

RFE-no 0.0895 0.0292 0.1987

RFE-yes 0.1839 0.0718 0.3770

P2.5%: 2.5th percentile; P97.5%: 97.5th percentile; vth Stratum: I, II
(donors with negative or positive serology and inconclusive in the screening
test, resp.,); AGE-age (≤30, >30 years); GEN-gender (male, female); RFE-
presence of at least two of three risk factors epidemiological (origin from an
endemic region, contact with the vector transmitting the disease, and family
history of Chagas’ disease).

were 79.52%, 95.88%, and 96.05%, respectively, for donors
older than 30 years; 76.04%, 95.70%, and 95.592% for
female donors, and 75.92%, 95.60%, and 95.61% for donors
without the presence of at least two of three risk factors
epidemiological (see Table 6).

With respect to the prevalence of Chagas’ disease, an
overall estimate of 12.77% was observed among donors
with inconclusive serology in the screening test at the time
of blood donation (stratum II). Considering the levels of
covariates, we observed that the prevalence of Chagas disease
was significantly higher in donors older than 30 years,
female and the presence of at least two of three risk factors
epidemiological (see Table 7).

Particularly, the estimated rate of chagasic infection
of 12.77% among donors with inconclusive results in the
serological screening test (stratum II) indicates that 87.23%
of these donors do not have Chagas’ disease. This result
is below the rates reported by Furuchó et al. [47] who
observed that 20.5% of donors in the inconclusive group
were positive for Chagas’ disease, that is, 79.5% of donors
with inconclusive serology in the screening test do not have
the disease.

The mean false-positive rate (1−Sp), which estimates the
probability of the test being positive given that the individual
is healthy and excluding the blood culture test, with a false-
positive rate of 0%, was lower for rec-ELISA testing (0.58%)
and higher for c-ELISA (12.84%), whereas the mean false-
negative rate (1 − Se), which estimates the probability of
a test being negative given the individual has the disease,
was lower for c-ELISA (0.84%) and higher for blood culture
(55.23%). Analysis of the parallel testing scheme, indicated

for urgent cases or for quality control as done at blood
banks, in which the set of tests is considered to be positive
when at least one of L tests presents a positive result, showed
lower false-positive rates of 13.35% and 5.79% for the sets
of serological tests performed using the tests conducted at
the Central Laboratory of UFTM (Sit2:ELISA, IIF, IHA) and
the Biomanguinhos-FIOCRUZ kit (Sit4:c-ELISA and rec-
ELISA), with false-negative rates of 0.0075% and 0.0002%,
respectively. For the serial testing scheme in which the set of
tests is considered to be positive when all tests performed are
positive, the false-positive rates were 0.073% and 0.0002%
for the same serological test sets (Sit2 and Sit4), respectively.

Overall analysis showed that the probability of predicting
that an individual is truly infected, given each combination of
the results of the six tests, is 100% for each of the two strata
always when the blood culture result is positive, irrespective
of the results of the other tests since blood culture is 100%
specific. When three tests are positive and three tests are
negative, excluding the positive blood culture result, the
mean probability of predicting that an individual is truly
infected is 99.94% for stratum II.

5. Final Comments

To the best of our knowledge, this is the first study proposing
a general Bayesian latent class model as the model (5) based
on MCMC algorithms for the evaluation of the performance
of L conditionally independent tests considering the general
case of M covariates and V strata according to the assump-
tion of the proposed model by Hui and Walter [24]. The
true health condition of the subject (sick or healthy) in the
vth stratum is determined by the latent variable Yv with a
Bernoulli (τv) distribution instead of a gold standard, which
is not available in some case such as for the Chagas’ disease.

The general model proposed is very flexible and includes
all possible configurations for L tests, M covariates, and V
strata as particular cases. Besides, it has as particular cases
the models proposed by Hui and Walet [24], Joseph et al. [4],
and Martinez et al. [8, 23].

Our simulation study finds, based on the information
criteria AIC, BIC and DIC, superior performance of the
overall structure proposal in comparison with its particular
cases (without stratification and/or without covariates) was
achieved.

The ModII presented a better fitting for the Chagas’
disease dataset than ModI and ModIII, corroborating the
initial idea of considering a two-stratum structure (SI:
negative or positive serology; SII: inconclusive serology)
instead of three strata (SI: negative; SII: positive and SIII:
inconclusive serology) or no stratification (SI: negative or
positive or inconclusive serology).

According to Swartz et al., a strong correlation between
posterior parameters may impair convergence of the algo-
rithm within a reasonable computation time, a fact not
observed for the present modeling fitted to the Chagas’ data
discussed here [48].

Although the latent class structure is not new in studies
on diagnostic evaluation in the absence of a gold standard,
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in the specific case of screening tests for Chagas’ disease
among blood donors, there is a lack of studies in the literature
regarding more elaborate models to estimate the sensitivity
and specificity of diagnostic tests and disease prevalence. In
most cases, the proposed models estimate these parameters
individually for each test and/or considers an imperfect test
as gold standard.

The performance parameters of the tests, such as sensitiv-
ity and specificity, reached values close to 100% depending
on the level of some covariates, a finding supporting the
need for a model structure containing covariates to evaluate
the performance of multiple conditionally independent
diagnostic tests. Particularly, the technique of stratifying the
population according to different disease prevalence rates
does not add further marked complexity to the model
but makes the model more flexible and comprehensive. It
should be emphasized that the probability of predicting
that an individual is truly infected or healthy is strongly
influenced by disease prevalence rates and may widely differ
between strata as observed in the present study. Thus,
the lack of stratification in the model may contribute to
invalidated estimates of these important predictors to predict
the presence or absence of a disease given the results of
the combinations of the tests used, such as the diagnosis of
Chagas’ disease in blood donors.

The probability of predicting that an individual is truly
infected provides interesting information that contributes to
the regarding the true health status of the subject based on
the combination of multiple diagnostic tests under evalua-
tion. In the specific case of the diagnosis of Chagas’ disease
in blood donors, when the results of the five serological
tests are combined, repetition of ELISA used at the time of
blood donation plus the four other serological tests (IIF, IHA,
c-ELISA, rec-ELISA) resulted in a probability of 100% to
identify a truly chagasic subject as long as at least four of these
tests present positive results in strata II.

When the assumption of conditional independence is
violated, that is, the tests are correlated, possible bias may
occur in the estimates of the performance parameters of
the diagnostic tests as demonstrated by Thibodeau [49] and
Vacek [50]. However, according to Georgiadis et al., the
model with a conditional independence structure estimates
closely similar to those with a conditional dependency model
when the performance parameters of the tests are close
to 100%, even in the presence of a moderate-to-strong
correlation between pairs of tests [51]. Correlated testing
framework should be considered further in future on the
basis of the proposed model.

According Forman and Engel et al., a latent class model
can present weak identifiability if a small sample size in
relation to the number of latent classes is observed, with
the number of individuals being insufficient to attribute
an element to each class and, consequently, to estimate its
probabilities. Although we have not faced identifiability
problems in our modeling, the problem of weak or lack of
identifiability should be the subject of future research in the
context of the proposed model [34, 52].
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