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Abstract: Acute respiratory failure is the primary cause of mortality in patients with acute pesticide
poisoning. The aim of the present study was to develop a new and efficient score system for
predicting acute respiratory failure in patients with acute pesticide poisoning. This study was a
retrospective observational cohort study comprised of 679 patients with acute pesticide poisoning by
intentional poisoning. We divided this population into a ratio of 3:1; training set (n = 509) and test
set (n = 170) for model development and validation. Multivariable logistic regression models were
used in developing a score-based prediction model. The Prediction of Respiratory failure in Pesticide
intoxication (PREP) scoring system included a summation of the integer scores of the following five
variables; age, pesticide category, amount of ingestion, Glasgow Coma Scale, and arterial pH. The
PREP scoring system developed accurately predicted respiratory failure (AUC 0.911 [0.849−0.974],
positive predictive value 0.773, accuracy 0.873 in test set). We came up with four risk categories (A, B,
C and D) using PREP scores 20, 40 and 60 as the cut-off for mechanical ventilation requirement risk.
The PREP scoring system developed in the present study could predict respiratory failure in patients
with pesticide poisoning, which can be easily implemented in clinical situations. Further prospective
studies are needed to validate the PREP scoring system.

Keywords: poisoning; pesticides; artificial respiration; triage; respiratory insufficiency

1. Introduction

Pesticides are a large and heterogeneous group of chemicals which include insecti-
cides, herbicides, and fungicides meant to control pests. Unfortunately, along with their
advantages, pesticides poisoning is a major public health concern worldwide. While pesti-
cides are characterized by various degrees of toxicity, high mortality is a common feature
with all types of pesticide poisoning [1,2]. A majority of the deaths result from different
complications including arrhythmia, hypotension, acid-base disturbance, and respiratory
failure [3–5]. Among them, respiratory failure is the primary cause of mortality, although
the clinical features of each pesticide poisoning case might be different depending on the
chief ingredient of the pesticide ingested. Among the types of pesticide poisoning, the
relationships of organophosphate and carbamate poisoning with respiratory failure have
been widely studied [6–8] even though respiratory failure is also observed in patients with
other pesticide poisoning.

Acute respiratory failure is one of the most common acute organ failures in hospi-
tals [9] and is associated with a six-month mortality in 30% of the patients, increased
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hospital readmission, and functional impairment among survivors [10]. Clinical deteriora-
tion in acute respiratory failure can be seen 8–48 h prior to critical care intervention [11].
Respiratory failure is an important predictor of mortality in pesticide poisoning. Failure
to identify developing respiratory failure is the most common reason for delayed resusci-
tation, which has been associated with increased hospital mortality. Clinically, it is very
important to thoroughly evaluate the patient’s condition for possible exacerbation, because
even with mild poisoning symptoms at admission, severe symptoms including respiratory
failure may develop later [2]. Therefore, a model that can predict respiratory failure is
essential, as has been for pneumonia [12]. It is hard to develop an efficient model to predict
respiratory failure in patients with acute pesticide poisoning because the mechanisms of
respiratory failure induced by pesticide poisoning vary depending on the specific pesticide
class. There is a need for a model that can predict respiratory failure in patients with acute
pesticide poisoning, although this model could not reveal the mechanism of respiratory
failure according to pesticide class.

The objective of our study was to investigate a prediction model for respiratory failure
in patients with acute pesticide poisoning.

2. Materials and Methods
2.1. Study Population and Study Design

We conducted a retrospective observational cohort study at Soonchunhyang University
Cheonan Hospital between January 2015 and December 2019. A total of 963 pesticide
intoxication patients aged 19 years or older were admitted to the Institute of Pesticide
Poisoning at Soonchunhyang University Cheonan Hospital. We excluded the patients with
paraquat poisoning (because of the high fatality rate), those who visited the hospital more
than 24 h after pesticide ingestion, and those diagnosed with respiratory failure within
one hour from hospital arrival. Do-Not-Resuscitate (DNR) patients denying mechanical
ventilators were also excluded (Figure 1). A total of 679 patients with acute pesticide
poisoning by intentional poisoning were enrolled. The entire cohort was randomly divided
into two groups; a training and test dataset at an approximate 3:1 ratio. The present
study was reviewed and approved by the Soonchunhyang University Cheonan Hospital’s
Investigational Review Board (IRB number: 2020-02-016). The requirement for informed
consent was waived because of the retrospective design of the study. This study was
conducted in accordance with the Declaration of Helsinki.
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2.2. Data Collection and Processing

Patients’ demographic features were acquired from the electronic medical records
system and were recorded by the physicians on standardized data collection forms. The
exact time of the patient’s pesticide exposure and arrival at the hospital was investigated
by reviewing the emergency room chart. The amount of pesticide ingested was estimated
from the number of swallowing, where one mouthful was considered to be 20 mL. We
collected laboratory data for test whose final results were reported within the first one
hour of admission, such as arterial blood gas analysis results and blood lactate levels. The
continuous data, including age, body mass index, Glasgow Coma Scale, the amount of
ingestion, vital signs, and laboratory data, were categorized for integration into a scoring
system. The categorical data were cleaned and transformed into a set of binary variables
(dummy variable encoding).

2.3. Study Outcome

The study outcome was a need for mechanical ventilation (MV) within three days
after ingestion of pesticide [13,14]. We set three days starting from the ingestion time
as the monitoring period of the outcomes because most of the events (96.0%) have been
reported to occur within three days. Furthermore, if the window period was extended, non-
pesticide-related factors could influence the respiratory problems. Cases of non-invasive
ventilation and endotracheal intubation without a ventilator were not included in this
outcome. For the survival analyses we included time-event data of whether and when the
outcome occurred.

2.4. Variable Selection

Candidate variables associated with ventilator requirement in the univariable logistic
regression analysis (p < 0.1) were chosen, and additional variable selection processes
were conducted using three methods: stepwise method, best subset method, and LASSO
regression method [15–17]. We used stepwise approach starting with the global model,
cycling between backward elimination and forward selection steps until convergence using
Akaike information criterion. The best subset method selected variables from all possible
subset models according to Bayesian information criterion, using “leaps” package in R
software. Regularized regression with LASSO penalties was also conducted for variable
selection using “glmnet” package in R software.

2.5. Prediction Model Construction and Scoring System

Multivariable logistic regression models were used to develop a score-based prediction
model. We compared three logistic regression models made by the three different variable
selection methods described above. The Receiving Operating Characteristic (ROC) curve
was used as a metric to measure the prediction model performance. The area under ROC
curve (AUC) of each of the prediction models was pairwise-compared using the DeLong
test [18]. After choosing the final model, we multiplied the coefficients to set the highest
sum of the model coefficients in the training dataset as 100 and rounded each coefficient to
an integer to produce the scoring system. We evaluated the model calibration by visual
inspection with calibration plots and by Hosmer-Lemeshow test [19].

2.6. Statistical Analysis

The statistical analyses were performed using R version 4.0.0 (The R Foundation
for Statistical Computing, Vienna, Austria). The categorical variables are expressed as
counts (percentage). The normally distributed continuous variables are expressed as
means ± SD, and the non-normally distributed continuous variables are presented as
medians (interquartile ranges). Two groups were compared with Student’s two-tailed
unpaired t-test or Mann-Whitney U test, as appropriate. Pearson’s Chi-squared tests
were used when comparing the categorical variables. Kaplan-Meier curve analysis was
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used to assess the association between the risk factors and the requirement of mechanical
ventilation. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Characteristics of Study Subjects

A total of 963 pesticide intoxication patients were admitted between January 2015 and
December 2019. After the exclusion of 284 patients, 679 patients were selected for model
construction (Figure 1). We divided this population into two groups at a 3:1 ratio, the
training set (n = 509) and test set (n = 170), for model development and validation. Baseline
characteristics of the study population are presented in Table 1. There was no statistical
difference in clinical variables between the subject in the training set and those in the test
set. The missing value counts of each variable in training and test set are presented in
Table S1.

Table 1. Baseline characteristics of study participants.

All Patients
(n = 679)

Training Set
(n = 509)

Test Set
(n = 170) p-Value

Age, years 61.2 ± 16.0 61.1 ± 16.1 61.6 ± 15.5 0.711

Sex, male (%) 429 (63.2) 322 (63.3) 107 (62.9) 1.000

BMI, kg/m2 22.9 ± 3.3 22.9 ± 3.3 22.8 ± 3.6 0.715

Alcohol history, yes (%) 327 (48.2) 248 (48.7) 79 (46.5) 0.736

Diabetes, present (%) 123 (18.1) 91 (17.9) 32 (18.8) 0.888

Hypertension, present (%) 241 (35.5) 185 (36.3) 56 (32.9) 0.457

Lung disease, present (%) 59 (8.7) 43 (8.4) 16 (9.4) 0.830

Cardiac disease, present 42 (6.2) 31 (6.1) 11 (6.5) 1.000

Time to hospital presentation
after ingestion, hours 2.97 (1.77, 5.00) 2.97 (1.82, 5.00) 2.98 (1.76, 5.01) 0.537

Pesticide category 0.348

Glufosinate 151 (22.2) 110 (21.6) 41 (24.1)

Glyphosate 186 (27.4) 146 (28.7) 40 (23.5)

OP or CM 85 (12.5) 66 (13.0) 19 (11.2)

Pyrethroid 69 (10.2) 46 (9.0) 23 (13.5)

Other pesticides 188 (27.7) 141 (27.7) 47 (27.6)

Amount of ingestion 0.837

Under 100 cc 285 (42.0) 209 (41.1) 76 (44.7)

100–300 cc 246 (36.2) 186 (36.5) 60 (35.3)

Over 300 cc 80 (11.8) 61 (12.0) 19 (11.2)

Unknown 68 (10.0) 53 (10.4) 15 (8.8)

Systolic BP, mmHg 133.9 ± 25.9 134.2 ± 25.8 133.0 ± 26.5 0.606

Diastolic BP, mmHg 78.5 ± 14.4 78.7 ± 13.8 77.9 ± 16.1 0.561

Pulse rate, beats/min 88.0 ± 16.4 87.9 ± 15.7 88.2 ± 18.5 0.870

RR, breaths/min 19.4 ± 2.9 19.4 ± 3.0 19.4 ± 2.3 0.996

Body temperature, ◦C 36.4 ± 0.6 36.4 ± 0.6 36.4 ± 0.7 0.495

Glasgow Coma Scale 15.0 (14.0, 15.0) 15.0 (14.0, 15.0) 15.0 (13.8, 15.0) 0.671

Gastric lavage, yes (%) 419 (61.7) 318 (62.5) 101 (59.4) 0.495

Vomiting, yes (%) 259 (38.1) 196 (38.5) 63 (37.1) 0.806
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Table 1. Cont.

All Patients
(n = 679)

Training Set
(n = 509)

Test Set
(n = 170) p-Value

Arterial pH 7.37 ± 0.09 7.38 ± 0.09 7.37 ± 0.09 0.560

pCO2, mmHg 37.1 ± 7.8 37.2 ± 7.7 36.6 ± 7.9 0.383

pO2, mmHg 87.1 ± 28.4 86.9 ± 27.4 87.8 ± 31.3 0.743

HCO3
−, mmol/L 22.5 ± 3.9 22.6 ± 3.9 22.3 ± 4.0 0.482

Data are presented as mean ± SD, median (interquartile range), or count (%) as appropriate. Other pesticides
include acetanilide, acetylaniline, alryoxylcarboxide, amide, anilin, arsenic, (aryloxy)phenopropionate, benzohy-
drazide, benzoate, chlorfenapyr, chloroacetamide, chloronicotinyl, diamide, diazine, dinitroaniline, endosulfan,
fungicide, insect growth regulator, lambda cyhalothrin, neonicotinoid, niacin, oxadiazole, phenoxy, pyrol, sul-
fonylurea, sulfoximine, sulfuryl fluoride, tetramic acid, tetrazolium oxide, urea, and unknown pesticides. Gastric
lavage refers to cases where gastric lavage was performed at another hospital or after visiting this hospital.
Vomiting refers to cases of vomiting before visiting this hospital. BMI, body mass index; OP, organophosphate;
CM, carbamate; BP, blood pressure; RR, respiratory rate.

Most of the MV events were within the first three days after the pesticide ingestion
(96% of total MV events) (Figure 2). The number of patients who required MV within three
days was 95 (18.7%) in the training set and 33 (19.4%) in the test set. The percentage and
timing of MV requirement according to the pesticide category are presented in Table S2. The
percentages of organophosphate/carbamate (42.4%) and glufosinate (40.4%) intoxication
were significantly higher than those of the other pesticides (7.0%). The median timing
of MV requirement from ingestion in glufosinate intoxication was 16.0 (10.3–24.7) hours,
which was late compared with those in other pesticides (7.8 (5.2–18.8) hours, p < 0.001),
including organophosphate and carbamate (9.8 (5.8–20.3), p < 0.001).
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Figure 2. The timing of requirement of mechanical ventilation after pesticide ingestion. The observa-
tion period was 30 days in the larger plot and three days in the smaller plot (top-right position). MV,
mechanical ventilation.

3.2. Variable Selection

We conducted univariable logistic regression analysis in the training set to choose
candidate variables that were used for developing a prediction model for respiratory failure
in pesticide intoxication (PREP). Candidate variables included systolic BP, respiratory rate,
body temperature, age, alcohol history, vomiting, amount of ingestion, pesticide category,
Glasgow Coma Scale, arterial pH, and arterial pO2 (Table S3). The number of variables
reduced after additional variable selection processes. We made three multivariable logistic
regression models, Model 1, 2, and 3, using stepwise methods, best subset method, and
LASSO regression method, respectively. The variables included in all of these models were
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age, amount of ingestion, pesticide category, Glasgow Coma Scale, and arterial pH. In
addition to these variables, Model 1 used systolic BP and alcohol history, and Model 3 used
respiratory rate. The three models’ variables and their estimates are presented in Table S4.

3.3. Selection of the Final Prediction Model and Building a Scoring System

We compared the three logistic regression models using AUC values, and sensitivity
and positive predictive value (PPV) in both the training set and the test set (Table 2). There
was no statistical difference of AUC values between the three models (p-value for Model 1
versus Model 2 = 0.598, Model 2 versus Model 3 = 0.245, Model 1 versus Model 3 = 0.364).
We selected Model 2 as the final prediction model because Model 2 had excellent predicting
ability despite having the least number of variables. Then, we made a scoring system by
multiplying the coefficients of Model 2 by 9.1827 to make the highest score a hundred
(Table 3). The discrimination and calibration results after converting the model coefficients
to integer scores are presented in Figure 3.

Table 2. Comparison of the prediction models for the requirement of mechanical ventilation.

Training Set Test Set

Sensitivity PPV Accuracy AUC (95% CI) Sensitivity PPV Accuracy AUC (95% CI)

Model 1 0.600 0.750 0.886 0.914
(0.882–0.946) 0.606 0.833 0.895 0.912

(0.847–0.976)

Model 2 0.537 0.739 0.878 0.905
(0.871–0.940) 0.515 0.773 0.873 0.911

(0.849–0.974)

Model 3 0.537 0.761 0.881 0.907
(0.873–0.942) 0.515 0.800 0.879 0.915

(0.853–0.977)

PPV, positive predictive value; AUC, area under the Receiving Operating Characteristic curve.

Table 3. Prediction of Respiratory failure in Pesticide intoxication (PREP) in patients with acute
pesticide intoxication using scoring system.

Variables Scores

Age ≤50 0
Age 50–70 11
Age >70 15

Pesticide category, OP, CM, or GF,
versus other pesticides 25

Amount of ingestion, ≤100 cc 0
Amount of ingestion, 100–300 cc 8
Amount of ingestion, >300 cc 9
Amount of ingestion, unknown 16

Glasgow Coma Scale, >12 0
Glasgow Coma Scale, 8–12 11
Glasgow Coma Scale, ≤8 26

Arterial pH, >7.35 0
Arterial pH, 7.25–7.35 6
Arterial pH, ≤7.25 18

OP, organophosphate; CM, carbamate; GF, glufosinate.
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predicting the requirement of mechanical ventilation. The p-values in the calibration plots were
calculated by the Hosmer-Lemeshow test to assess the goodness of fit.

3.4. Selection of the Score Threshold

After building the prediction model, we selected the score threshold that was more
convenient to use in the scoring system (Figure 4). The best cut-off score which maximized
the sum of sensitivity and specificity was 42 (sensitivity 0.836, specificity 0.851), so we
used score 40 as one of score thresholds. The sensitivity at the score threshold 20 was very
high (sensitivity 0.969, PPV 0.290), so if the prediction score is under 20, the probability of
progressing to mechanical ventilation requirement status is very low. On the other hand, a
score threshold of 60 has very high PPV (sensitivity 0.391, PPV 0.909), so if the prediction
score is higher than 60, it is very likely to require mechanical ventilation. Using scores
20, 40, and 60 as the cut-off, we made risk categories A, B, C, and D. The incidences of
MV requirement according to the four risk categories in the training and the test set are
presented in Table 4.

Table 4. Risk categories according to the risk scores.

PREP Category Total Score Description
Event Occurrence (%)

Training Set Test Set

A 0–19 Less likely 1.58% 1.89%
B 20–39 Possible 7.27% 6.73%
C 40–59 Likely 38.5% 41.5%
D 60–100 Very likely 90.5% 92.3%
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Figure 4. Prediction performance illustrated by a precision-recall curve with the score threshold.
(A) The graph shows the precision-recall curve for the risk of the mechanical ventilation requirement.
The precision (positive predictive value) and recall (sensitivity) values of the score threshold 20,
40, and 60 are presented as dots (20 p, 40 p, and 60 p). (B) The exact values of sensitivity and
specificity, positive predictive value, and negative predictive value according to the score thresholds
are presented. PPV, positive predictive value; NPV negative predictive value.

3.5. Survival Analyses to Estimate the Risk of MV Requirement

We also conducted survival analyses which estimated the probability of MV require-
ment. Kaplan-Meier curves that present the probability of the event at a certain time
interval according to each predictor variable were made (Figure S1). In the pesticides
categories analysis, the organophosphate and carbamate group, as well as the glufosinate
group, had a similar probability of the event. For that reason, organophosphate, carba-
mate, and glufosinate groups were combined as one category in the predictive models.
However, respiratory failure after poisoning in the glufosinate group occurred later than
in the organophosphate and carbamate group (median time 16.0 (10.3–24.7) hours in the
glufosinate group versus 9.8 (5.8–20.3) hours in the organophosphate and carbamate group).
Analyses of the other predictors, including age, amount of ingestion, GCS score, and arterial
pH, showed significant differences in the probability of the event development between
each category. Kaplan-Meier curve for the risk category from the prediction model is
presented in Figure S2. The curve shows good discrimination between the categories.

4. Discussion

Our study results showed that our PREP scoring system could accurately predict res-
piratory failure requiring mechanical ventilation in patients with acute pesticide poisoning.
We developed a simple individual risk score to identify progression of acute respiratory
failure in acute pesticide poisoning at the time of hospitalization individuals. Based on
our findings, five variables are enough for a PREP scoring system. Scores higher than
40 suggest a high possibility of respiratory failure. This could help clinicians to predict
deterioration of pesticide poisoned patients and identify patients who need to be admitted
to the intensive care unit.
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Examination at the initial stages of acute pesticide poisoning may not show severe
symptoms, however serious complications could develop later [20,21]. Since respiratory
failure is the primary cause of mortality in pesticide poisoning, the PREP scoring system
is important to predict acute respiratory failure in patients who have no symptoms at the
initial stages. Our study showed that most cases of acute respiratory failure developed
within the first day of poisoning (Figure 2). We recommend that patients who have high
scores (more than 40) should be carefully observed during the first 24 h.

Alapat et al. reported that the management of toxicity in critical care requires thorough
evaluation to enable clinicians to come up with focused therapies [22]. In our study, 19%
of the patients had respiratory failure requiring MV within three days. These findings
are very important in the management of pesticide poisoning patients. Clinicians could
underestimate the risk of pesticide poisoning patients due to lack of experience, proper
guidelines, or a scoring system. The PREP scoring system is expected to be helpful in
identifying patients who need more advanced care.

Pesticide poisoning is characterized by high mortality compared with other poison-
ings [23], but fatality of agricultural pesticides after self-poisoning pesticide poisoning
depends on the class of pesticides [24]. There are some studies on mortality prediction
in acute pesticide poisoning [3,4,25]. In common clinical situations, scoring systems for
patients in intensive care unit have been developed and introduced during the last over
30 years [26,27]. The Acute Physiology and Chronic Health Evaluation score and the Sim-
plified Acute Physiology Score are probably the best-known and most widely used score
systems in ICU patients. Although these scoring systems has been tested in acute pesticide
poisoning [2,5], they do not reflect the characteristics of patients with acute pesticide poi-
soning. Commendably, the PREP scoring system developed in the present study included
the clinical factors of acute pesticide poisoning.

Clinical features in pesticide poisoning vary across different types of pesticides. Res-
piratory failure has been reported as a common complication in organophosphate and
carbamate poisoning [7,8]. The pathophysiology of organophosphate and carbamate-
induced respiratory failure can be explained by three mechanisms: depression of central
respiratory drive from the respiratory center in the ventrolateral medulla, weakness of the
muscles of respiration, and organophosphate-induced bronchospasm induced via local
and vagal mechanisms [7]. In addition, in the present study, glufosinate ingestion was
identified as an important risk factor for acute respiratory failure; the incidence rate of
respiratory failure in glufosinate poisoning is the same as that of organophosphate and
carbamate. Intriguingly, given the comparable incidence of respiratory failure, patients
who were intoxicated with organophosphate and carbamate showed respiratory acidosis
at emergency room, but this was not observed in glufosinate poisoning [4]. In this study,
it was revealed that the development of respiratory failure in glufosinate poisoning was
slightly delayed (6 h later) as compared to organophosphate and carbamate, therefore,
respiratory failure was not captured at the emergency department in cases of glufosinate
intoxication. The exact mechanism of respiratory failure in glufosinate poisoning has not
been fully revealed. We previously reported that brain glucose metabolism decreased in
patients with glufosinate intoxication [28]. Also, Park et al. reported that the inhibition of
both glycolysis and mitochondrial respiration pathway might be associated with oxidative
stress and ferroptosis in human astrocytes [29]. Given the role of astrocytes in glucose
metabolism and putative mechanisms associated with glufosinate [28], respiratory failure in
glufosinate intoxication might be attributed to impairment of glucose metabolism. We hope
further study could reveal the mechanism of respiratory failure in glufosinate poisoning.

Our study has some limitations. First, our data was from a single center, and our
scoring system was not externally validated. The differences in the types of pesticide
poisoning and patient characteristics in other centers can affect the scoring system accuracy.
Second, since the study had a retrospective design, most of the information relied on
reviews of health records. The amount and ingestion time of pesticide was mainly based
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on the description of patients or their relatives. Prospective validation studies may confirm
the accuracy and utility of our model.

5. Conclusions

We developed and suggested a PREP scoring system for predicting acute respiratory
failure in patients with acute pesticide poisoning, which is useful in the management
pesticide poisoning. We also demonstrated that glufosinate poisoning is important risk
factor for acute respiratory failure.
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ments of MV; Figure S1: Kaplan-Meier curves for the mechanical ventilation requirements according
to the categories of each predictor; Figure S2: Kaplan-Meier curve for the mechanical ventilation
requirement according to the risk categories of the prediction model.
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