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ABSTRACT The composition of the gut microbiota is affected by a number of factors,
including the innate and adaptive immune system. The major histocompatibility com-
plex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential
role in vertebrate immunity and is very polymorphic in different populations. HLA
determines the specificity of T lymphocyte and natural killer (NK) cell responses, includ-
ing those against the commensal bacteria present in the human gut. Thus, it is likely
that our HLA molecules, and thereby the adaptive immune response, can shape the
composition of our microbiota. Here, we investigated the effect of HLA haplotype on
the microbiota composition. We performed HLA typing and microbiota composition
analyses on 3,002 public human gut microbiome data sets. We found that individuals
with functionally similar HLA molecules are also similar in their microbiota composition.
Our results show a statistical association between host HLA haplotype and gut micro-
biota composition. Because the HLA haplotype is a readily measurable parameter of
the human immune system, these results open the door to incorporating the genetics
of the immune system into predictive microbiome models.

IMPORTANCE The microorganisms that live in the digestive tracts of humans, known
as the gut microbiota, are essential for hosts’ survival, as they support crucial func-
tions. For example, they support the host in facilitating the uptake of nutrients and
give colonization resistance against pathogens. The composition of the gut micro-
biota varies among humans. Studies have proposed multiple factors driving the
observed variation, including diet, lifestyle, and health condition. Another major
influence on the microbiota is the host’s genetic background. We hypothesized the
immune system to be one of the most important genetic factors driving the differ-
ences observed between gut microbiotas. Therefore, we searched for a link between
the polymorphic molecules that shape human immune responses and the composi-
tion of the microbiota. HLA molecules are the most polymorphic molecules in our
genome and therefore makes an excellent candidate to test such an association. To
our knowledge for the first time, our results indicate a significant impact of the HLA
on the human gut microbiota.

KEYWORDS gut microbiome, human leukocyte antigen, immune-microbiome
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The gut microbiota is essential for the existence of the mammalian host and per-
forms crucial functions, such as nutrition and colonization resistance against patho-

gens (1, 2). In addition, commensal bacteria shape host immunity (3, 4): commensal
bacteria influence the development and homeostasis of the immune system, and in
the absence of a gut microbiota the innate and adaptive immune system is impaired
(5). These functions are fulfilled by the 1013 to 1014 bacteria making up the human gut
microbiota of a typical adult (6). The composition of the gut microbiota varies substan-
tially over the human population (7, 8), and numerous exogenous and intrinsic factors
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are proposed to influence the microbial community composition, leading to observed
microbiome diversity (9, 10). These factors include dietary components, mode of deliv-
ery during birth, breastfeeding, disease history, and host genetics (10–15). However,
the greater part of population diversity is still unexplained. To obtain a better under-
standing of the microbiota composition and function, a comprehensive list of associ-
ated factors is required.

Studies with monozygotic twins have highlighted the importance of host genetics
in shaping the microbiota composition (16, 17), where the immune system is thought
to be one of the most important contributing factors (18). The immune system is a
well-known but not fully explored mechanism influencing the microbiome (18–21).
Conversely, the microbiota also imprints its signature on the host immune system, e.g.,
by influencing the abundances of mucosa-associated invariant T cells by exposure to
microbial antigens (22). Immune response related factors that generate variation
between microbiotas are likely to originate from functional differences among poly-
morphic immune molecules.

Major histocompatibility complex (MHC) genes, known as the human leukocyte
antigen (HLA) genes in humans, are one of the most polymorphic genes found in ver-
tebrates (23, 24). They encode cell surface glycoproteins that present antigens to T
cells (25–27) and form the first essential step in the generation of an adaptive immune
response. Influence of the MHC haplotype on the microbiome has been observed in
mice (18, 28–30) and in stickleback (31). In humans, specific polymorphisms in the HLA
region have been associated with several common infections (32), and in a genome-
wide association study of over 1,500 individuals, two variants located in the HLA region
showed suggestive association with microbiome composition or function (12).
Moreover, an association with microbiota composition has been observed for the HLA-
DQ gene in relation to celiac disease (33, 34). However, other genome-wide association
studies did not find associations between HLA and the microbiome among many asso-
ciated genes (35, 36).

Here, we analyzed 3,002 human gut microbiome data sets and found that HLA hap-
lotype similarity correlates with microbiota similarity. Importantly, functionally stratify-
ing individuals on the basis of HLA-presented microbial antigens improved the associa-
tion with microbiota similarity. Overall, these results provide the first statistical support
for the functional association between HLA and the gut microbiota in humans.

RESULTS
Mining gut microbiome data sets. To link the HLA haplotype to microbiota compo-

sition of individuals, we simultaneously determined the presence of human HLA genes
and bacterial small-subunit (SSU) rRNA genes in human intestinal samples. We composed
a combined reference database consisting of HLA gene sequences and SSU rRNA sequen-
ces and used this to map 3,002 gut microbiome data sets extracted from the Sequence
Read Archive (SRA). As expected, we observed a large variability in the number of HLA
reads recovered from the different data sets (Table 1; also, see Fig. S1A in the supplemen-
tal material). This variability could be due to differences in sequencing techniques
between studies or due to differences between individuals. We designed a decision tree
(see Materials and Methods) to predict the HLA haplotype for the classical HLA class I
(HLA-A, HLA-B, and HLA-C) and HLA class II (HLA-DP, HLA-DQ and HLA-DR) genes. The de-
cision tree predicted alleles from replicate samples of the same individual with a mean
overall consistency of 75%, and zygosity was predicted with a mean consistency of 80%
(Table 1). This performance is particularly notable for the specific alleles, as they were pre-
dicted based on a reference database consisting of between 5 (HLA-DQ) and 35 (HLA-B)
two-digit alleles depending on the HLA gene, while zygosity was only a binary call (het-
erozygote/homozygote, i.e., a 50% guessing rate). Together, these results provide a rough
reliability estimate for our HLA typing pipeline.

Application of this scheme to all 3,002 data sets resulted in prediction of the com-
plete HLA class I and II profiles for 127 and 309 individuals, respectively (Fig. S1B). HLA
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class I is expressed in all nucleated cells, while HLA class II expression is restricted to
antigen-presenting cells (APCs) (25). Therefore, we expected a higher number of reads
mapping to HLA class I in human gut data sets, but the difference between HLA class I
and II reads is not significant (P=0.17, two-sample Kolmogorov-Smirnov [KS] test). The
observation of similar read counts between HLA class I and II may be explained by a

TABLE 1 Consistency of HLA prediction over the available data sets from the same individuala

aHLA predictions from different data sets compared to the most likely HLA alleles prediction of the individual. Each two-digit allele was given a
unique color, showing that most alleles were consistently predicted for different individuals. Frequently occurring alleles (e.g., B*07) in this
selection of predictions were also observed more frequently in the general population (Fig. S2). In the set of samples from the same individual, no
class II predictions were made because of a lack of class II reads found in this data set.
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large number of lymphocytes (especially B cells, which have high MHC class II expres-
sion) being present in the gut as a part of mucosal immunity (37). Moreover, intestinal
epithelial cells also express MHC class II (38), and HLA class I and class II expression lev-
els vary across different cell types (39, 40). Further differences in the gene expression
pattern of gut-associated cell types, as well as stochastic differences in, e.g., sampling
and analysis protocols, might contribute to the observed variation in HLA mapped
reads between the SRA data sets.

InferredHLA prevalence reflects the Caucasian population profile.As an additional
quality assessment of our HLA typing pipeline, the predicted population allele frequencies
of the HLA class I and class II groups were compared to the HLA prevalence in the
National Marrow Donor Program (NMDP) database, a database containing high-resolution
HLA allele frequencies (41). The frequency distribution of HLA class I in our data set is sim-
ilar to that in the NMDP database of Caucasian ethnicity (Pearson’s r=0.806, 0.726, and
0.812 for HLA-A, HLA-B, and HLA-C, respectively), but the frequency distribution of HLA
class II is less so (Pearson’s r=0.537 and 0.127 for HLA-DQB1 and HLA-DRB1, respectively)
(Fig. S2A to E). Finally, we observed a high frequency of HLA heterozygosity and low fre-
quency of homozygosity for any of the HLA genes (Fig. S2F), consistent with the high
polymorphism of HLA genes in the population (41). All genes except HLA-C had zygosity
frequencies that were consistent with the NMDP data (Fig. S2F).

Individuals with similar HLA genes have similar microbiota. Next, we compared
microbiota similarity between the individuals in search for a link to similarity in HLA al-
leles. To do this, we determined the similarity in microbiota composition for pairs of
data sets that were stratified by the number of shared HLA class I alleles (Fig. 1). As
expected, microbiota similarity was generally higher between individuals who shared
more HLA alleles, although the effect size was modest, possibly as a result of the low
number of sample pairs with highly similar HLA profiles.

We expect that two individuals with the same HLA molecules may have similar
immune control of their microbiota. However, the opposite is not true, i.e., individuals
with different sets of HLA molecules can nevertheless generate similar immune
responses, because different HLA molecules may have similar binding motifs. To
address this issue of functional similarity, HLA molecules have been grouped into
supertypes, consisting of HLA molecules that present similar peptides on the cell sur-
face (42). In a first attempt to represent the functional HLA similarity between individu-
als and increase statistical power at this highly polymorphic gene, we performed asso-
ciation analyses at the level of HLA supertypes. While this increased the number of
sample pairs with similar HLA profiles, the relation between HLA similarity and micro-
biota beta diversity was lost (Fig. S3). This may be because the HLA supertypes are a
very generalized representation of HLA molecules, while the functional effects of the
HLA molecules on the microbiota composition are likely very specific (43).

In a second attempt to quantify the functional HLA similarity between individuals,
we devised a novel approach specific to human gut microbiota by focusing on the
overlap in peptides presented by the different HLA molecules. To do this, we used
NetMHCpan4.0, a state-of-the-art peptide-MHC binding affinity prediction tool (44), to
predict the binding affinity of over two million gut bacterial oligopeptides to the HLA
class I molecules. The peptides were extracted from the human gut catalog (45) in
order to best represent the HLA functionality in the context of their potential response
to the human gut microbiota. This approach allowed us to calculate a presented pepti-
dome similarity score (PPSS) between the HLA haplotypes of each pair of individuals
(see Materials and Methods). Individuals with a high PPSS present very similar peptides,
while individuals with a low PPSS present different peptides. When we stratified pairs
of individuals by PPSS, we observed a significantly higher microbiota similarity for pairs
with a high PPSS (Fig. 2).

Microbiota alpha diversity is higher in individuals with homozygous HLA alleles.
Although we found that our zygosity predictions were less reliable than our haplotype
predictions (Table 1), we still analyzed the effect of zygosity on the microbiota diver-
sity. To this end, we used a subset of data sets of which we could determine the full
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zygosity of all HLA class I or II genes (n=60 and n=205, respectively). Although we
found only very few individuals who were fully homozygous for all HLA genes, we
observed a significantly higher microbiota richness in homozygous individuals than in
individuals with one or more heterozygous HLA class I genes (Fig. S4A and B).
Moreover, we observed a trend of a decrease of the richness as the homozygosity
decreased (Fig. S4A and B). Similar results were obtained for HLA class II (Fig. S4E and
F). We also investigated the correlation between HLA zygosity and microbiota even-
ness, but this yielded inconsistent results (Fig. S4C, D, G, and H).

Next, we analyzed whether the zygosity effect on alpha diversity was equally dis-
tributed over the HLA class I genes. For HLA class I genes, individuals homozygous for
HLA-B genes had a higher richness than HLA-A and HLA-C genes (Fig. S5A). We also
found a significant difference for the HLA-DQB1 and HLA-DPB1 class II genes (Fig. S5C).
Association between the gut microbiota and HLA-B was observed previously (12, 29)

FIG 1 Microbiota beta diversity for sample pairs with an increasing number of shared HLA class I alleles. (A) Spearman rank correlation and (C) weighted
UniFrac of the microbiota composition for sample pairs with 0 (blue), 1 (orange), 2 (green), 3 (red), 4 (purple), or 5 (brown) alleles shared. (B and D) Heat
maps displaying the P values for the two-sample Kolmogorov-Smirnov test under the null hypothesis that the item in the row is drawn from an equal or
smaller distribution compared to the item in the column.
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and is consistent with HLA-B often generating immunodominant T cell responses
(46–49) and the most polymorphic one (24). We also observed a higher microbiota
evenness associated with HLA-DQB1 and -DPB1 homozygosity (Fig. S5D). Finally, we
reemphasize that our zygosity predictions might suffer from reduced consistency, and
therefore, the above results on the effect of HLA zygosity on human gut microbiota
should be interpreted carefully.

DISCUSSION

We present the first statistical evidence in humans that HLA significantly affects the
composition of the gut microbiota, in line with previous results in other animals (18,
20, 28). To do this, we developed the PPSS, a score that uses cutting-edge machine
learning tools (44), to quantify the functional similarity between HLA haplotypes of dif-
ferent individuals. We observed the highest correlation between the microbiota and

FIG 2 Microbiota beta diversity for sample pairs with increasing PPSS. Spearman rank correlation (A) and weighted UniFrac distance (C) of the microbiota
composition for sample pairs with PPSS of ,4 (blue), 4 to 6 (orange), 6 to 8 (green), and $ 8 (red). (B and D) Heat map displaying the P values for the
two-sample Kolmogorov-Smirnov test under the null hypothesis that the item in the row is drawn from an equal or smaller distribution compared to the
item in the column.
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HLA class I profiles using the PPSS, suggesting that this score outperforms simpler
measures of HLA type similarity, such as the number of shared alleles between individ-
uals. Thus, if the association holds up in large, well-controlled cohorts, we expect that
the PPSS will be useful for comparing HLA/MHC profiles in relation to commensal and
pathogenic microorganisms in humans.

HLA class I molecules are involved in intracellular antigen presentation, leading to a
cytotoxic response by CD81 T cells. Cross-presentation of extracellular antigens on
MHC class I by dendritic cells is common (26, 27, 50, 51), but it remains unknown how
antigens presented on HLA class I shape mucosal immunity. In addition, the influence
of HLA class I on the microbiota could be related to the MHC class I chain-related anti-
gen A (MIC-A) and antigen B (MIC-B) genes. These polymorphic genes are constitu-
tively expressed in the gut epithelium (52). The recognition of MIC-A/B by its ligand
NKG2D, an activating receptor on NK cells, NKT cells, and T cells, leads to cytotoxic
response and cytokine production (53). MIC-A and -B are genomically localized next to
HLA-B on chromosome 6 and therefore in strong linkage disequilibrium with HLA-B
(54, 55). Because we found a microbiota association on HLA class I and the strongest
zygosity effect on the gut microbiota for HLA-B (Fig. S5), it will be of interest to dissect
the association between HLA-B or MIC-A/B and the microbiota in large cohorts.

MHC class II molecules are suggested to play a role via antibody-mediated response
(18, 28, 31). One possibility is that a less diverse HLA repertoire in homozygous individ-
uals may reduce the number and diversity of immune responses to the microbiota by
T cells and natural killer (NK) cells. As a result, homozygous individuals would recognize
and potentially remove fewer bacterial species from their intestinal microbiota than
heterozygous individuals. This could allow a higher number of different bacterial spe-
cies to colonize the gut than the individuals with a more diverse set of HLA molecules.
A similar effect has been observed in the stickleback, where fish with more diverse
MHC class II molecules had a less diverse gut microbiota (31). Interestingly, this raises a
potential conflict between the fitness benefits of a diverse immune system and of a
diverse microbiome. Diverse immune responses are considered beneficial, especially in
the protection against rapidly evolving pathogens (56), while a diverse microbiome is
considered healthy, since it provides ecological protection against pathogen invasion
and avoids dysbiosis (57). Therefore, it remains an open question what the potential
effect is of zygosity on the fitness of the host. We focused our analysis on HLA class I mol-
ecules because the imputed HLA class II haplotypes did not match the expected popula-
tion profile and consistency (Table 1 and Fig. S2D and E). Thus, we consider the class II
typing less reliable than the class I typing. Moreover, the prediction of presented peptides
is not as reliable for class II as the prediction for class I, in part because the binding is
more promiscuous for class II than for class I. The seven class II supertypes show a .30%
overlap in presented peptides between supertypes, which is similar to the overlap
between alleles within a class II supertype (58). We expect that measurements with
increased accuracy will reveal similar results with HLA class II haplotypes.

Conclusion. An important standing conundrum in microbiome research is the vast
interindividual differences in gut microbiome composition between people. While
many factors are known that contribute to shaping the microbiome, the relative impor-
tance of these factors remains unclear and will be the subject of study for years to
come. We expect that innovative data analysis methods, designed to directly probe
the functionality of factors such as the human immune system (12, 14), will allow these
factors to be elucidated and their contributions mapped. As HLA is a readily measura-
ble parameter of the immune system, the exploration of HLA and HLA-driven peptide
presentation opens the door for incorporating these factors into future predictive
models of the gut microbiome.

MATERIALS ANDMETHODS
Human gut microbiome data sets. We retrieved 3,002 human gut data sets from 37 different bio-

projects from the public Sequence Read Archive (SRA) database (59). Data sets were collected using
“metatranscriptome” search terms (Table 2), but due to inconsistencies in SRA metadata annotation, our
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selection included 750 metagenomes as well. Microbiota and HLA haplotype profiling are performed on
both data types. Repeating the analyses with the subset of 2,250 metatranscriptomes led to a steep
decrease in the number of paired individuals with highly similar HLA profiles and loss of signal, and
therefore, we decided to continue with the original data set. Metadata fields are listed in Table S2. We
are grateful to the associated studies for making these data available for reuse.

All sequence runs were preprocessed as follows. Data sets were downloaded using prefetch (version
2.9.2) utility, and SRA data were converted to fastq files using fastq-dump (version 2.9.2), both from the
SRA toolbox. The quality of the reads was assessed using FastQC (version 0.11.8) (60), and reads were
trimmed using AdapterRemoval (version 2.1.7) (61). For studies with multiple data sets from the same
individual, we randomly selected one data set to include in our analysis to avoid biasing the data set
with intraindividual sample comparisons.

Mapping reads to a composite reference database. To assess the microbiota composition and the
HLA haplotype at once, reads were mapped with BWA-MEM (version 0.7.12) (62) to a reference database
consisting of bacterial small-subunit (SSU) rRNA (SILVA SSU Ref nonredundant [NR] 99, release 132) (63)
and genomic HLA sequences from IMGT/HLA database (release 3.31.0, 24). 16S reads were analyzed to
obtain the bacterial composition of each data set. Only bacterial operational taxonomic units (OTUs)
with a relative abundance of $0.0001 were taken into account. Therefore, the data sets should contain
$1,000 16S reads. We developed a sorting scheme for multimapping reads, which were divided across
target sequences as a fraction of the number of primary mapping (unique) reads (64–66).

HLA imputation. We performed two-digit HLA typing on the classical HLA loci (HLA-A, HLA-B, HLA-C,
HLA-DR, HLA-DP, and HLA-DQ). Although we expect a maximum of two alleles for each gene (25), we often
found more than two HLA alleles with reads mapped. This is likely a result of the high sequence similarity
of the different alleles from the same HLA gene. In order to make the most reliable HLA imputation, we
defined an R score as the ratio of the number of reads mapped to the two most frequently observed HLA
alleles over the number of reads mapped to all other alleles of this gene (Fig. 3A). We determined R for
each of the six classical HLA loci in all 3,002 data sets. Only HLA genes with an R score of 2 or higher were
considered for HLA imputation (Fig. 3B). An individual was considered homozygotic at a given locus if at
least 10 reads aligned to the top HLA allele and the second mapped allele had less than 15% of the reads

TABLE 2 Search terms for the SRA querya

Search term

Filter

No. of data setsSource Organism Selection
Human bowel Metatranscriptomic Random 841
Human gut Metatranscriptomic Random 925

Transcriptomic Human gut metagenome orgn txid:408170 Random 130
Metatranscriptomic Human gut metagenome orgn txid:408170 Random 897

Human stool Metatranscriptomic Random 778
RNA sequencing Human gut metagenome orgn txid:408170 Random 2,879
Metatranscriptomic Human gut metagenome orgn txid:408170 2,179
aOverlapping data sets from the different search terms were filtered out.

FIG 3 Decision tree genotyping of the HLA gene. (A) Visual explanation of the R score. (B) Decision tree for HLA typing from fecal microbiome data sets.
Blue boxes show the decisions, orange boxes represent possible positive outcomes, and the gray box shows the negative outcome when no prediction is
made for this gene.
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of the first. A locus was considered heterozygotic if at least two alleles were found and the second mapped
to at least 15% of the reads of the first. This number was optimized based on the highest number of correct
predictions in data sets originating from the same individual (Table S1).

Data set selection and population-based HLA typing quality control. Individual HLA loci may be
in linkage disequilibrium with other loci (67, 68). To maximize the representation of the HLA profile, we
included data sets only if the complete HLA haplotype was assessed, resulting in two groups for the clas-
sical class I and II (n= 127 and 309, respectively) (Table S2).

Quality control of our haplotyping approach was performed by comparing the population allele and
zygosity frequencies of our data with the NMDP High-Resolution HLA Alleles and Haplotypes in the U.S.
Population database (41; https://bioinformatics.bethematchclinical.org/hla-resources/haplotype-frequencies/
high-resolution-hla-alleles-and-haplotypes-in-the-us-population/). Data were extracted in September 2019.
Based on the data set localities, we expected a majority of individuals in our data sets to be of European descent
(Table S2). Therefore, we compared our HLA frequencies with the cohort of European origin in NMDP database.
A second quality control approach was performed using multiple data sets originating from the same individual;
this information was obtained from the metadata. In the final analysis, only one data set per individual was used.

HLA supertypes and PPSS.Most of the 450 haplotyped data sets had unique HLA profiles, reflective
of the high population-level diversity at the HLA loci. To increase statistical sensitivity, we performed
two separate experiments on the data. First, we clustered HLA-A and HLA-B alleles into six supertypes
each (42). Second, we devised a presented peptidome similarity score (PPSS) between two haplotypes
to estimate the functional similarity in immune profile, based on the overlap in peptides presented by
their HLAs. To do this, first we created a peptidome data set consisting of human gut bacterial peptides
sampled from the 9,878,647 proteins in the human gut catalogue (45). By using a sliding window of
length nine amino acids, we randomly included one in every thousand oligopeptides into the pepti-
dome and removed duplicates, resulting in a peptidome of 2,371,920 peptides. Next, we used
NetMHCpan4.0 to predict which peptides were presented by each HLA class I allele (44). We used the
recommended cutoff 2.0%Rank for classifying binding peptides.

The PPSS between two individuals, i and j, is defined as the summed Jaccard indices, Jg,ai,aj, of the
sets of peptides presented by all combinations of the alleles ai and aj of HLA gene g (HLA-A, HLA-B, and
HLA-C). The PPSS ranges from 0 (no overlap between presented peptides) to 12 (presented peptides are
identical). The Jaccard-based similarity of peptide pools presented of allele pair a,b is defined as the
overlap of peptide pools (Oa,b) divided by the not-shared peptide pools (equation 1).

Jab ¼ Oa;b

Pa1Pb2Oa;bð Þ (1)

The Jab scores between all two-digit alleles are shown in Fig. S6. PPSSij, the similarity of peptide pools of
the pair of individuals i and j, is defined by the allele pair similarity for all combinations of alleles within
one gene, added up for all three HLA genes (equation 2).

PPSSij ¼
X

g¼A;B;C

X

ai¼1; 2

X

aj¼1; 2

Jg;ai;aj (2)

The distribution of PPSS scores across all data sets is shown in Fig. S7.
Data Set S1 contains the Jaccard indices for every pair of four-digit alleles for HLA gene HLA-A, HLA-

B, and HLA-C, allowing readers to readily calculate the PPSS upon HLA typing.
Alpha diversity. To assess alpha diversity, we used evenness and richness measures from the skbio.

diversity.alpha package (version 0.5.5) (69). We did not rarefy the data, as this may increase type I and II
errors (70). We did not find a correlation between data set size and microbiota richness (r= 0.027;
P= 0.16, Pearson), and we therefore assume that data set size does not bias our results. To approximate
the number of different species in a sample, we used Margalef’s richness index (Dmg), which attenuates
sampling size effects (equation 3) (71), where S is the number of different OTUs observed in the sample
and N is the number of 16S reads mapped:

Dmg ¼ ðS21Þ
lnN

(3)

The microbiota evenness was calculated using Heip’s evenness measure (E) (equation 4) (72), where
H is the Shannon-Weiner entropy of the 16S reads and S is the number of OTUs in the data set:

E ¼ ðeH21Þ
ðS21Þ (4)

For the comparison between the alpha diversity and the number of heterozygote genes, only the
fully classified data sets were used (Table S2). In the analysis of the effect of homozygous HLA genes on
alpha diversity, all data sets with at least one homozygous gene were used.

Beta diversity. The microbiota similarity between individuals was calculated using two beta diver-
sity measures: weighted UniFrac distance and Spearman’s rank correlation (73). We adapted the SILVA
taxonomy with a branch length of 1 between taxonomic ranks and used these distances for weighted
UniFrac. The Spearman rank correlation was calculated using the abundances of the OTUs observed in
each microbiome.
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Statistics. We used the Kolmogorov-Smirnov (KS) test for two samples from the python package
scipy.stats (version 1.3.2) (74) for statistical analysis, with alternative hypothesis, “two-sided,” “less,” and
“greater,” depending on the relevance for the comparison, as stated in the figure legends.

Code availability. Scripts for downloading the data sets, mapping the data sets to the composed refer-
ence genome, and further analysis can be accessed on GitHub (github.com/Stijn-A/HLA_microbiome).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 17.8 MB.
FIG S1, TIF file, 0.5 MB.
FIG S2, TIF file, 1.1 MB.
FIG S3, TIF file, 1.1 MB.
FIG S4, TIF file, 1 MB.
FIG S5, TIF file, 1 MB.
FIG S6, TIF file, 1.5 MB.
FIG S7, TIF file, 0.8 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.04 MB.
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