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Abstract

Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently
used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We
confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine
administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode
duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced
fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine
on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of
glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin
neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin
neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling
immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers
onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals
made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron
microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of
symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep,
our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of
orexin neurons might play a role in physiological sleep regulation.
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Introduction

As the primary inhibitory neurotransmitter in the central

nervous system, glycine is widely distributed throughout the

brainstem and spinal cord [1,2,3]. It also acts as an allosteric

modulator of the N-methyl-D-aspartate (NMDA) receptor [4,5].

Glycine is thought to play important roles in sleep regulation.

Especially, medullary glycinergic neurons were shown to inhibit

somatic motor neurons during REM sleep [6,7,8,9].

It was also reported that orally administered glycine increased

subjective sleep quality without any adverse effect [10]. However,

the mechanisms and sites of action of these effects of glycine

administration on sleep have remained largely unclear.

In the present study, we confirmed the effect of glycine on

sleep/wakefulness states in mice. Notably, glycine not only

decreased wakefulness time in the dark period, but also

significantly shortened the mean wakefulness duration, suggesting

fragmentation of sleep/wakefulness states. Since fragmentation of

sleep/wakefulness states is one of the characteristics of orexin-

deficiency, we examined whether glycine influences the activity of

orexin-producing neurons, which play highly important roles in

sleep/wakefulness regulation [11]. We found that peripheral

administration of glycine decreased the activity of orexin neurons

as examined by Fos-immunoreactivity. We also identified the

existence of functional glycine receptors and glycinergic synapses

in orexin neurons by electrophysiology, immunofluorescence and

immunoelectron microscopy.

Results

Sleep/wakefulness States were Influenced by
Intraperitoneal Glycine Administration in Mice

Although glycine ingestion is reported to affect subjective sleep

quality in humans [10], it is not known whether it actually affects

sleep/wakefulness states in mice. Therefore, we first examined the

effects of glycine on sleep/wakefulness states in mice. Sleep state

patterns in mice were examined by simultaneous EEG/EMG

recording after glycine administration. Mice were administered

glycine (2 g/kg) or saline intraperitoneally 10 min before light on

(ZT0) or off (ZT12), and then subjected to simultaneous EEG/

EMG recording for 5 hours (Fig. 1A). In the light period, the

pattern of sleep/wakefulness states was not statistically significantly

different between the saline- and glycine-administered groups with

respect to the total time, mean durations and stage count for all

vigilance states (Fig. 1B,D,F).
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Figure 1. Glycine-induced sleep phenotype during dark period. A Protocols for glycine administration in light (left panel) or dark period
(right panel). Glycine or saline was injected intraperitoneally 10 min before the start of recording (ZT0 or ZT12). EEG/EMG recordings were performed
for the next 5 hours (until ZT5 or ZT17). B, C Total time (minutes, mean 6 SEM) spent in each state in saline- (n = 4, white bar) and glycine-
administered mice (n = 4, gray bar), itemized separately for light (B) and dark periods (C). D, E Episode duration (seconds, mean 6 SEM) spent in each
state in saline- and glycine-administered mice, in light (D) or dark period (E). F, G Stage count (count, mean 6 SEM) is number of each episode during
each period (light; F, dark; G). The glycine-administered group showed a significantly shorter total time and duration of episodes of wakefulness,
suggesting fragmentation of sleep/wakefulness states during the dark period. *p,0.015. Graphs summarize the data recorded during the 5 h light/
dark period.
doi:10.1371/journal.pone.0025076.g001
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In contrast, peripheral administration of glycine showed a

significant impact on the sleep/wakefulness states of mice in the

dark period. There were marked differences between the saline-

and glycine-administered groups in the amount of both wakeful-

ness and NREM sleep, duration of wakefulness state, and stage

count of both wakefulness and NREM sleep in the dark period

(Fig. 1C,E,G). These observations suggest that glycine decreased

wakefulness time and increased NREM sleep time in mice when

administered at the start of the dark period. Notably, glycine

administration resulted in marked shortening of the mean episode

duration of wakefulness, accompanied by increased stage count of

both wakefulness and NREM sleep (Fig. 1E,G, supplementary Fig.

S1). These observations indicate that glycine administration in the

dark period decreased the stability of sleep/wakefulness states, and

induced sleep/wakefulness fragmentation in mice.

Activity of Orexin Neurons is Decreased by
Intraperitoneal Glycine Administration

Fragmentation of sleep/wakefulness states in the dark period is

one of the hallmarks of orexin deficiency or narcolepsy in many

mammalian species [11]. Therefore, we next examined the

possibility that peripherally-administered glycine influences the

activity of orexin neurons. Mice were intraperitoneally adminis-

tered glycine (2 g/kg B.W.) or saline at ZT0 and ZT12, and then

killed 3 hours after administration at ZT3 and ZT15 (Fig. 2A).

Brain slices of mice with or without glycine administration were

examined by double staining with anti-orexin and anti-Fos

antibodies to assess the activity of these orexin neurons. In control

mice, the percentage of double-labeled neurons (orexin-positive

neurons with Fos-positive nuclei) showed marked diurnal fluctu-

ations, with a lower level of double-labeling at ZT3 (n = 3,

12.161.8%, mean 6 SEM) and higher level at ZT15 (n = 4,

67.264.2%, mean 6 SEM) (Fig. 2B,C,F), as reported previously

in rats [12]. Glycine administration significantly decreased the

percentage of Fos-positive orexin neurons to 4.261.5% (n = 4,,

mean 6 SEM, t5 = 3.412, p = 0.019) and 26.262.0% (n = 6, mean

6 SEM, t8 = 9.880, p,0.0001) at ZT3 and ZT15, respectively

(Fig. 2D,E,F). Range of orexin cell numbers and c-fos positive cell

numbers were shown as supplementary table S1.

Glycine Inhibits Orexin Neurons in Vitro
Since we found that peripheral administration of glycine

decreased the activity of orexin neurons, we next examined

whether glycine directly inhibits orexin neurons. We carried out

whole-cell current-clamp recordings on acute slice preparations of

orexin/EGFP transgenic mice [13]. Under whole-cell current clamp

mode, glycine (1 mM) bath application hyperpolarized orexin

neurons, with a decrease in firing frequency (Fig. 3A). Hyperpo-

larization was also observed in the presence of TTX (Fig. 3A),

suggesting that glycine directly inhibits orexin neurons. The

response peaked 30–60 sec after application of glycine, and the

membrane potential returned to the basal level 2–3 min after

washout. The majority of GFP-positive neurons tested were

hyperpolarized by glycine (89%, 33 out of 37), and a few orexin

neurons showed no response (11%, 4 out of 37). Figure 3B

demonstrates that glycine-induced inward currents recorded in a

voltage-clamp at 260 mV were concentration-dependent; EC50

and maximum effect (Emax) were 1023.0060.17 M and 20565 pA,

respectively (n = 2–3). Additionally, glycine (1 mM)-induced hy-

perpolarization was significantly inhibited by strychnine (1 mM),

suggesting that the inhibitory effect is dependent on the ionotropic

glycine receptor (GlyR) (Fig. 3C). The reversal potential estimated

from the I–V relationship was 280.662.4 mV (n = 3), which is

near the theoretically obtained value of this parameter for Cl2

(277.5 mV at 25uC) (Fig. 3D, E). This value is similar to that of

the theoretical Cl2-selective ion channel calculated by the Nernst

equation, in agreement with known biophysical properties of GlyR

Cl2 channels.

Existence of Glycinergic Synapses in Orexin Neurons
The responsiveness of orexin neurons to glycine suggests the

possibility that these neurons are physiologically regulated by

glycinergic neurotransmission. To address this possibility, we

produced specific antibodies against bacterial fusion proteins

encoding the glycine receptor common to all four a subunits

(GlyRa) and plasmalemmal glycine transporter 2 (GlyT2). By

immunoblotting, GlyRa antibody recognized protein bands at

around 45 kDa in both HEK293 cell lysates expressing mouse

GlyRa subunits and adult mouse brain, but not in HEK293 cell

lysates transfected with plasmid vector only or expressing mouse

GlyRb subunit (Fig. 4A). GlyT2 antibody selectively recognized a

broad protein band at around 75 kDa in HEK293 cell lysates

expressing mouse GlyT2, and at 90 kDa in adult mouse brain

(Fig. 4A). On immunofluorescence, both antibodies mainly labeled

the lower brainstem (Fig. 4B, F), while those preabsorbed with

antigens yielded blank labeling (Fig. 4C, G). Immunoreactivity of

these antibodies was further characterized by immunoelecrtron

microscopy of the facial nucleus. Double-labeling with postembed-

ding immunogold for GlyRa and vesicular inhibitory amino acid

transporter (VIAAT) revealed that the postsynaptic membrane

was consistently labeled for GlyRa at symmetrical synapses (95%;

20 out of 21 synapses), but not asymmetrical synapses (0%; 0 out of

15 synapses) (Fig. 4D). The mean number of immunogold particles

per contact site was 4.9+4.7 (mean + SD) in dendites of facial

nucleus neurons. Preembedding immunoelectron microscopy also

showed that immunoparticles for GlyT2 were selectively associ-

ated with presynaptic terminals forming symmetrical synapses

(100%, 10 out of 10 terminals), but not asymmetrical synapses

(0%, 0 out of 10 terminals) (Fig. 4H). As symmetrical and

asymmetrical synapses are considered to mostly, if not totally,

represent inhibitory or excitatory synapses, respectively, these

results indicate the specificity of the produced GlyRa and GlyT2

antibodies and their usefulness to identify glycinergic synapses.

Although the overall immunofluorescence intensity was much

lower in the hypothalamus than in the lower brainstem (Fig. 4B,

F), punctate labeling of GlyT2 and GlyRa did exist around GFP-

positive orexin neurons in the lateral hypothalamic area (LHA)

(Fig. 5A, D). At higher magnification, almost all somata [95% (36

out of 38)] and proximal dendrites [95% (19 out of 20)] of GFP-

positive orexin neurons were associated with GlyT2-positive

varicosities (Fig. 5B, C). Since glycinergic terminals require

VIAAT for glycine filling into synaptic vesicles, we further

examined if GlyT2-positive varicosities on orexin neurons co-

expressed VIAAT (Fig. 5B, C). Indeed, VIAAT coexisted in most

GlyT2-positive varicosities associated with somata [85% (49 out of

58)] or proximal dendrites [84% (38 out of 45)], suggesting the

formation of glycinergic synapses. To confirm this at the electron

microscopic level, we employed double-labeling immunoelectron

microscopy for GlyT2 (dark precipitates of DAB) and GFP (metal

particles) (Fig. 6). Analysis of serial ultrathin sections revealed that

GlyT2-positive glycinergic varicosities occasionally contacted

somata (Fig. 6A) and proximal dendrites (Fig. 6B) of GFP-positive

orexin neurons. At contact sites, both sides of the apposed

membranes had electron-dense material and were spaced with a

cleft of uniform width, thus being judged to be a symmetrical

synaptic junction (Fig. 6). For quantitative analysis, we randomly

selected GFP-positive profiles of somata and dendrites, and

examined if they had such synaptic contacts with GlyT2-positive
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Figure 2. Effects of glycine administration to mice on activity of orexin neurons. A. Protocols for glycine administration in light (left panel)
or dark period (right panel). Glycine or saline was injected intraperitoneally at ZT0 or ZT12, and then mice were sacrificed at ZT3 or ZT15. B–E,
Representative immunohistochemical micrographs of double-staining with anti-c-Fos (black) and anti-orexin A (brown) antibody at ZT3 (B, control
(saline); D, glycine (2 g/kg)) and at ZT15 (C, control; E, glycine). White arrowheads show orexin-immunoreactive cells. Black arrowheads show orexin
neurons with Fos-immunoreactivity in their nuclei. Scale bar, 20 mm. F. Percentage of c-Fos-expressing orexin neurons at ZT 3 (control; n = 3, glycine;
n = 4) and ZT 15 (control; n = 4, glycine; n = 6). Values are mean 6 SEM. *p,0.02, **p,0.0001.
doi:10.1371/journal.pone.0025076.g002

Orexin Neurons Receive Glycinergic Innervations

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25076



varicosities. On six consecutive sections through each profile, we

found that 31% (4 out of 13) of GFP-positive somata and 23% (13

out of 65) of GFP-positive dendrites had synaptic contact with

GlyT2-positive varicosities, all of which were judged to be

symmetrical synapses. These results confirm the existence of

symmetrical synaptic junctions between glycinergic terminals and

GFP-positive orexin neurons.

We next examined if glycine receptors accumulated at such

symmetrical synaptic junctions. GlyRa-positive puncta were

frequently detected on the surface of GFP-positive orexin neurons,

and were tightly paired with VIAAT-positive varicosities (Fig. 5E,

F). Such co-localization was observed in 71% (12 out of 17) and

82% (9 out of 11) of somata and proximal dendrites, respectively,

of GFP-positive neurons. By double-labeling postembedding

immunogold for GlyRa (10 nm in diameter) and orexin A

(15 nm), we found immunogold particles for GlyRa at symmet-

rical synapses on neuronal somata, whose Golgi apparatus was

heavily labeled for orexin A (Fig. 7A). For quantitative analysis, we

Figure 3. Glycine directly inhibits orexin neurons. A. Under whole-cell current-clamp mode, glycine (1 mM) was applied to orexin neurons in
normal extracellular solution, in the absence of TTX (upper panel), in the presence of TTX (1 mM) (middle panel) and in the presence of both TTX
(1 mM) and strychnine (1 mM) (lower panel). Glycine was applied during the period indicated by the bars. B. Concentration dependency of glycine-
induced outward currents in orexin neurons clamped at 260 mV. EC50 and Emax were 1023.0060.17 M and 20565 pA, respectively (n = 2–3). C.
Strychnine (1 mM) significantly inhibited the effect of glycine in the presence of TTX. D. Records of membrane potential in response to a series of
current steps (from 2150 to +120 pA in 30 pA increments) from resting potential (260 mV) in the absence (left) or presence (right) of glycine
(10 mM). E. Current-voltage relationship derived from the data in F. The potential at the end of current injection was plotted; control (open circles)
and 10 mM glycine (filled circles). Estimated reversal potential was 280.5 mV (n = 3). Values are mean 6 SEM.
doi:10.1371/journal.pone.0025076.g003
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Figure 4. Specificity of GlyRa and GlyT2 antibodies. A, E. Immunoblotting using GlyRa and GlyT2 (E) antibodies. Each lane was loaded with
HEK293 cell lysates transfected with expression plasmid only (mock), transfected with expression plasmid encoding GlyRa1, GlyRa3, GlyRa4, GlyRb, or
GlyT2, and adult mouse brain homogenates. Because of low viability, HEK293 cell lysate of GlyRa2-transfected cells was omitted. Identical patterns of
immunoblot labeling were repeatedly confirmed in three independent experiments. The position of protein size markers (kDa) is shown on the left. B,
C, F, G. Immunofluorescence with use of GlyRa (B, C) or GlyT2 (F, G) in parasagittal brain sections. Note that preincubation of antibodies with antigen
protein (C, G) almost completely abolished immunostaining. D. Double-labeling postembedding immunogold for GlyRa (10 nm) and VIAAT (15 nm)
in the facial nucleus. Note that GlyRa localizes to a symmetrical synapse (black arrowheads) made with a VIAAT-positive inhibitory terminal (In), but
not to an asymmetrical synapse (white arrowheads) made with a VIAAT-negative excitatory terminal (Ex). Arrows indicate immunogold particles for
GlyRa. H. Preembedding silver-enhanced immunoelectron microscopy of facial nucleus. Metal particles for GlyT2 are preferentially distributed on the
cell membrane of presynaptic inhibitory terminals (In), which contain flat synaptic vesicles and make symmetrical synapses with dendritic shafts (Dn).
OB, olfactory bulb; Cx, cerebral cortex; St, striatum; Th, thalamus; Ht, hypothalamus; Mb, midbrain; Po, pons; Cb, cerebellum; MO, medulla oblongata;
Ex, excitatory terminal; In, inhibitory terminal; Dn, dendrite. Scale bars, B, C, F, G; 1 mm; D, H, 400 nm.
doi:10.1371/journal.pone.0025076.g004
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finally employed triple-labeling immunoelectron microscopy, in

which postembedding immunogold for VIAAT (20 nm) and

GlyRa (10 nm) was applied to LHA sections that had been

subjected to immunoperoxidase for GFP (dark precipitates of

DAB). Somata and proximal dendrites of GFP-positive neurons

showed frequent contacts with VIAAT-positive terminals

(Fig. 7B,C). Occasionally, their contact sites were labeled for

GlyRa; immunogold particles for GlyRa were detected in 13% (3

out of 23) and 26% (12 out of 46) of contact sites in GFP-positive

somata and dendrites, respectively. The mean number of

immunogold particles per contact site was 0.1360.34 in somata

and 0.5260.96 in dendites of GFP-positive orexin neurons. Taken

together, these observations indicate that the glycine receptor is

expressed in glycinergic synapses in orexin neurons.

Figure 5. Immunofluorescence showing glycinergic innervations to orexin neurons. A. Double immunofluorescence showing distribution
of GlyT2-positive glycinergic varicose fibers (red) and GFP-positive orexin neurons (green) in the LHA. B, C. Triple immunofluorescence showing that
orexin neurons (GFP, green) are associated with GlyT2-positive (red)/VIAAT-positive (blue) varicosities (arrows). D. Double immunofluorescence
showing the distribution of GlyRa- (red) and GFP-positive orexin neurons (green) in the LHA. E, F. Orexin neurons (green) display numerous VIAAT-
positive inhibitory terminals (blue), some of which are associated with GlyRa immunoreactivity (red) on the surface of orexin neurons. Scale bars,
10 mm.
doi:10.1371/journal.pone.0025076.g005
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Discussion

Glycine, an inhibitory neurotransmitter, has been implicated in

the physiological regulation of sleep. Particularly, glycinergic

neurons in the brainstem play important roles in inhibition of

alpha-motor neurons in the spinal cord during REM sleep [9]. A

glycine receptor antagonist, strychnine, was also reported to

reduce the inhibition of sensory inflow via the dorsal spinocere-

bellar tract during REM sleep [14,15,16]. Orally-administered

glycine was reported to have a beneficial effect on sleep in humans

[10]. This suggests that peripherally-administered glycine might

act on neuronal systems that play important roles in sleep

regulation.

Orexins are neuropeptides, produced by neurons in the LHA,

which send projections to all over the central nervous system

except the cerebellum. The finding that orexin deficiency causes

narcolepsy in humans and animals highlights that these hypotha-

lamic neuropeptides play a critical role in regulating sleep/

wakefulness states [11].

In the present study, we first confirmed the effect of glycine

administration on sleep/wakefulness states in mice. We found that

peripheral administration of glycine significantly decreased

wakefulness time, and caused sleep/wakefulness fragmentation in

the dark period (Fig. 1). Therefore, we investigated the effects of

glycine on orexin neurons, because orexin plays highly important

roles in maintenance of wakefulness, and deficiency of orexin

signaling has been shown to result in sleep/wakefulness fragmen-

tation, a characteristic of narcolepsy [11]. By immunohistochem-

ical study, we found that the number of Fos-positive orexin

neurons in glycine-treated mice was significantly lower at both

ZT3 and ZT15 as compared with that in saline-treated mice at the

same times (Fig. 2).

The percentage of Fos-positive orexin neurons has been

shown to correlate positively with the amount of wakefulness

and negatively with the amounts of NREM and REM sleep

[12,17]. We recently found that specific pharmacogenetic

inhibition of orexin neurons during the active period decreased

wakefulness time and increased NREM sleep time in the dark

Figure 6. Immunoelectron microscopy showing glycinergic synapse formation on orexin neurons. Consecutive images from double-
labeling preembedding immunoelectron microscopy for GFP (silver-intensified immunogold) and GlyT2 (immunoperoxidase). Note that a GlyT2-
positive terminal (filled with diffuse DAB precipitates) makes a symmetrical synaptic junction (arrowheads) onto the soma (A) and dendritic shaft (B)
of a GFP-positive orexin neuron. Scale bar, 500 nm.
doi:10.1371/journal.pone.0025076.g006
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period [18]. These observations suggest the possibility that

ingested glycine might affect sleep states through inhibiting

orexin neuronal activity, although it remains unknown whether

peripherally-administered glycine can act on orexin neurons in

the LHA, or it indirectly affects the activity of these neurons.

For example, extracellular serotonin levels are reported to be

increased after oral administration of glycine [19]. Since we

found serotonin directly inhibits orexin neurons [20], glycine

administration might partly inhibit orexin neurons through

serotonin.

Figure 7. Postembedding immunogold showing glycine receptor localization at symmetrical synapses. A. Double-labeling
postembedding immunogold for GlyRa (small particles) and orexin A (large particles) shows that an orexin neuron, whose Golgi apparatus is
heavily labeled with immunogold for orexin-A (A3), expresses GlyR at a symmetrical synapse (black arrowheads, A2). B,C. Triple-labeling
immunoelectron microscopy for GFP (dark precipiates by preembedding immunoperoxidase), GlyRa (10 nm, postembedding immunogold) and
VIAAT (20 nm, postembedding immunogold). GlyRa is localized to contact sites made between VIAAT-positive inhibitory terminals (In) and the soma
(B2) or dendritic shaft (Dn, C) of GFP-positive orexin neurons. Scale bars, 1 mm in B1, 400 nm in A,B2,C.
doi:10.1371/journal.pone.0025076.g007
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We found that glycine administration decreases Fos-expression

in orexin neurons in both the light and dark periods. However,

we only observed a significant effect of glycine administration on

sleep/wakefulness states in mice in the dark period. This

observation is consistent with the previous observations that

orexin-deficient mice showed fragmentation of sleep/wakeful-

ness states only during the dark period [12,21,22]. Numbers of

orexin neurons after glycine administration were not different

from that of after saline administration as shown in supplemen-

tary table S1. This suggests that glycine did not decrease number

of orexin neurons, and glycine does not show harmful effects on

these cells.

We found that glycine can directly inhibit orexin neurons in

vitro. In the whole-cell current-clamp, most orexin neurons tested

in this experiment were potently hyperpolarized by glycine in a

concentration-dependent manner (Fig. 3). The response was

blocked by a specific glycine receptor antagonist, strychnine.

Karnani et al. also reported similar results recently [23].

Furthermore, we have demonstrated the expression of GlyR at

glycinergic synapses in orexin neurons (Figs. 5, 6). These

observations provide a functional and molecular basis for

physiological glycinergic regulation of orexin neurons. However,

this does not necessarily mean that peripherally administered

glycine directly inhibits orexin neurons. The humoral and/or

neuronal pathways that mediate glycine-induced inhibition of

orexin neurons should be further confirmed in future studies.

It should also be noted that glycine might affect arousal not only

by inhibiting orexin neurons. Systemic glycine might increase sleep

duration also through action on other arousal controlling regions

in the brain, such as monoaminergic/cholinergic neurons in the

brain stem. The contribution of orexin neurons to this effect

should be confirmed by studies using spatially restricted knock-out

GlyR in mice.

In any case, the existence of GlyR in orexin neurons suggests

the possibility that orexin neurons are physiologically regulated by

glycinergic neurotransmission. Indeed, we identified glycinergic

innervations that made synapses onto orexin neurons by means of

immunofluorescent staining and immunoelectron microscopy

(Figs. 5–7). This observation suggests the possible existence of

physiological glycinergic regulation of orexin neurons.

Glycinergic neurons in the brainstem were shown to play

important roles in inhibition of somatic motor neurons in the

spinal cord during REM sleep to evoke REM-atonia. The

activity of orexin neurons was shown to be decreased during

both NREM and REM sleep [24,25,26]. These observations

suggest an intriguing possibility that glycinergic innervations to

orexin neurons might play a role to inhibit the discharge of

orexin neurons during REM sleep, although the origin of

glycinergic fibers innervating orexin neurons in the LHA

remains unknown. Further study using selective deletion of

glycine receptor gene(s) in orexin neurons, and antero- and/or

retrograde tracer studies would be necessary to evaluate this

hypothesis.

Many factors have been identified to regulate orexin neurons,

suggesting that orexin neurons undergo regulation by a number of

physiological factors [11]. In the present study, we identified that

glycine also affects the activity of orexin neurons, when

administered peripherally. Furthermore, we identified synaptic

connections between glycinergic fibers and orexin neurons,

suggesting the possibility that orexin neurons are also physiolog-

ically regulated by glycinergic neurotransmission.

This study adds further clues to understand the precise

regulatory mechanism of orexin neurons.

Materials and Methods

Animals
All experimental procedures involving animals were conducted

with the approval of the Kanazawa University Animal Care and

Use Committee and the Hokkaido University Animal Welfare

Committee, and were in accordance with NIH guidelines. All

efforts were made to minimize animal suffering and to limit the

number of animals used. Mice were housed under controlled

lighting (12 h light-dark cycle; light on at 8:45 a.m., off at 8:45

p.m.) and temperature conditions. Food and water were available

ad libitum.

Drugs and method of administration
For in vivo experiments, glycine (2 g/kg saline) or saline alone

was injected intraperitoneally (ip) into adult male mice C57BL/6J

(10–12 weeks old, weight 20–25 g; Charles River Laboratories,

Kanagawa, Japan), at zeitgeber time (ZT) ZT0 or ZT12; ZT0 is

morning light onset. The dose of glycine was selected baed on a

previous report [19]. Three hours after administration, at ZT3

and ZT15, mice were anesthetized with sodium pentobarbital

(50 mg/kg, ip). The drugs used for electrophysiological studies

were tetrodotoxin (TTX) (Wako, Osaka, Japan), glycine (Wako),

and the glycine receptor antagonist, strychnine (Sigma-Aldrich

Corp., St. Louis, MO), which were dissolved in extracellular

solution.

Sleep recording
Male C57BL/6J mice (10–12 weeks old, 20–25 g at the time of

surgery) were prepared for chronic monitoring of EEG/EMG

signals using a lightweight implant and cabling procedure. Full

details of this technique have been published previously [27].

Immediately after surgery, mice were housed singly for a recovery

period of one week. Then, EEG/EMG recording for two

consecutive 24-h periods, beginning at light on at 08:45 and light

off at 20:45, was performed. Glycine was administered (ip) 10 min

before light on (ZT0) or off (ZT12) to mice, before they were

subjected to sleep recording for 5 hours.

Electrophysiological recordings
Orexin/EGFP mice were used for whole cell recordings [13]. The

slices were transferred to a recording chamber (RC-27L, Warner

Instrument Corp., CT, USA) at room temperature on a

fluorescence microscope stage (BX51WI, Olympus, Tokyo,

Japan). Neurons that showed GFP fluorescence were used for

patch-clamp recordings. The fluorescence microscope was

equipped with an infrared camera (C-3077, Hamamatsu Photon-

ics, Hamamatsu, Japan) for infrared differential interference

contrast (IR-DIC) imaging and a CCD camera (JK-TU53H,

Olympus) for fluorescent imaging. Each image was displayed

separately on a monitor. Recordings were carried out with an

Axopatch 700B amplifier (Axon Instruments, Foster City, CA)

using a borosilicate pipette (GC150-10, Harvard Apparatus,

Holliston, MA) prepared with a micropipette puller (P-97, Sutter

Instruments, Pangbourne, UK) and filled with intracellular

solution (4–10 MV), consisting of (mM): 125 K-gluconate, 5

KCl, 1 MgCl2, 10 HEPES, 1.1 EGTA-Na3, 5 MgATP, 0.5

Na2GTP, pH 7.3 with KOH. Osmolarity of the solution was

checked with a vapor pressure osmometer (model 5520, Wescor,

Logan, UT). The osmolarity of the internal and external solutions

was 280–290 and 320–330 mOsm/l, respectively. The liquid

junction potential of the patch pipette and perfused extracellular

solution was estimated to be 216.2 mV and was applied to the

data. The recording pipette was under positive pressure while it
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was advanced toward individual cells in the slice. A tight seal of

0.5–1.0 GV was made by applying negative pressure. The

membrane patch was then ruptured by suction. The series

resistance during recording was 10–25 MV and was compensated.

The reference electrode was an Ag-AgCl pellet immersed in bath

solution. During recordings, cells were superfused with extracel-

lular solution at a rate of 1.0–2.0 ml/min using a peristaltic pump

(K.T. Lab, Japan) at RT. We adjusted the resting membrane

potential of cells to around 260 mV by injecting current of 220

to 40 pA before application of glycine.

Antibodies
Primary antibodies used in this study were guinea-pig anti-

orexin antibody (1:2000) [28], rabbit anti-Fos antibody (1:20,000)

(Ab-5, Calbiochem, Darmstadt, Germany), rabbit anti-green

fluorescent protein (GFP) [29], rabbit anti-vesicular inhibitory

amino acid transporter (VIAAT) [30], guinea pig anti-glycine

receptor a-subunits (GlyRa), guinea pig and rabbit anti-glycine

transporter 2 (GlyT2), and rabbit anti-orexin-A antibodies. GlyRa
and GlyT2 antibodies were produced against glutathione S-

transferase (GST) fusion proteins containing 105–134 amino acid

residues of mouse GlyRa1 (GeneBank, NM_020492), which is

common to all four GlyRa, and 1–30 residues of mouse GlyT2

(AF411042). Orexin A antibody was produced against Keyhole

limpet hemocyanin-conjugated synthetic peptide of mouse orexin-

A (54–65 residues, NM_010410). Specific antibodies were affinity-

purified using GST-free or carrier-free peptides. The specificity of

GlyRa and GlyT2 antibodies was tested by immunoblotting using

HEK cell lysates transfected with pTracer (Invitrogen) and pEF-

BOS [31] mammalian expression vectors encoding GlyRa,

GlyRb,or GlyT2, respectively.

Immunohistochemistry
Mice were fixed transcardially with 4% paraformaldehyde in

0.1 M sodium phosphate buffer (pH 7.2, PB) followed by 4 hr

postfixation at 4uC. For Fos immunostaining, sections of fixed

brains were cut into 40-mm-thick coronal sections. For orexin and

c-Fos double staining, sections were incubated with anti-orexin

antibody and anti-Fos antibody for 24 hr at 4uC. Sections were

then incubated with biotinylated goat anti-rabbit IgG (1:1,000;

Vector Laboratories, Burlingame, CA, USA) for 1 hr at room

temperature. Tissue was then reacted with avidin-biotin complex

(Vectastain ABC Elite kit; Vector Laboratories, Burlingame, CA,

USA) for 1 hr, and Fos-immunoreactive (IR) nuclei were

visualized by reaction with 3,39-diaminobenzidine hydrochloride

(DAB) solution containing 0.003% H2O2 and 0.05% nickel

chloride to obtain a black reaction product. After c-Fos staining,

the sections were incubated with biotinylated-goat anti-guinea-pig

IgG antibody (1:1000; Vector Laboratories) for 1 hr at room

temperature. The sections were next incubated for 30 min with

Vectastain ABC Elite reagents, rinsed, and stained in 0.05% DAB

without 0.05% nickel chloride to obtain a cytoplasmic brown

reaction product. For immunofluorescent staining, orexin/EGFP

mouse brain sections were first subjected to pepsin pretreatment

for antigen exposure, i.e., incubation in 1 mg/ml pepsin (DAKO,

Carpinteria, CA) in 0.2 N HCl for 2–3 min at 37uC. Sections were

incubated successively with 10% normal donkey serum for

20 min, primary antibodies to GFP, GlyT2 or GlyRa, and

VIAAT (1 mg/ml for each) overnight, and a mixture of Alexa 488-

, Cy3- or Cy5-labeled species-specific secondary antibodies for

2 hr at a dilution of 1:200 (Invitrogen; Jackson ImmunoResearch).

Images were obtained with a confocal laser scanning microscope

FV1000 (Olympus). Z-stacks 6 to 8 mm thick composed of 1-mm-

thick optical sections were obtained with a 606oil-immersion lens.

Cell counts
A single examiner, who was blinded to treatment conditions,

performed all counts using a microscope (AX-70, Olympus

Optical). Fos-IR nuclei, orexin-IR neurons, and double-labeled

neurons were counted on both sides of the brain in nine

consecutive sections that covered the entire hypothalamus. The

percentage of double-labeled cells for each animal (double-labeled

neurons/orexin-IR neurons) was calculated as a measure of orexin

neuron activity.

Immunoelectron microscopy
Orexin/EGFP mice were fixed transcardially with 4% parafor-

maldehyde in PB (pH 7.2) for 10 min, and postfixed at 4uC for

4 hr. For postembedding immunogold, microslicer sections

(400 mm) were made using a microslicer (VT1000S, Leica). For

triple-labeling postembedding immunogold, microslicer sections

were first subjected to immunoperoxidase of GFP labeling;

sections were incubated successively with 10% normal donkey

serum for 20 min, and goat anti-GFP overnight at room

temperature. Sections were further incubated with biotinylated

donkey anti-goat IgG (Jackson ImmunoResearch) for 2 hr, and

streptavidin-peroxidase complex for 1 hr (Nichirei). Immunoreac-

tion was visualized with DAB. Sections with or without preceding

immunoperoxidase were cryoprotected with 30% glycerol in PB,

and frozen rapidly with liquid propane in the EM CPC unit (Leica

Microsystems). Frozen sections were immersed in 0.5% uranyl

acetate in methanol at 290uC in the AFS freeze-substitution unit

(Leica Microsystems), infiltrated at 245uC with Lowicryl HM-20

resin (Chemische Werke Lowi), and polymerized with UV light.

Ultrathin sections on nickel grids were etched with saturated

sodium ethanolate solution for 1–5 s, and treated successively with

blocking solution [2% normal goat serum (Nichirei) in 0.03%

Triton X-100 in Tris-buffered saline (TBST; pH 7.4)] for 20 min,

anti-GlyRa (20 mg/ml) diluted with the same blocking solution

overnight, and colloidal gold (10 nm)-conjugated goat anti-guinea-

pig IgG (1:100, British BioCell International) for 2 hr. After

washing with TBST, grids were incubated with 2% normal guinea

pig serum for 20 min in TTBST, rabbit anti-VIAAT or anti-

orexin A (20 mg/ml), diluted with the same blocking solution

overnight, followed by colloidal gold (15 nm)-conjugated goat anti-

rabbit IgG (1:100, British BioCell International) for 2 hr. Finally,

grids were fixed with 2% glutaraldehyde in PB for 15 min and 1%

OsO4 for 20 min, and stained with 2% uranyl acetate for 10 min

and Reynold’s lead citrate solution for 1 min.

For double-labeling preembedding immunoelectron microscopy,

microslicer sections were incubated in 5% bovine serum albumin

(BSA)/0.02% saponin/PBS for 30 min and then with a mixture of

rabbit anti-GFP and guinea pig anti-GlyT2 (1 mg/ml each) diluted

with 1% BSA/0.004% saponin/PBS overnight, and with 1.4 nm

gold particles-conjugated goat anti-rabbit IgG (Nanogold; Nanop-

robes) for 2 hr. Immunogold particles were intensified with a silver

enhancement kit (R-Gent silver enhancement kit, Aurion). Sections

were further incubated with biotinylated donkey anti-guinea pig

IgG (Jackson ImmunoResearch) for 2 hr, and streptavidin-perox-

idase complex for 30 min (Nichirei). Immunoreaction was visual-

ized with DAB, and then sections were treated with 1% osmium

tetroxide for 15 min, stained with 2% uranyl acetate for 30 min,

dehydrated, and embedded in Epon 812. Photographs were taken

with an H-7100 electron microscope (Hitachi).

Statistical analysis
Data were analyzed by unpaired Student’s t-test, using the Stat

View 4.5 software package (Abacus Concepts, Berkeley, CA). A

value of p,0.05 was considered statistically significant.
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Supporting Information

Figure S1 Representative 5 h dark/light period hypnograms for

mice after saline and glycine administration. The shaded areas

represent the dark period. W, awake; NR, non-rapid eye

movement (REM) sleep; R, REM sleep. Glycine administered

mice showed fragmentation of sleep/wake states in dark phase.

(TIF)

Table S1 Numbers of orexin neurons with or without Fos

immunoreactivity in nuclei after glycine or saline administration.

Mice were administered with glycine or saline at ZT0 or ZT12,

and sacrificed for immunostaining at ZT3 or ZT15, respectively.

(TIF)
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