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Abstract

In this paper, we present a functional spiking-neuron model of human working memory

(WM). This model combines neural firing for encoding of information with activity-silent

maintenance. While it used to be widely assumed that information in WM is maintained

through persistent recurrent activity, recent studies have shown that information can be

maintained without persistent firing; instead, information can be stored in activity-silent

states. A candidate mechanism underlying this type of storage is short-term synaptic plastic-

ity (STSP), by which the strength of connections between neurons rapidly changes to

encode new information. To demonstrate that STSP can lead to functional behavior, we

integrated STSP by means of calcium-mediated synaptic facilitation in a large-scale spiking-

neuron model and added a decision mechanism. The model was used to simulate a recent

study that measured behavior and EEG activity of participants in three delayed-response

tasks. In these tasks, one or two visual gratings had to be maintained in WM, and compared

to subsequent probes. The original study demonstrated that WM contents and its priority

status could be decoded from neural activity elicited by a task-irrelevant stimulus displayed

during the activity-silent maintenance period. In support of our model, we show that it can

perform these tasks, and that both its behavior as well as its neural representations are in

agreement with the human data. We conclude that information in WM can be effectively

maintained in activity-silent states by means of calcium-mediated STSP.

Author summary

Mentally maintaining information for short periods of time in working memory is crucial

for human adaptive behavior. It was recently shown that the human brain does not only

store information through neural firing–as was widely believed–but also maintains infor-

mation in activity-silent states. Here, we present a detailed neural model of how this could
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happen in our brain through short-term synaptic plasticity: rapidly adapting the connec-

tion strengths between neurons in response to incoming information. By reactivating the

adapted network, the stored information can be read out later. We show that our model

can perform three working memory tasks as accurately as human participants can, while

using similar mental representations. We conclude that our model is a plausible and effec-

tive neural implementation of human working memory.

Introduction

The ability to temporarily hold information in working memory (WM) is a crucial part of day-

to-day life: it is what allows us to remember someone’s name at a cocktail party, what ingredi-

ents to buy at the supermarket for dinner, and which platform we need to go to when changing

trains [1,2]. The maintenance of information in WM is often studied by means of a delayed-

response task, in which a briefly presented memory item is followed by a delay period [3,4].

The delay period ends with the presentation of a probe that the participants need to compare

to the memorized item. The maintenance of information during the delay period of such tasks

was long thought to be mediated by continuously spiking neurons [5,6]. Although neural spik-

ing is certainly important for WM, it was recently shown that spiking activity during delay

periods can be intermittent or even absent [7–11]. This suggests that information may be

stored instead using activity-silent mechanisms, for instance through transient connectivity

patterns in the brain [2,12,13]. The spiking activity observed previously might reflect the initial

phase necessary to initialize new synaptic weights, active maintenance of the focus of attention

[14–17], or the read-out of information from working memory [13,18].

One of the candidate mechanisms for storing information in activity-silent states is short-

term synaptic plasticity [STSP; 19], which entails rapid changes in the strength of connections

between neurons to reflect new information being presented to the network [12]. Indeed, it

was previously shown that synapses in areas implicated in WM can be (temporarily) strength-

ened (or facilitated; [20,21]), potentially as a consequence of residual calcium building up in

presynaptic terminals [19,22]. In this way residual calcium effectively leaves a ‘synaptic trace’

of what is currently stored in WM. An elegant implementation of activity-silent storage by

means of STSP was proposed by Mongillo and colleagues [12], who developed a model that

can maintain information through calcium-mediated synaptic facilitation in recurrent net-

works of simulated spiking neurons. In response to a particular input to the network, a subset

of the neurons fires, with the result that their outgoing connections are facilitated. Subse-

quently, stored information can be read out by applying a network-wide non-specific input

that will be mostly subthreshold for non-facilitated neurons but leads to firing of facilitated

neurons.

In the current study, we show that the mechanism proposed by Mongillo and colleagues

[12] not only results in efficient and robust storage, but also in effective, functional human

behavior. Although previous models have suggested that this should be the case, these models

were based on rate neurons and did not attempt to match human behavior [8,18]. Here, we

integrated the calcium-mediated STSP mechanism in a large-scale spiking-neuron model that

can perform a delayed-response task. To have the model make the necessary decisions, we

introduced a mechanism that effectively compares newly presented information to what is cur-

rently held in WM, inspired by Myers’ template matching proposal [23]. To evaluate this

model, we used three previously reported datasets of visual WM tasks, in two of which activ-

ity-silent memory states were measured by means of electroencephalography (EEG) [3]. To
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this end, Wolff and colleagues developed an innovative method to probe activity-silent brain

states [3,24]. They showed that when the WM network is perturbed by a high-contrast task-

neutral stimulus during maintenance, ensuing neural activity reveals what is currently held in

an activity-silent state.

In their main experiment (Experiment 1; [3]), each trial started with the display of two ran-

domly oriented gratings (Fig 1). After an 800 ms fixation period, this was followed by a cue

indicating which of the two stimuli had to be maintained in memory. In order to examine the

contents of WM during the subsequent delay part of the trial, an impulse stimulus was pre-

sented 900 ms later. At the end of each trial, participants had to indicate whether a probe stim-

ulus was rotated clockwise or counter-clockwise with respect to the cued memory item. To

track the contents of WM, a decoding analysis was applied to the EEG data [3]. It was shown

that decoding accuracy quickly dropped to chance level after presentation of the memory

items, but returned when the probe was presented. This indicates that between the presenta-

tion of the memory items and the probe, information is maintained in an activity-silent (or at

least quiescent) state. In addition, it was shown that it is possible to decode the orientation of

the cued memory item from the EEG data during maintenance in response to the impulse

stimulus. Thus, when the WM network was perturbed by a task-neutral stimulus, the ensuing

signal allowed for decoding of the current contents of the activity-silent state. Interestingly, at

this point in the trial, only the orientation of the cued memory item could be decoded, indicat-

ing that the uncued stimulus was quickly forgotten, or actively cleared from memory.

To evaluate our model, we let it perform the same experiment–including the application of

the impulse perturbation method–and compared both our model’s performance as well as its

mental representations and underlying spiking behavior to the human data. To further charac-

terize the model, we then performed a parameter exploration and tested whether the model

generalizes to other experimental setups. For the latter, we applied it to Experiments 2 and 3 of

the Wolff study [3], in which they investigated the maintenance of multiple items in WM and

the potential disruptive effect of longer impulse stimuli, respectively.

Results

Model architecture

In order to implement a functional spiking-neuron model of WM we used Nengo, a frame-

work for building large-scale brain models that link single cell activity to demonstrative cogni-

tive abilities [25–27]. In this framework, information is represented by vectors of real numbers

that can be encoded and decoded from the collective spiking activity of a population of neu-

rons. Connections between neural populations allow for both communication and transfor-

mation of information. Here, Nengo acts as a ‘neural compiler’: given a desired function,

the connection weight matrix between populations is calculated so that this function is

Fig 1. The retro-cue delayed-response task. After the presentation of the memory items, a cue indicates which grating needs to be maintained in WM for judgement

of the probe. Decodable EEG activity is elicited by the task-neutral impulse, which is presented between the cue and the probe.

https://doi.org/10.1371/journal.pcbi.1007936.g001
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approximated. Besides pre-calculating connection weights, plasticity can be introduced by

making use of biologically plausible learning rules [28].

To account for short-term synaptic plasticity, we integrated the calcium kinetics mecha-

nism proposed by Mongillo and colleagues [12] in the model. Accordingly, synaptic efficiency

between two neurons is dependent on two parameters: the amount of available resources to

the presynaptic neuron (reflecting neurotransmitters) and the presynaptic calcium level. Each

time a neuron fires, the amount of available resources decreases, reducing synaptic efficiency.

As resources are quickly replenished (in the order of 200 ms), this results in short-term depres-

sion of firing rates. However, at the same time calcium flows into the presynaptic terminals,

increasing synaptic efficiency. Because calcium is much slower to return to its baseline levels

than the resources, the synaptic connection is facilitated in the long-term, for about 1.5 sec-

onds (see Methods for the effects of parameter settings). To calculate the final synaptic strength

of each connection, we multiplied the momentary synaptic efficiency with precalculated con-

nection weights (Eq 3).

This STSP mechanism was applied to the recurrent connections of two working memory

populations in our model. As described above, the aim is to simulate a delayed-response task

in which the orientation of two memory items has to be compared to a probe ([3]; Fig 1). In

this task, significant EEG lateralization was observed at posterior electrodes after presentation

of the cue. We therefore hypothesized that distinct populations of neurons are responsible for

processing visual stimuli presented in the left and right visual field. Correspondingly, the

model was divided into two independent modules, each responsible for perceiving and repre-

senting one of the two incoming stimuli (Fig 2).

In order to demonstrate that our model is able to deal with real-world input, the actual sti-

muli from [3] were presented to the model. The sensory populations use two-dimensional

Gabor filters as encoders [26,29,30]. As a result, the information present in the gratings–

including their direction–is encoded into 24-dimensional vectors that are passed on to the

memory populations. That is, the information encoded into the neurons is a compressed

representation of the input image, using the top 24 singular values as per SVD (see Methods

for more details). The memory populations contain recurrent connections exhibiting STSP, in

line with previous models of WM and anatomical areas associated with WM [e.g., 21,31,32].

Consequently, the first stimulus during a trial will drive facilitation of recurrent connections

representing this stimulus. Neural activity resulting from subsequent stimuli will be affected by

this change in connectivity.

This enables implementing decision making as a match-filter process [8,13]. To decide on

the orientation change of the probe compared to the relevant memory item, both the sensory

Fig 2. Model architecture. The model is divided in two modules (only one is pictured) representing the two visual

hemispheres. Stimuli enter via a sensory population that transforms the input into a vector. This vector is then sent to a

recurrently connected memory population exhibiting STSP. The comparison population integrates information from

both the sensory and memory ensembles, the result of which is interpreted by the decision population.

https://doi.org/10.1371/journal.pcbi.1007936.g002
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and memory populations communicate the orientation of the gratings to a comparison popu-

lation. When a probe is presented, the orientation received from the sensory population is

driven entirely by the incoming stimulus. However, the orientation of the memory population

is driven by a dynamic combination of activity resulting from the incoming stimulus and activ-

ity from facilitated connections as a result of the encoded memory item (i.e., hysteresis). In

other words, the orientation represented by the memory population reflects the orientation of

the probe ‘tuned’ by the orientation of the memory item stored in facilitated synapses, over

time reverting to the new probe stimulus. To estimate the orientation difference between the

memory item and the probe, the outgoing connections from the comparison layer subtract the

two represented orientations. The resulting one-dimensional value reflects the signed differ-

ence between the orientation of the memory item and that of the probe stimulus.

Neural representations

The model simulated the experiment reported in [3] and illustrated in Fig 1. In the original

paper, it was shown that decoding accuracy quickly dropped after presentation of the memory

items but returned during presentation of the probe–as would be expected for an activity-silent

maintenance mechanism. Correspondingly, we examined the spiking activity and quality of

representations of our model during the task, in order to validate that any maintenance of

information in our model is realized in activity-silent states and not by persistent firing.

Fig 3 shows the spiking activity of the neurons in the memory populations of both modules

during one trial (A: cued module, B: uncued module), together with the mean amount of

resources (x) and calcium (u) in these populations. In both modules, there is spiking activity

during and shortly after presentation of the memory items, the impulse stimulus, and the

probe, but not in between. The spiking activity causes the amount of available resources and

the calcium level to decrease and increase, respectively. The resulting short-term depression

can directly be observed as the amount of spiking declines after the onset of a stimulus,

although it periodically reactivates.

In the original experiment, a retro-cue that indicated which of the two previously presented

items needed to be memorized was presented 800 ms later, which was followed by significant

lateralization at posterior electrodes. To mimic this, the memory population of the cued mod-

ule is briefly reactivated by means of a non-specific population wide input [cf. 12]. This not

only re-activates the memory item, but also helps to maintain the stimulus for a longer time

period, as reactivation of facilitated synapses will lead to re-facilitation of those connections.

Next, we analyzed the vectors represented by the memory populations of both the cued and

uncued module. Fig 3 (bottom of each panel) shows the absolute cosine similarity between the

vector represented by the memory populations and the ideal vectors of potential representa-

tions. To clearly illustrate the difference between the two modules, the mean cosine similarity

was calculated over 100 trials in which both modules were presented with the same memory

item and probe, with a rotation of 0˚ and 42˚, respectively. Note that in the simulation of the

real experiment, the cued and uncued modules are never presented with the same memory

item.

During presentation of the initial memory item of 0˚, the vectors represented by both mod-

ules are very similar to the ideal 0˚ vector. In addition, the cosine similarity is inversely corre-

lated with the angular difference between the represented vector of 0˚ and potential

representations, indicating that similar stimuli are represented by similar vectors and firing

patterns. As was the case in the original experiment, during the delay periods we could not

decode what is being represented by the neural populations as there is no spiking activity–indi-

cating activity-silent memory. However, in response to the non-specific reactivation of the
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cued model at 1050 ms, there was spiking activity that clearly represents the originally encoded

vector. It therefore appears that neural connections representing the memory item were

indeed facilitated, and that mainly those connections and neurons get activated in response to

the non-specific reactivation elicited by the cue.

Fig 3. Spiking behavior and representations in Experiment 1. Top: spiking activity of the memory populations of the cued (A) and uncued (B) modules,

including resource and calcium levels during a trial. Bottom: absolute normalized cosine similarity between the vector represented by the memory populations

and ideal vectors, averaged over 100 trials with 0˚ memory items and 42˚ probes with constant within-trial phase.

https://doi.org/10.1371/journal.pcbi.1007936.g003
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One of the main results of the original study was that the EEG activity in response to the

impulse stimulus contained the orientation of the cued memory item, and not of the uncued

item [3]. This was taken to show that a stimulus is only maintained in an activity-silent state if

it is still needed for the task. If not, it is quickly forgotten or actively cleared from the network.

To see if our model has both the same storage and forgetting capabilities, we examined the vec-

tors represented by the memory populations of the cued and uncued module during presenta-

tion of the impulse (Fig 4; cf. Fig 3, 2150–2300 ms). In both modules, the memory populations

start representing the impulse stimulus. When the facilitated recurrent connections of the

cued and uncued items become activated, both modules also represent the original 0˚ memory

item. However, only for the cued module does the represented vector become (very briefly)

more similar to the ideal memory item than to the impulse vector. In contrast, in the uncued

model the represented vector is twice as similar to the impulse than to the original memory

item, offering a potential explanation of why only the cued, and not the uncued memory item,

could be decoded after the impulse [3]. Note that we cannot compare these results directly to

the decoding results of Wolff and colleagues, as it is non-trivial to decode model data meaning-

fully. However, it does illustrate a potential cause of the reported decoding results.

To summarize: in both the cued and the uncued modules, STSP encodes the initial stimu-

lus. In the cued model, facilitated connections are re-facilitated at the moment of cue, counter-

acting the gradual calcium decay that goes on in both modules (Fig 3). As a result, once the

impulse arrives, only the cued model has sufficiently facilitated connections specific to the

memory item to generate a response larger than the impulse representation (Fig 4). Note that

the uncued memory population was not actively cleared, but that the calcium levels of the facil-

itated synapses simply decayed away as it was not reactivated at the moment of the cue.

Behavior

In order to see if our model not only matches neural activity, but also gives rise to functional

behavior similar to human participants, we evaluated its performance. First, to see if the in-

formation maintained in the facilitated synapses can be used to produce a relevant response,

we inspected the value represented by the decision population in the cued module. This

Fig 4. Cued and uncued memory representations in response to the impulse stimulus in Experiment 1. Absolute

normalized cosine similarity between the representations in the memory populations and ideal vectors in response.

The memory item presented before the impulse had a rotation of 0˚.

https://doi.org/10.1371/journal.pcbi.1007936.g004
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population receives the angular difference between the memory item and the probe from the

comparison population, and thus represents a measure of difference between the orientations

decoded from the sensory and memory populations. Fig 5 shows the represented value for the

possible orientation differences between memory items and probes, averaged over all simu-

lated trials. First, it takes a moment for the probe information to reach this population. Second,

the facilitated synapses become activated, reactivating the memory item, thereby leading to dif-

ferent representations in the sensory and memory populations, and thus to a difference in the

decision population. Finally, the probe starts overriding the memory representation, reducing

the difference until both populations represent the probe and the difference has disappeared.

Overall, both the sign and magnitude of the orientation difference are clearly represented in

the decision signal.

To translate this decision signal into a response, we integrated the decision activation after

the presentation of the probe. Integrating the evidence corresponding to two distinct decisions

has been widely used before in accumulator models of perceptual decision making [e.g., 33].

We did not model motor processes, but simply interpreted a positive result as a clockwise

response and a negative result as a counter-clockwise response. Fig 6 shows that the model’s

proportion of clockwise responses across orientation differences follows a similar S-shape as

the human responses.

Parameter exploration

The STSP mechanism underlying the model’s working memory performance is affected by

two synaptic time constants: τD and τF. Synaptic efficiency in the model is determined by the

combination of available resources (reflecting neurotransmitters) and presynaptic calcium lev-

els. τD determines the speed of the replenishment of the resources, while τF sets the decay rate

of the calcium levels. We set these parameters to the values used in the Mongillo model (200

and 1500 ms, respectively; [12]), who, in turn, based these values on measurements in ferrets

by Wang and colleagues [21]. To test how robust our model is with respect to these parameter

choices, we systematically varied τD and τF over an interval of 100–400 ms and 600–1800 ms,

respectively, encompassing both the range reported by Wang and the values used by Mongillo.

Fig 5. Represented difference in the decision population. Colors indicate experimental orientation differences,

averaged over all trials.

https://doi.org/10.1371/journal.pcbi.1007936.g005
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Fig 7A shows the effects on resource and calcium levels, as well as on the representations,

split into four parameter quadrants (cf. Fig 3). The figure illustrates that higher τF values result

in longer lasting elevated calcium levels and better memorization. In addition, lower τD values

result in higher average spike rates (as resources are quicker replenished), also increasing cal-

cium levels. Consequently, a combination of high τF values with low τD values results in opti-

mal memorization and performance. This is further illustrated in Fig 7B, which shows the

behavior of the model for the different parameter combinations, with the human data super-

imposed and associated R2-values and root-mean-square deviations. While correlations stay

high across almost the complete parameter space, the RMSD values show that τF should be at

least one second, and τD 300 ms or less for human-like behavior.

Generalization 1: Longer impulse durations

To evaluate whether the model generalizes to other experimental setups, we used the same

model to simulate Experiments 2 and 3 of [3], using the standard parameter values from [12].

We first discuss Experiment 3, in which Wolff and colleagues tested whether the impulse stim-

ulus altered mnemonic representations in addition to revealing hidden states. In particular,

they were concerned that the impulse stimulus would benefit behavior by reactivating the

memory item. In contrast, we were concerned that the impulse stimulus disrupted the repre-

sented memory item by changing the connectivity of the recurrent memory connections

through the STSP mechanism, decreasing task performance.

To test this, the design of Experiment 1 was adapted slightly (Fig 8A). The impulse stimulus

could be presented at a stimulus-onset asynchrony (SOA) of 500, 250, 100, 50, or 0 ms before

the probe. At the same time, the impulse always lasted until the appearance of the probe–thus

the duration of the impulse varied between 500 and 0 ms. The total period between the cue

and the probe was kept the same in all conditions (1400 ms, as in Experiment 1). Thus, in lon-

ger SOA conditions, the duration of the impulse was also longer, potentially affecting the

memory representation more. Finally, to reduce eye strain and forward-masking effects, the

bull’s eye impulse was replaced by a completely white impulse stimulus [3].

Fig 8B shows the calcium and resource levels, Fig 8C the behavioral results. The duration of

the impulse neither increased nor decreased performance for the participants (Fig 8C, left). In

our first simulation with a white impulse, the model showed a similar null-effect, except that it

Fig 6. Performance in Experiment 1. Proportion of clockwise responses dependent on the angular difference between

the cued memory item and the probe.

https://doi.org/10.1371/journal.pcbi.1007936.g006
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performed about 10% better overall (Fig 8C right). On closer inspection, it transpired that a

white impulse stimulus hardly reactivated the model’s memory neurons, as it hardly caused a

reaction in the sensory population due to its use of Gabor filters as encoders (Fig 8B). To fur-

ther test the effect, we repeated the simulation with a black bull’s eye impulse as in Experiment

1. As illustrated in Fig 8, the black bull’s eye caused a dip in performance, in particular at an

SOA of 100 ms. However, with longer SOA’s performance recovered. The dip at an SOA of

100 ms is caused by a depletion of the resources of the memory neurons, decreasing their reac-

tivation in reaction to the probe (including a slight delay) which is sufficient to make compari-

son and decision more difficult. With longer SOAs, the resources have been partly replenished

at the moment of the probe. With a shorter SOA of 50 ms, the memory neurons are not

depleted yet, and are partly activated by both the impulse and the probe. Interestingly, the orig-

inal human also data suggest a similar (non-significant) dip at an SOA of 100 ms.

Fig 7. Parameter exploration of Experiment 1. A, top: resource and calcium levels for four parameter quadrants. A, bottom: absolute normalized cosine similarity

between the vector represented by the memory populations and ideal vectors for 0˚ and 42˚ gratings and the impulse. All values are averaged over 100 trials with 0˚

memory items and 42˚ probes with constant within-trial phase. B: Accuracy for four parameter quadrants in comparison to the human data, and associated R2 and

root-mean-square deviation values.

https://doi.org/10.1371/journal.pcbi.1007936.g007
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Fig 8. Generalization 1: Experiment 3. A) experimental procedure in which the impulse was presented at five different SOA’s and

corresponding durations. B) associated calcium and resource levels. C) accuracy at the probe; angular difference between memory item and

probe was always ±16 degrees.

https://doi.org/10.1371/journal.pcbi.1007936.g008
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Generalization 2: Maintaining multiple memory items

In Experiment 2, Wolff and colleagues investigated the maintenance of two memory items.

One of the items was designated as the primary item that would be tested first, while the other

item would be tested later. Participants were aware of this difference. Between the memory

items and both probes white impulse stimuli were presented (Fig 9). To simulate this and gen-

erate sufficient activation after the impulse stimuli we used a 60%-grey bull’s eye for the

model. We used a 60%-grey value as it led to clearly visible effects for illustrative purposes, as

well as resulting in reasonable behavior. However, this is an arbitrary choice and does not

affect the qualitative effects (see also the Discussion).

In reaction to the first impulse, both memory items could be decoded, but the primary item

was slightly better than the secondary item–indicating an attentional difference [3]. To simu-

late this we gave the sensory module of the primary item the same input as in the previous sim-

ulations, while the sensory module reflecting the secondary item received 90% of the input.

About 450 ms after the onset of the first probe, the onset of a strong lateralization in the EEG

signal was observed, similar to the effect of the cue in Experiment 1. We therefore simulated

this likewise with a non-specific population-wide input to the memory module of the second-

ary memory item, reactivating its representation, and assuming participants similarly

refreshed the secondary memory item after making the first response. Otherwise the model

was identical to the simulations described above.

Fig 10 shows the spiking activity and representations over the course of a trial (A: primary

memory item, probed early; B: secondary item, probed late). As in the simulation of Experi-

ment 1, the representations could not be decoded in between the various stimuli, indicating

activity-silent storage. The reaction to the initial presentation of the memory items is a little

stronger for the primary than for the secondary item, reflecting the input difference to the sen-

sory modules. This is further reflected in response to the first impulse, which is higher for the

primary item. At 1800 ms, the first probe is used to make a decision for the primary item,

assuming that participants could flexibly gate this to the correct module (not included in the

model, but see [34] for a potential implementation). The secondary memory module is reacti-

vated 450 ms later with a population-wide input: the resulting activation clearly reflects the

original stimulus. After a long pause (1750 ms), both modules again receive an impulse stimu-

lus, followed by the probe for the secondary memory item.

Fig 11 shows the reaction to both impulse stimuli in more detail. First, and somewhat trivi-

ally, the reaction to the impulses is weaker than in Experiment 1, because we used a 60% grey

bull’s eye instead of a black one. Second, in response to the first impulse both items could be

decoded in the experiment, but the primary item a little better [3]. This is reflected in the mod-

el’s results, where the difference between the impulse representation and the memory item is

larger for the primary item. Third, in reaction to the second impulse, only the secondary item

could be decoded in the experiment. The model also reflects this, as the representation of the

primary item is about half of the representation of the impulse, while the secondary item just

exceeds the impulse (cf. Fig 4).

Fig 9. Procedure Generalization 2/Experiment 2. Participants knew which memory item would be probed first. Note the long break after Probe 1.

https://doi.org/10.1371/journal.pcbi.1007936.g009
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Finally, as one of our main goals was to simulate human behavior, Fig 12 compares the

model’s performance to the human participants. The model performs slightly better on the

largest angular differences for the primary memory items than participants, but overall the

correspondence to the data is remarkable. The decreased performance to the secondary mem-

ory item is due to the slightly lower input to the sensory module at the start of the trial, and to

the much longer interval between the reactivation and the probe. However, reactivating the

Fig 10. Spiking behavior and representations in Generalization 2/Experiment 2. A) primary memory item. B) secondary memory item. Representations

averaged over 100 trials with 0˚ memory items and 40˚ probes.

https://doi.org/10.1371/journal.pcbi.1007936.g010
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item once was sufficient for human-like performance, suggesting that no rehearsal took place

during the maintenance interval.

Discussion

We developed a functional spiking-neuron model to explain recent theories of activity-silent

human working memory. Whereas incoming information is encoded through spiking, main-

tenance of information was realized by short-term synaptic plasticity based on calcium kinetics

[12]. This mechanism can maintain information effectively for short periods of time without

requiring neural spiking. In support of the model, we simulated a recent EEG experiment

from a study that applied an innovative impulse perturbation method [3] to reveal the content

of activity-silent WM. Both the model’s choice behavior, as well as its mental representations

corresponded well to the human data.

To further characterize the model and test its generalizability, we subsequently performed a

parameter exploration and simulated two additional experiments. First, the parameter explora-

tion showed that the model’s behavior is robust over a range of parameter values, unless the

decay rate of calcium, τF, goes below one second. In that case performance breaks down,

Fig 11. Primary and secondary memory representations in response to the impulse stimuli in Generalization 2/Experiment 2.

https://doi.org/10.1371/journal.pcbi.1007936.g011

Fig 12. Performance in Generalization 2/Experiment 2. Proportion of clockwise responses dependent on the angular

difference between the memory items and the probes.

https://doi.org/10.1371/journal.pcbi.1007936.g012
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implying that the calcium decay rate in human working memory regions either exceeds one

second (which is possible given the reported values in ferrets, see [21]), or that a reactivation

mechanism is used for maintenance over longer periods (see below). Second, it was shown

that the activity-silent memory representations are not very sensitive to the impulse response,

matching human data. Thirdly, the model could mimic memorizing two stimuli that were

probed sequentially. Also in this case the mental representations of the model seemed to be in

agreement with the human data, maintaining and forgetting information at the same rate as

human participants. Taken together, this demonstrates that calcium-mediated STSP not just

results in robust maintenance of arbitrary stimuli, as shown earlier [12], but can also simulate

effective human behavior based on real-world stimuli.

With regard to localization, the model was used to simulate data from Wolff and colleagues

[3], who reported posterior EEG effects. However, WM is often attributed to prefrontal areas

[e.g., 14,35]. Activity-silent maintenance has likewise been found in both posterior [3,8,36]

and frontal [18,37] regions. It appears that especially sensory working memory should be

attributed to the relevant sensory systems [36,38], instead of to a centralized system. While the

exact function of the different regions implicated in WM might differ, the neural substrate and

mechanisms might be similar, and could potentially all be explained by the proposed STSP

mechanism.

A number of design choices warrant discussion. First, the employed neurons do not have a

baseline firing rate, as is evident by the lack of any spiking activity during the delay-period of a

trial (Fig 3). In order to clearly demonstrate activity-silent maintenance of information, we

defined the tuning curves of the sensory and memory neurons so that they only fire when pre-

sented with input. As a result, the memory was fully silent when no input was presented. If one

would broaden the tuning curves of the neurons, the recurrent connection would remain

active after having received input, resulting in activity-based working memory. On the other

hand, background firing could simply be added to the model without affecting its functional-

ity, as has been done in the past ([e.g., 12,34]; see also below for an example). Second, the num-

ber of neurons per population and the number of dimensions used to represent the stimuli

were set to reflect human behavior. In general, adding more neurons will improve the repre-

sentation of vectors and the approximation of the functions computed over those. Increasing

the number of dimensions expands what can represented [26,39,40]. Thus, changing the num-

ber of neurons and dimensions will change the quality of the representations and will influence

the number of errors made during the task. Here, we estimated parameters to roughly match

human performance; we do not have a principled reason either for using 1000 or 1500 neurons

per population or 24 dimensions.

For our second generalization, Wolff’s Experiment 2, we used a 60%-grey bull’s eye instead

of the completely white impulse stimulus that was used in the actual experiment. We chose

60%-grey to ensure sufficient activation in response to the impulse stimuli both for illustrative

as well as behavioral purposes, and because we had seen in our first generalization that the

model’s memory neurons were hardly reactivated by a white impulse. We believe that this is

due to the very simple visual system (i.e. a single layer of Gabors), and does not affect the core

results. As the visual system is not the focus of the current modeling effort, we decided to solve

this by using a grey-scale version of the bull’s eye instead of using a more complex visual sys-

tem. As mentioned above, 60% grey was an arbitrary choice, as any bull’s eye stimulus with

sufficient contrast yields the same qualitative effects.

Finally, information was represented using Nengo’s default vector representation, which

provides an intuitive method to link neural spiking to representation and function [26]. How-

ever, representing information differently should not affect the basic functioning of the model

as all connections and the STSP mechanism are implemented at the neural level. Thus, while
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Nengo made implementing a real-world task straightforward, the mechanisms that we used

are general and could be used in any framework.

Representations in WM

As discussed above, in the current model information is maintained without any intermittent

firing (Fig 3). This directly contradicts the original analysis of the dataset [3], where the repre-

sented stimulus could be decoded for some time after its offset. In addition to fully activity-

silent maintenance, Mongillo and colleagues [12] observed a bi-stable regime in their model:

with added background noise, neurons with facilitated connections reactivated spontaneously.

Consequently, due to the dynamics of u and x, the reactivated neurons will be briefly depressed

before being facilitated again, leading again to reactivation. In this regime, the time between

subsequent reactivations is on the scale of τD−the time constant of the available resources–as it

is controlled by the recovery from the synaptic depression. A brief exploratory analysis shows

that such a bi-stable regime can also be added to our model, as is illustrated in Fig 13. This pro-

vides the model with an additional method of maintaining information, possibly over a longer

period of time. In case human calcium decay rates are in fact below one second, as discussed

above, this might also be the way in which the human brain stores information during the

delay periods of the current experiments. Finally, it provides a potential explanation for the

delay-activity observed in the original analysis [3]: non-specific background or recurrent input

after presentation of a stimulus might temporarily have pushed the network into this regime.

Another functional role for delay activity in WM might be tracking the focus of attention

[15–17,41]. This would provide a mechanistic explanation for psychological theories that state

that a single focal WM item can be used without any time cost [16,42–44], while other items in

working memory incur a cost estimated at 200 ms [15,45–48]–the latter potentially being due

to the costs of reactivating the information from a non-active state. Following previous con-

ceptions [41,49], Wolff and colleagues [3] suggested that a difference in focal attention might

also dissociate the maintenance of the primary item and the secondary item in Experiment 2.

Here, we have shown that we can explain their behavioral data more simply by assuming a

slight attentional difference at encoding and an attentional pulse for the secondary item fol-

lowing the first probe. However, they showed slightly elevated delay activity for the primary

memory item, suggesting that the primary item in the focus of attention is not stored in a

Fig 13. Bi-stable maintenance. Background noise puts the model in a bi-stable regime where facilitated connections

reactivate spontaneously on the time scale of τD.

https://doi.org/10.1371/journal.pcbi.1007936.g013
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completely activity-silent state. In the interest of simplicity, this is not reflected by the current

model.

Wolff and colleagues further suggested that their experiments show that information could

be quickly and flexibly cleared from memory. As decoding the uncued stimulus in Experiment

1 and the primary memory item at the second probe in Experiment 2 was not possible, it was

argued that these must have been deleted. However, our models show that this is does not nec-

essarily follow. As a result of not reactivating the uncued item at the cue in Experiment 1, it

had only half the representational power of the impulse at the moment of the impulse (Fig 4,

right). Similarly, in Experiment 2 the combination of the first probe overwriting the primary

item and the long delay to the second impulse results in the original memory item only being

very weakly represented (Fig 11, third panel). Thus, although the memory items might have

been cleared actively, these experiments do not seem to require that, nor do we see a straight-

forward way of adding such a mechanism to the model.

As implied above, we assume that the memory vector being only half the strength of the

represented impulse means that the memory is effectively forgotten (unless the same stimulus

is presented again). At least, we assume it will be hard to decode from the other representations

in the EEG signal, and therefore argue that our models represent the decoding results pre-

sented in [3]. However, one can wonder how sensitive this effect is to our choice of parameters.

The effect is based only on the parameters of the STSP mechanism, which we took directly

from [12], in combination with the timing of the experiment. In this sense it is a parameter-

free model fit, which turns out to work well. Our parameter exploration, in particular Fig 7A,

shows that different values for τF and τD lead to different representation ratios between the

represented memory items and the representation of the impulse. However, the qualitative

effects–the difference between uncued and cued items–remains constant, until τF becomes too

low and behavioral performance decreases. It does predict that if we reduce the time between

the memory items and the impulse, decoding the item from the uncued model should be possi-

ble. While not tested directly, Experiment 2 did present an impulse after about 1 second

(instead of a cue), after which both items were decodable. In addition, after the cue in Experi-

ment 1, both items could still be decoded (Supplementary Fig 1 from [3]).

In spite of these effects of time on the uncued item, the represented memories were remark-

ably resistant against corruption by longer impulses, as indicated by the simulation of Experi-

ment 3. One reason for this is a quick depletion of the resources of the neurons, leading to a

strong reduction in overall spiking and therefore to less disruption of the original representa-

tion. This could simply be a result of the calcium-based STSP mechanism, or it might be a

functionally relevant protection mechanism, resulting in more stable representations.

In our model, we have assumed that the coding of the information itself is static, that is, the

same facilitated connections are used repeatedly. However, there has recently been increasing

evidence for a dynamic coding framework, which states that information maintained in a WM

network traverses a highly dynamic path through neural activation [37]. It is not yet clear how

this relates to our model, although a possible clue might come from a model by Singh and Elia-

smith [50]. Neural populations in their model represent two dimensions, where one dimen-

sion represents time and the other a stimulus. Because their neurons used tuning curves

sensitive to both dimensions, the neural responses also changed continuously–resulting in a

dynamic representation. Their model elegantly captures a wide variety of observed neural

responses during a WM task; the inclusion of time as a dimension represented by the neurons

in the network naturally leads to a dynamic firing pattern over time. The current model could

likewise be adapted to also represent time, but as we have no clear evidence that this is the

case, we decided against it. We do plan to explore this in future work.
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Related models

Recently, Myers and colleagues [8] described a related non-spiking neural population model

with similar functionality as the current model, although they did not match human data

directly. Their model consisted of a three-layer architecture: a stimulus layer, a template layer,

and a decision layer not unlike the sensory, memory, and comparison population in our

model. A critical difference between the two models is that their decision layer only receives

input from the template layer, while in our case it receives input from both the sensory and

memory populations. The template layer in Myers’ model acts like a match-filter: it is able to

maintain a stimulus orientation, and when presented with a subsequent probe orientation con-

vey the signed difference between the two to the decision layer. The memory population in our

model can likewise be viewed as a match filter. After onset of the probe, the represented orien-

tation shifts to the orientation of the probe from the direction of the orientation of the memory

item. This shift in itself indicates a degree of difference between the two orientations, including

the sign of this difference. One could potentially measure this with a neural population that

computes a time derivative with respect to the orientation [51]. However, exploratory analysis

indicated this to be less robust than our current method.

Another closely related model was proposed by Barak and colleagues [18]. Their model

consisted of a sensory and memory population. After presentation of a stimulus, connections

from the sensory population to the memory population will be facilitated. Subsequently, dur-

ing the delay period, an increasing uniform current is applied to the network which activates

the neurons in the memory population that have facilitated incoming connections. During

presentation of a subsequent probe, mutual inhibition between the sensory and memory popu-

lation will guide decision making. This model explains observed ramping up of activity during

anticipation of a probe. However, it is not clear whether the gradually increasing external cur-

rent is essential to extract the information maintained in the facilitated connections in the

memory representation. It can be expected that in the brain bottom-up stimulus driven activ-

ity might also be able to activate the information stored in connections, for instance when the

timing of the probe is unknown.

Conclusion

To conclude, our model shows that maintenance of information in WM by means of calcium-

mediated STSP can lead to functional behavior. It is broadly consistent with current theories

regarding activity-silent storage in human WM and is able to show a variety of effects observed

during three visual delayed-response tasks. Furthermore, it provides a solid basis for exploring

a model that incorporates psychological theories on the focus of attention [15–17,42] by com-

bining activity-silent maintenance with storage through persistent firing.

Methods

Model

Nengo. The model was implemented using Nengo, a Python library for simulating large-

scale neural models with a clear link between spiking activity and representation [25–27].

Nengo makes use of a theoretical framework called the Neural Engineering Framework [NEF;

52]. Information is represented as a vector of real numbers that can be encoded and decoded

from the collective spiking activity of populations of neurons. Encoding is mediated by giving

each neuron a non-linear tuning curve that characterizes their general response to the incom-

ing signal. Decoding is a linear process: the activity of each neuron in a population is weighted

by a constant and summed over time in order to decode the represented vector. Connections
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between populations allow for the communication and transformation of the information.

Here the NEF calculates the connection weight matrix between populations to approximate a

desired function. In addition, connection weights can be learned and adapted through several

biologically plausible learning rules, both supervised and unsupervised [28].

Short-term synaptic plasticity. Short-term synaptic plasticity was implemented in Nengo

following the calcium kinetics mechanism of Mongillo and colleagues ([12]; available at

https://github.com/Matthijspals/STSP). Because spiking leaky integrate-and-fire (LIF) neurons

are computationally efficient while retaining a degree of biological plausibility, we added this

mechanism to the existing Nengo implementation of LIF neurons. Synaptic efficiency is based

on two parameters: the amount of available resources to the presynaptic neuron (x, normalized

between 0 and 1) and the fraction of resources used each time a neuron fires (u), reflecting the

residual presynaptic calcium level. When a neuron fires, its resources x are decreased by ux,

mimicking neurotransmitter depletion. At the same time, its calcium level u is increased, mim-

icking calcium influx into the presynaptic terminal. Both u and x relax back to baseline with

time constants τD (0.2s) and τF (1.5s), respectively. This results in a system where after a neu-

ron fires its outgoing connections will be depressed on the time scale of τD and facilitated on

the timescale of τF as illustrated in Fig 14 (darker lines indicate standard parameter values,

lighter lines the range tested in the parameter exploration).

For all LIF neurons to which we apply STSP, every time step u and x are calculated accord-

ing to Eqs 1 and 2, respectively:

dx
dt
¼

1 � x
tD
� uxd t � tsp

� �
ð1Þ

du
dt
¼

U � u
tF
þ U 1 � uð Þd t � tsp

� �
ð2Þ

Fig 14. STSP mechanism. Top: spikes in presynaptic neuron. Middle: calcium (u) and resources (x) of presynaptic

neuron, u increases and x decreases when the presynaptic neuron spikes. Bottom: resulting postsynaptic voltage; note

the synaptic depression at the end of the first spike train and synaptic facilitation at the later spike. Dark lines indicate

standard parameter values, lighter lines different parameter settings for τD (100–400 ms) and τF (600–1800 ms).

https://doi.org/10.1371/journal.pcbi.1007936.g014
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where x represents the available resources, u the residual calcium level, τD the depressing time

constant, δ the Dirac delta function, t the simulation time and tsp the time of a presynaptic

spike. In Eq 2, τF represents the facilitating time constant and U the calcium baseline level.

Outgoing connection weights of neurons implementing STSP are determined by both their

initial connection weight and their current synaptic efficiency. Initial connections weights are

calculated by the NEF, while synaptic efficiency is set to the product of the current value of u
and x of the presynaptic neuron, normalized by their baseline value:

wij ¼
xu
U

w0

ij ð3Þ

where wij represents the connection weight between neuron i and j and wij
0 the initial connec-

tion weight.

Architecture. The overall architecture of the model is shown in Fig 2 (the model is avail-

able for download at https://github.com/Matthijspals/STSP). The sensory and decision popu-

lations consist of 1000 LIF neurons, the memory and comparison populations of 1500 LIF

neurons. Biologically relevant parameters were left to default, which are consistent with neo-

cortical pyramidal cells [25]. Parameters U, τD and τF were set the same as in [12], except in

our parameter exploration. τF>> τD and τF on the order of 1s are consistent with patch-

clamp recordings of facilitated excitatory connections in the ferret prefrontal cortex [21].

Table 1 lists all parameter settings.

To describe the relationship between neural representations and real-world stimuli it can

be assumed that the brain makes use of a statistical model, not unlikely a parametrized model,

where a small number of parameters capture the overall shape of the data [26]. Ensembles of

neurons in a Nengo model represents information as a D-dimensional vector of real numbers.

We can represent the stimuli in our experiment by finding D parameters that best represent

these stimuli and letting these be the values that our neural ensembles represent.

To find these parameters we need a set of D basis functions that will be good at describing

both the incoming images and the encoders of the neurons receiving these images. These basis

functions can be found by applying singular value decomposition (SVD) to a matrix T, con-

taining both the images and the encoders. The images consisted of the stimuli in the experi-

ment, while the encoders were two-dimensional Gabor filters, defined by a sinusoidal plane

wave multiplied by a Gaussian function. Gabor filters have previously been shown to accu-

rately describe the response profile of simple cells in the cat [30] and macaque [29] striate cor-

tex and seem to underlie early stages of visual processing. Thus, the SVD mediates a

Table 1. Model parameters for each population. Default parameters in italics.

Parameter Sensory Memory Comparison Decision

Number of neurons 1000 1500 1500 1000

Neuron type LIF STSP-LIF LIF LIF

Dimensions 24 24 4 1

Intercepts Uniform(0.01, .1) Uniform(0.01, .1) Uniform(.01, 1) Uniform(-1, 1)
τrc (Membrane RC) 0.02 0.02 0.02 0.02
τref (refractory period) 0.002 0.002 0.002 0.002
U� 0.2

τD
� 0.2

τF
� 1.5

�taken from Mongillo, Barak and Tsodyks (2008)

https://doi.org/10.1371/journal.pcbi.1007936.t001
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biologically plausible method that results in stimuli being represented by D-dimensional vec-

tors. In our model, we set D to 24.

Applying SVD on T gives us matrices U, S, and V, for which:

T ¼ USV0 ð4Þ

where U and V are respectively the left and right singular matrices and S is the diagonal matrix

containing the singular values of T. Since the values in U, S and V are ordered by how much

they contribute to T, we can represent T reasonably well by just taking the top singular values

(similar to principle component analysis, PCA); in order to transform input into a D dimen-

sional vector that can be represented by our neurons, we used the top 24 singular values. This

allows us to specify our encoders E as follows:

E ¼ GW ð5Þ

where G are the generated Gabor filters and W the top D columns of the matrix U. Any input

in the network that has passed through these encoders will be represented by a vector of length

D.

Now that input is represented by a vector of length D, we need an ensemble that takes this

vector and decodes it into orientations. As a consequence of how we specified the encoders,

the D dimensional matrix R the stimuli will be represented by is equal to:

R ¼ MW ð6Þ

where M are the possible stimuli and W the top D columns of the matrix U. Next, we specified

for each stimulus-vector–representing a particular grating–what the corresponding decoded

orientation should be. This information was used to define a function that takes a vector as

input and returns the corresponding orientation. The NEF then yields the connection matrix

at the neural level that approximates this function. This matrix was used to set the connections

from the sensory and memory populations to the comparison populations.

Stimulus orientations were not directly decoded as the angle θ, but rather by the sine and

cosine of θ. Decoding sine and cosine of θ is robust, as the ratio between the two determines

the stimulus orientation independent of the amplitude, which is not the case when decoding θ
directly. Furthermore, the symmetry of the sine functions provides a natural solution for the

symmetric nature of the stimuli, as in the experiment a stimulus with an orientation of -90˚

contains exactly the same pixels as a stimulus with an orientation of 90˚ and therefore results

in the same neural activity.

Experimental simulation

Stimuli. Input to the model consisted of images of 128 by 128 pixels. Stimuli were gener-

ated using Psychopy, an open-source Python application [53]. Stimuli consisted of a circle on

a grey background (RGB = 128, 128, 128). Memory items and probe stimuli were sine-wave

gratings with a diameter of 128 pixels and spatial frequency of 0.034 cycles per pixel. The phase

was randomized within and across trial. For each trial, the orientation of the memory items

was randomly selected from a uniform distribution of orientations. In Experiment 1, the angu-

lar differences between the memory item and the corresponding probe stimulus were uni-

formly distributed across seven angle differences (3˚, 7˚, 12˚, 18˚, 25˚, 33˚, 42˚), both

clockwise and counter-clockwise. The impulse stimulus consisted of a black ‘bull’s-eye’ stimu-

lus of the same size and spatial frequency as the memory items. It was presented at twice the

contrast compared to the grating stimuli, to each module.
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In Generalization 1 (Experiment 3 in [3]), the angular difference between the memory item

and the corresponding probe stimulus was always 16˚, clockwise and counter-clockwise. The

impulse stimulus was either a white circle or the black ‘bull’s-eye’ stimulus from Experiment 1.

In Generalization 2 (Experiment 2 in [3]), the angular differences between the memory

item and the corresponding probe stimulus were uniformly distributed across six angle differ-

ences (5˚, 10˚, 16˚, 24˚, 32˚, 40˚), both clockwise and counter-clockwise. The impulse stimulus

consisted of a 60% grey ‘bull’s-eye’ stimulus of the same size and spatial frequency as the mem-

ory items. It was presented at twice the contrast compared to the grating stimuli, to each

module.

Procedure. The model simulated the three the retro-cue delayed-response tasks from [3].

In Experiment 1, each trial started with the presentation of two memory items to the sensory

population of the corresponding modules for 250 ms. In the original experiment, a retro-cue

that indicated which of the two previously presented items needed to be memorized was pre-

sented 800 ms later, which was followed by significant lateralization at posterior electrodes. To

mimic this, the memory population of the cued module is briefly reactivated by means of a

non-specific population wide input with an amplitude of 0.02 for 20 ms [cf. 12]. After another

fixation period, the impulse stimulus was presented to both sensory populations for 100 ms,

1100 ms after the onset of the cue. After another delay of 400 ms, the probe was presented to

the sensory populations for 250 ms. To simulate different participants in the experiment, every

1344 trials the random seed was reset and new random Gabor filters were generated to use as

encoders for the sensory populations. In total the model performed 30 sets of 1344 trials,

reflecting 30 participants in the original experiment.

Generalization 1 (Experiment 3 in [3]) was identical to Experiment 1, except that the

impulse stimulus was presented at 5 different SOA with respect to the probe (0, 50, 100, 250,

500 ms). In addition, the impulse stimulus now lasted until the probe was presented. In the

0-ms case, no impulse stimulus was shown. To simulate different participants in the experi-

ment, every 280 trials the random seed was reset and new random Gabor filters were generated

to use as encoders for the sensory populations. In total the model performed 20 sets of 280 tri-

als, reflecting 20 participants in the original experiment.

In Generalization 2 (Experiment 2 in [3]), each trial started with the presentation of two

memory items to the sensory population of the corresponding modules for 250 ms. After a fix-

ation period of 950 ms, the first impulse was presented to both sensory populations for 100 ms.

After another fixation period, the first probe was presented to the sensory population of the

primary memory item, for 250 ms. To mimic reactivating the secondary memory item after-

wards, the cued module is briefly reactivated by means of a non-specific population wide input

with an amplitude of 0.02 for 20 ms, 450 ms after the onset of the first probe (as indicated by

the lateralization in the EEG data, see the main text and [3]). 1750 ms after the first probe the

second impulse was presented to both sensory populations for 100 ms. After another delay of

400 ms, the second probe was presented to the sensory population of the secondary memory

item for 250 ms. To simulate different participants in the experiment, every 1728 trials the ran-

dom seed was reset and new random Gabor filters were generated to use as encoders for the

sensory populations. In total the model performed 19 sets of 1728 trials, reflecting 19 partici-

pants in the original experiment.
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