
RESEARCH ARTICLE

Selection of key sequence-based features for

prediction of essential genes in 31 diverse

bacterial species

Xiao Liu1,2*, Bao-Jin Wang1, Luo Xu1, Hong-Ling Tang3, Guo-Qing Xu1

1 College of Communication Engineering, Chongqing University, Chongqing, China, 2 Key Laboratory of

Chongqing for Bio-perception and Intelligent Information Processing, Chongqing, China, 3 Chongqing City

Management College, Chongqing, China

* liuxiao@cqu.edu.cn

Abstract

Genes that are indispensable for survival are essential genes. Many features have been

proposed for computational prediction of essential genes. In this paper, the least absolute

shrinkage and selection operator method was used to screen key sequence-based features

related to gene essentiality. To assess the effects, the selected features were used to pre-

dict the essential genes from 31 bacterial species based on a support vector machine classi-

fier. For all 31 bacterial objects (21 Gram-negative objects and ten Gram-positive objects),

the features in the three datasets were reduced from 57, 59, and 58, to 40, 37, and 38,

respectively, without loss of prediction accuracy. Results showed that some features were

redundant for gene essentiality, so could be eliminated from future analyses. The selected

features contained more complex (or key) biological information for gene essentiality, and

could be of use in related research projects, such as gene prediction, synthetic biology, and

drug design.

Introduction

Essential genes are absolutely required for the survival of an organism and are therefore con-

sidered the foundation of life [1, 2]. They are useful for biological and biomedical studies,

including origin of life, evolution, and drug design studies [1–4]. Two approaches are used to

determine essential genes: experimental and computational methods [5]. Experimental meth-

ods are time consuming and expensive, and different experimental methods may yield differ-

ent results [6]. Therefore, computational prediction methods offer a good alternative.

Many computational methods, especially machine learning-based methods, have been pro-

posed for prediction of essential genes [5]. A large range of features that describe the gene

essentiality have been adopted for increasing prediction accuracy. Increasing the number of

features (i.e., the dimension of feature space) results in a sharp increase in computational com-

plexity and cost. Thus, feature selection is used to aid prediction of essential genes. Saha and

Heber selected 13 features based on a modified simulated annealing algorithm, and used them

with weighted k-nearest neighbor and support vector machine (SVM) algorithms to classify
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the essential genes of Saccharomyces cerevisiae [7]. Seringhaus et al. identified 14 genomic

sequence features based on the correlation coefficient, and analyzed the essential genes of both

S. cerevisiae and Saccharomyces mikatae [8]. Gustafson et al. collected and ranked numerous

genomic, protein, and experimental features, and then constructed a classifier for essential

gene prediction for S. cerevisiae and Escherichia coli [9]. Hwang et al. proposed a method based

on genetic algorithms to predict essential genes of S. cerevisiae, with a backward search-based

wrapper for feature selection amongst 31 features [10]. Plaimas et al. used a broad variety of

metabolic network and sequence features, and trained 100 SVM classifiers to identify genes in

Salmonella typhimurium. Using their prediction results and an experimental knockout screen,

the authors defined 35 enzymes as drug targets [11]. Deng et al. presented a machine learning-

based integrative approach to predict the essential genes of four bacterial species: E. coli, Pseu-
domonas aeruginosa PAO1, Acinetobacter baylyi ADP1, and Bacillus subtilis. Using Bayesian

analysis, they ranked all features according to the coverage length of log-odds ratios, and

selected 13 features for prediction [12].

Although many features have been proposed and preliminarily selected in these studies, no

overall analysis of the widely used features for gene essentiality has been performed. It is

important to understand the relationship between the features and gene essentiality, whether

all the features are critical to gene essentiality, and which features are key. Moreover, the sam-

ple size (analyzed objects) is very limited in existing studies, which affects the generalization

ability of the study results (Generalization ability is the ability of a learning machine to perform

accurately on new, unseen objects/tasks after having experienced a known, well-studied data

set for learning).

Feature selection is a key process in machine learning. The accuracy and generalization

capability of classifiers are directly affected by the results of feature selection. The least absolute

shrinkage and selection operator (Lasso) is a typical regularized feature selection technique

that provides sparsity-inducing estimation of regression coefficients by adding l-1 penalty

functions to the traditional least squares regression analysis [13,14]. Lasso has been widely

used in fields such as cancer classification and protein inference [15,16].

In this paper, Lasso was used to screen the key feature subset from the most common

sequence-based features of gene essentiality, with the selected feature subset assessed by SVM

classifiers using 31 bacterial species.

Materials and methods

Data source

All the thirty-one bacterial species provided in the DEG11.1 were chosen for examination in

this study [17]. Of these, 21 were Gram-negative and ten were Gram-positive (Table 1). The

information on the essential/non-essential genes from the bacterial species was obtained from

DEG, and the corresponding genome sequences were downloaded from the NCBI GenBank

database (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). RNA genes, pseudogenes, and other

non-coding genes were filtered out, with only protein-coding genes retained. Genes annotated

as essential in DEG that matched the corresponding gene from NCBI were marked as positive,

while the mismatched genes were marked as negative. Detailed information on these genes is

listed in Table 1 and S1 File.

Subset dataset

Sequence-based features that are widely used in existing prediction models were collated, as

shown in Table 2. Because of the differences in cell structure between Gram-negative and

Gram-positive bacteria, these two groups have different subcellular localization characteristics.
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Pre-computed subcellular localization was parsed and added to our dataset. According to our

previous work, the Hurst exponent, which represents the long-range correction in a sequence

of essential and nonessential genes, is related to the gene essentiality [18,19]. Therefore, despite

not being considered in related studies, the Hurst exponent was chosen as a feature in the cur-

rent work.

Three datasets were constructed: a Gram-negative (GN) dataset, a Gram-positive (GP)

dataset, and the Full dataset. The original dimensions of features of the GN and GP datasets

were 59 and 58, respectively. The Full dataset contained 57 features, as common subcellular

localization features were extracted from GN and GN bacteria. (Note: Each amino acid was

treated as one single feature. There were 20 features contained in Amino acid usage.)

Table 1. Information on the 31 bacterial species.

ID Organism Abbr. NCBI Accession ID Gram Essential Gene

Number

Sample Number

1 Acinetobacter baylyi ADP1 ABA NC_005966 - 498 3307

2 Bacillus subtilis 168 BSU NC_000964 + 271 4175

3 Bacteroides fragilis 638R BFR NC_016776 - 547 4290

4 Bacteroides thetaiotaomicron VPI-5482 BTH NC_004663 - 325 4778

5 Burkholderia pseudomallei K96243 BPS NC_006350/

006351

- 505 5721

6 Burkholderia thailandensis E264 BUT NC_007650/

007651

- 403 5631

7 Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 CJE NC_002163 - 222 1572

8 Caulobacter crescentus CCR NC_011916 - 401 3182

9 Escherichia coli MG1655II ECO NC_000913 - 296 4140

10 Francisella novicida U112 FNO NC_008601 - 390 1719

11 Haemophilus influenzae Rd KW20 HIN NC_000907 - 625 1602

12 Helicobacter pylori 26695 HPY NC_000915 - 305 1457

13 Mycobacterium tuberculosis H37Rv MTU NC_000962 + 599 3872

14 Mycoplasma genitalium G37 MGE NC_000908 + 378 475

15 Mycoplasma pulmonis UAB CTIP MPU NC_002771 + 309 782

16 Porphyromonas gingivalis ATCC 33277 PGI NC_010729 - 463 2089

17 Pseudomonas aeruginosa PAO1 PAE NC_002516 - 116 5476

18 Pseudomonas aeruginosa UCBPP-PA14 PAU NC_008463 - 335 5892

19 Salmonella enterica serovar Typhi STY NC_004631 - 347 4195

20 Salmonella enterica serovar Typhimurium SL1344 STS NC_016810 - 353 4446

21 Salmonella enterica subsp. enterica serovar Typhimurium str.

14028S

SET NC_016856 - 104 5233

22 Salmonella typhimurium LT2 SLT NC_003197 - 228 4363

23 Shewanella oneidensis MR-1 SON NC_004347 - 402 4065

24 Sphingomonas wittichii RW1 SWI NC_009511 - 535 4850

25 Staphylococcus aureus N315 SAU NC_002745 + 302 2582

26 Staphylococcus aureus NCTC 8325 SAN NC_007795 + 345 2751

27 Streptococcus pneumoniae SPN NC_003098 + 129 1793

28 Streptococcus pyogenes MGAS5448 SPM NC_007297 + 227 1865

29 Streptococcus pyogenes NZ131 SPZ NC_011375 + 241 1700

30 Streptococcus sanguinis SSA NC_009009 + 218 2270

31 Vibrio cholerae N16961 VCH NC_002505/

002506

- 580 3351

https://doi.org/10.1371/journal.pone.0174638.t001
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Table 2. Original features and results of selected features.

Abbreviations Description Selection

Results

Tool

GN GP Full

Intrinsic feature Gene size Length of genes * *

strand Negative or positive strand *

protein size Length of amino acids *

Codon bias T3s Silent base compositions about T * * * CodonW [20]

C3s Silent base compositions about C * *

A3s Silent base compositions about A * *

G3s Silent base compositions about G * * *

CAI Codon Adaptation Index * * *

CBI Codon Bias Index *

Fop Frequency of Optimal codons

Nc The effective number of codons * *

GC3s G+C content 3rd position of synonymous codons

GC G+C content of the gene * *

L_sym Length of system amino acids *

Gravy Hydropathicity of protein * *

Aromo The frequency of aromatic amino acids

Amino acid usage Amino acid A, R, D, C, Q, H, I, N, L, K, M, F, P, S, T, W, Y, V *

Amino acid R, D, C, E, H, L, G, N, K, F, P, S, T, M, V *

Amino acid A, R, C, Q, D, H, I, G, N, L, K, M, F, P, S, T, W, V, Y *

Rare_aa_ratio The frequencies of rare amino acids *

Close_aa_ratio The number of codons that one third-base mutationis removed from a

stop codon

Physio- chemical

Properties

M_weight Molecular weight Pepstats [21]

I_Point Isoelectric Point * *

Tiny Number of mole of the amino acids (A+C+G+S+T) * * *

Small Number of mole of the amino acids (A+B+C+D+G+N+P+S+T+V)

Aliphatic Number of mole of the amino acids (A+I+L+V) * *

Aromatic Number of mole of the amino acids (F+H+W+Y) * * *

Non-polar Number of mole of the amino acids (A+C+F+G+I+L+M+P+V+W+Y) * *

Polar Number of mole of the amino acids (D+E+H+K+N+Q+R+S+T+Z) * *

Charged Number of mole of the amino acids (B+D+E+H+K+R+Z) * *

Basic Number of mole of the amino acids (H+K+R) * *

Acidic Number of mole of the amino acids (B+D+E+Z) * *

Transmembrane helices ExpAA The number of transmembrane amino acids * TMHMM3

[22]First60 The number of transmembrane amino acids in first 60 * * *

PredHel The final prediction of transmembrane helices

Subcellular localization Cytom Cytoplasmic Membrane Score PSORTb v3.0

[23]Extra Extracellular Score * * *

OuterM Outer Membrane Score

Peri Periplasmic Score *

Cyto Cytoplasmic Score * * *

Cellw Cell wall Score *

Loc_s Final Score * * *

Hurst exponent Hurst The Hurst exponent * * R package [24]

Total features (dimension) 37 38 40

* indicates a selected feature. If a feature was selected from two or three of the sets (GN, GP, Full), then it should be considered significantly associated

with essentiality.

https://doi.org/10.1371/journal.pone.0174638.t002
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Workflow of data processing

The workflow is illustrated in Fig 1.

(1) Data was downloaded.

The data downloaded from DEG and GenBank were mapped according to the NCBI gene

identifier number. The genes from DEG were labeled as essential, with the remaining genes

labeled as nonessential.

(2) Feature collection and selection.

Fig 1. Workflow of analysis procedures.

https://doi.org/10.1371/journal.pone.0174638.g001
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The frequently used sequence-based features were collated and are listed in Table 2. Each

attribute was scaled to the [−1, +1] interval, and an initial dataset was obtained. The Lasso con-

tains a penalty term that constrains the size of the estimated coefficients. As the penalty term

increases, the Lasso sets more coefficients to zero. In this study, the Lasso was used with

10-fold cross validation. The selected features are marked with an asterisk in Table 2.

(3) Training and prediction.

A SVM is an efficient classification algorithm that is suitable for solving binary classification

problems in high-dimensional spaces [25]. LibSVM 3.18 was used to assess the effectiveness of

the subset of selected features [26]. Grid optimization was used to determine and optimize the

SVM parameters based on the radial basis function kernel for the cross-validation. The differ-

ence between the number of essential and nonessential genes was sufficiently large (Table 1)

that an under-sampling strategy was also used to deal with the data imbalance [27].

(4) Performance evaluation.

For the GN, GP, and Full datasets, the dimensions of the reduced features were 37, 38, and

40, respectively (Table 2). For each dataset, two-thirds of the total number of gene was assigned

as a training set, and the rest was used as a test set. The parameters for SVM were optimized

through a 5-fold cross-validation of the training set. The trained and optimized classifier was

then evaluated using the test set. This process was repeated five times with different random

splitting of the training and test data sets, and the under-sampling of the dataset of nonessential

genes was repeated 10 times. Each result represents the averaged value over the 50 repetitions.

A receiver operator characteristics curve (ROC-curve) was used to measure the classifica-

tion performance. The area under the ROC-curve (AUC) yields a performance estimate across

the entire range of thresholds (Fig 2). The indexes related to prediction accuracy (ACC), AUC,

sensitivity, specificity, positive predictive value (PPV, i.e., precision), and the average of speci-

ficity and sensitivity (AVE) were also calculated to assess the efficiency (Table 3) [28].

(5) Steps 2–4 were then repeated to obtain the key features.

Based on performance evaluation results from step 4, we estimated the efficiency of the fea-

ture selection. If the prediction accuracy decreased, the subset of selected features was assessed

as unqualified. Steps 2–4 were repeated with manual parameters adjustment until the accuracy

reached the same level as provided by the original features. The features obtained at the end of

the analysis were retained as key features.

Results

The original features which are widely used in existing prediction models and the key features

selected by the Lasso are listed in Table 2.

Fig 2. Three ROC curves for predicting essential genes based on the original and selected features. (A) ROC curves for Gram-negative

dataset. (B) ROC curves for Gram-positive dataset. (C) ROC curves for Full dataset.

https://doi.org/10.1371/journal.pone.0174638.g002
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For machine learning methods, as the number of features decreased, the computational

complexity also decreased. This was affected by many factors, including the number of genes

in the training dataset, the number of dimensions, and the number of support vectors [29,30].

In addition, as the feature dimensions decreased, the computational time also decreased, while

the computational efficiency increased.

We know that some sequences in the GN, GP and Full dataset are closely related. As a

result, the corresponding genes could be very similar, and there exist redundant in the dataset.

Considering overfitting and overestimate of the performance of the algorithm, three evalua-

tion methods were designed to evaluate the effectiveness of the selected features. Firstly, the

comparison of the computational performance on the selected features before and after feature

selection of three dataset (GN, GP and Full dataset) was carried out. The next one was the per-

formance comparison in 31 diverse species, separately. Finally, leave-one-species out method

was employed, i.e., genes of thirty species were used as training set and gens of another species

as testing set, in turn.

All analysis was performed on an Intel I7-4790 (3.6 GHz) computer with 16 GB memory

and a 64-bit Windows operation system.

Performance evaluation before and after feature selection in the GN, GP

and full dataset

A comparison of the computational performance before and after feature selection for the

three datasets is shown in Table 3.

(1) Feature selection and evaluation in the GN dataset

The GN dataset contained 21 bacterial genomes (Table 1), including 7980 essential genes

and 73379 non-essential genes. Twenty-two redundant features were eliminated. The AUC,

sensitivity, specificity, and AVE are listed in Table 3. Prediction accuracy remained stable after

feature selection. The ROC curve showed that the performance was equivalent before and after

feature selection (Fig 2). Furthermore, we observed an improvement in program running time

when the selected features were used. The parameter optimization time was decreased by

17.8%, the classification and prediction time was decreased by 47.7%, and the total running

time was decreased by 18.9%.

(2) Feature selection and evaluation in the GP dataset

The GP dataset contained ten bacterial genomes, including 3019 essential genes and 19246

non-essential genes. Twenty redundant features were eliminated. The parameters of prediction

performance are listed in Table 3. For this dataset, the parameter optimization time was

Table 3. Comparison of the classification results of original and selected features.

Gram-Negative Gram-Positive Full

Original

features

Selected

features

Variation Original

features

Selected

features

Variation Original

features

Selected

features

Variation

Sensitivity 0.695 0.713 0.019 0.737 0.729 -0.009 0.708 0.715 0.007

Specificity 0.737 0.733 -0.005 0.752 0.769 0.016 0.743 0.736 -0.006

AVE 0.716 0.723 0.007 0.745 0.749 0.004 0.725 0.726 0.000

AUC 0.782 0.790 0.009 0.826 0.828 0.002 0.797 0.794 -0.003

Number of features 59 37 -22 58 38 -20 57 40 -17

Optimization time (Sec)a 56439 46421 -17.750% 3671 3003 -18.197% 140375 116976 -16.669%

Classification and

prediction time (Sec)

2245 1175 -47.661% 152 112 -26.316% 3853 3399 -11.783%

Total running time (Sec) 58684 47596 -18.894% 3823 3115 -18.519% 144228 120375 -16.538%

aThe optimized parameters include C and gamma, and were determined using the Grid Method with default parameters.

https://doi.org/10.1371/journal.pone.0174638.t003
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reduced by 18.2%, the classification and prediction time was decreased by 26.3%, and the total

running time as reduced by 18.5%.

(3) Feature selection and evaluation in the Full dataset

The Full dataset, containing all 31 bacterial species, included 10999 essential genes and

92625 non-essential genes. The common features between Gram-negative and Gram-positive

bacteria were collated, and the original dataset contained 57 features. Comparative results of

feature selection are listed in Table 2. Using the selected features, the parameter optimization

time was decreased by 16.7%, the classification and prediction time was reduced by 11.8%, and

the total running time was decreased by 16.5%. In addition, the prediction accuracy remained

stable after the removal of 17 redundant features.

(4) Comparison of the prediction performance

Here, we chose eight representative papers and compared the prediction performance. The

methods used in these papers were mainly based on machine learning. The commonly used

performance indexes in these papers were chosen and listed in Table 4 for comparison. In this

study, 31 bacterial objects (21 Gram-negative objects and 10 Gram-positive objects) were ana-

lyzed, more than the objects analyzed in the other studies.

A remarkable performance was provided in [28]. It should be noticed that the features used

in the work listed in Table 4 were mainly sequence based feature (see note 7 and 8 of Table 4).

The features used in [28] included the 93’ Z-curve features, orthologs, and other DNA or

amino acid sequence based features. The Z-curve features provided more topology informa-

tion, which was an important factor to get higher prediction accuracy.

A basic method for prediction of essentiality of genes is based on homology with essential

genes experimentally determined in other bacterial species. So we compared the results of our

method with the prediction results of BLAT and a homology alignment based method (CEG_-

MATCH), which are shown in the last two columns of Table 4.

In general, results show our method provides higher accuracy and specificity. And the

other comparative results were provided by machine learning based methods. The prediction

performance of our method provided the same accuracy level. It showed the generalization

ability of our method and the efficiency of the screened features.

Performance evaluation in 31 diverse species

A comparison of prediction of essential gene within and between species before and after fea-

ture selection for 31 diverse species was shown in S1 Table. To facilitate the analysis, the 40

selected features from Full dataset were used in the prediction.

(1) All the genes of a species were used for training the predicting model, and then were pre-

dicted by the model, in self-test method. Of course, an excellent prediction result was obtained.

(2) In a 5-fold cross-validation method, four-fifth of the total genes of a species was assigned

as a training set, and the rest of this species was used as a test set. This process was repeated

five times for each prediction.

(3) In a pairwise method, the total number of gene of one species was assigned as a training

set, and the genes of every other species were used as a test set.

In total, the prediction accuracy remained stable after the removal of 17 redundant features.

The average AUC got a slight increase and the running time was decreased.

Performance evaluation based on leave-one-species out method

The genes of thirty species were used as training set and genes of another species as testing set,

in turn. Again, the 40 selected features from Full dataset were used in the prediction, to facili-

tate the analysis. (See S2 Table for detail.)
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A SVM classifier was constructed based on the corresponding training set, and used to pre-

dict the genes of the left specie. This process repeated 31 times. A comparison of the prediction

performance between before and after feature selection was shown in S2 Table. The prediction

accuracy remained stable after the removal of 17 redundant features. The average AUC got a

slight decrease (0.30%) and the running time was decreased.

Discussion

Essential genes are absolutely necessary for the survival of an organism [2]. Investigating fea-

tures associated with gene essentiality is fundamental to the prediction and identification of

essential genes. Machine learning methods are widely used in this field, and numerous features

have been proposed and employed to improve calculation accuracy. It is important to under-

stand the relationship between features and gene essentiality, and thus to identify the key

features.

In this study, Lasso was applied for feature selection to predict essential genes from 31 bac-

terial species. For the GN, GP, and Full datasets, the feature dimensions were decreased from

59, 58, and 57, to 37, 38, and 40, respectively. To assess the effect of these reductions, corre-

sponding SVM classifiers were built based on original and selected features, and then used to

predict the essential genes of the selected bacteria. As some closely related genes may lead to

overfitting and overestimate on the performance of the algorithm, three evaluation methods

were designed to evaluate the effectiveness of the selected features more comprehensively. In

all cases, the prediction accuracy remained stable after the feature set was reduced. The results

showed that there was a high degree of redundancy amongst the features for predicting gene

essentiality. The resulting subset of features will be of use for further research, including gene

prediction, synthetic biology, and drug design studies. Furthermore, the closely related genes

may also affect the feature selection and result in feature bias, which should be considered for

further study.

It should be noted that structural and functional features, such as protein-protein interac-

tions and gene expression, which cannot be directly derived from the sequence, were not con-

sidered in this study. In practice, only sequence-based features are commonly available for a

newly sequenced genome. Amongst the 31 bacterial genomes examined in this study, very few

had corresponding structural or functional data available. As the aim of computational predic-

tion methods is to reduce or even eliminate the dependency on biochemical experiments, just

like that the long-range goal of Protein Structure Initiative (PSI) is to make the atomic-level

structures of most proteins easily obtainable from their corresponding DNA sequences [35],

we focused on sequence-based features for application in biological research.

However, our results indicated that the prediction accuracy could still be improved

(Table 3). Although Table 4 shows the generalization ability of our method and the efficiency

of the screened features, Table 3 shows the GP gets relatively better prediction performance

than GN gets (Sensitivity, Specificity, AVE, and AUC). We suppose that is because the GN

contains 21 objects, much more than the GP (10 objects). This encourages us promote the gen-

eralization ability and the efficiency of our method further, to provide the same performance

for different objects. We hope to address this by pursuing new features that are closely related

to gene essentiality, and by improving and optimizing the classifying algorithm. Furthermore,

the development and improvement of comprehensive and specific databases for essential

genes, such as the Database of Essential Genes (DEG), will provide a greater number of sam-

ples, which will enhance our prediction model. As described by Viktor and Kenneth, a simple

algorithm based on a large dataset will provide better results than a comprehensive algorithm

based on limited data [36].
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Finally, we observed that the program running time (including training, optimizing, and

testing) decreased after feature selection. With the rapid progress of computational ability,

researchers can pay more attention to computation accuracy, instead of computation effi-

ciency. However, with increasingly large datasets, greater computation efficiency is always

advantageous.

Conclusion

Feature selection is a critical factor in classification task. Inclusion of too many features affects

the generalization ability and increases computational complexity. Therefore, it is desirable to

use as few features as possible to carry out a classification, while maintaining the same level of

accuracy. In this study, we screened the key biological features related to gene essentiality

using Lasso, eliminated the redundant features, and assessed the validity of our selection in 31

bacterial species. The results could be of use for further research projects, including in silico
gene prediction, synthetic biology, and drug design studies.
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