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SUMMARY

Gene expression is made up of inherently stochastic processes within single cells and can be modeled
through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic vari-
ability arising from intracellular biochemical processes. We extend current models for gene expression to
allow the transcriptional process within an SRN to follow a random step or switch function which may
be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model
provides a generic framework to capture many different dynamic features observed in single cell gene
expression. Inference for such SRNSs is challenging due to the intractability of the transition densities. We
derive a model-specific birth—death approximation and study its use for inference in comparison with the
linear noise approximation where both approximations are considered within the unifying framework of
state-space models. The methodology is applied to synthetic as well as experimental single cell imaging
data measuring expression of the human prolactin gene in pituitary cells.
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1. INTRODUCTION

In single cells, gene expression is made up of fundamentally stochastic processes
(Raj and Van Oudenaarden, 2008) due to intrinsic and extrinsic variation. Here, intrinsic variability
refers to the variation observed between different realizations of identical biological systems within
identical environments due to the probabilistic nature of the occurrence of molecular reactions. Extrinsic
variability is the intercellular variability of gene expression caused by randomness in molecular machinery
within individual cells (Elowitz and others, 2002). Light microscopy technology used to image reporter
genes has proved successful for studying stochastic temporal expression dynamics in individual live
cells (Spiller and others, 2010). The reporter gene is inserted into cell DNA and engineered to be under
the control of a native gene promoter. An important statistical problem arising from the use of reporter
constructs, such as fluorescent and luminescent proteins, is to infer the unobserved transcriptional
activity of the reporter, which can be related to the activity of the native gene (Finkenstadt and others,
2008). This activity is highly variable, occurring in stochastic pulses for many genes, including prolactin
(Harper and others, 2011; Suter and others, 2011). Here we introduce a general stochastic switch model
(SSM), to study pulsatile gene expression dynamics within single cells.

Switch models have previously been considered for inferring transcription factor interactions
(Sanguinetti and others, 2009; Opper and Sanguinetti, 2010) and reconstructing transcription dynam-
ics (Finkenstadt and others, 2008; Harper and others, 2011). In general, binary states are assumed
(Peccoud and Ycart, 1995; Larson and others, 2009; Suter and others, 2011; Sanchez and others, 2013),
where transcription can take only two values corresponding to the gene being active or inactive. Although
the binary switch has a simple biological interpretation, the restriction to two states may not capture the
full range of cellular activity as other events may influence gene regulation. The multi-state model of
Jenkins and others (2013) was able to describe a wide range of observed dynamic patterns in gene expres-
sion including oscillatory behavior with asymmetric cycles of varying amplitude. It is the aim of this study
to embed the multi-state switch model within a stochastic reaction network (SRN) for single cells whilst
also introducing a measurement process to fit single cell imaging time series. Inference is challenging due
to the intractability of the likelihood and we consider two approximations, the linear noise approximation
(LNA) (van Kampen, 1961) and an alternative approximation that is derived specifically for the SSM. We
introduce the biological motivation and model in Section 2. A brief overview of SRNs and their associated
approximations is given in Section 3 with inferential techniques discussed in Section 4. Section 5 presents
a simulation study while an application to data is presented in Section 6.

2. A STOCHASTIC SWITCH MODEL

The basic model of gene expression (Paulsson, 2005) describing the transfer of information encoded within
DNA to the creation of protein molecules is given by

DNA 2% mRNA, mRNA —" @, @.1)
o . . Sp
mRNA —— mRNA + Protein, Protein —— @, (2.2)

where the superscript for each reaction denotes the corresponding reaction rate. Following
Jenkins and others (2013), we model transcription by a piecewise constant function, B(¢) = g; for ¢t €
[si—1,s;), where changes in rates are associated with unobserved transcriptional events occurring at
unknown switch times sy, . . ., s¢. The rates of translation, «, and degradation, §,, and §,,, are assumed con-
stant. Figure 1 gives a diagrammatic representation of how the measurement process, via reporter genes,
relates to native gene expression. Our aim is to backcalculate from light intensity measurements, to reporter
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Fig. 1. A diagrammatic representation of the transfer of information from DNA to protein through transcription and
translation and its relation to the measurement process through a reporter gene construct. Specifically, the cell DNA
is engineered such that the reporter gene is regulated through the same regulatory sequences as the gene of interest.
Thus, transcription of the reporter gene and target gene will be highly coupled. Once transcribed, the mRNA molecules
will either degrade or be translated into proteins. Note that there is no longer any coupling between the native and
reporter species after transcription and thus the remaining reactions occur at differing rates. The abundance of reporter
protein can be measured indirectly through microscopy techniques. Consequently, the aim of this methodology is to
backcalculate from reporter protein levels, to reporter mRNA levels and infer the reporter transcriptional dynamics.
This will then give a fair representation of the native transcriptional dynamics.

protein levels, back to reporter mRNA levels and finally to the transcriptional dynamics of the reporter,
which will relate to the transcriptional dynamics of the native gene since the reporter is under the control
of the native gene promoter. Figure 2 shows fluorescent time course data for 15 randomly selected cells
from samples of immature and adult rat pituitary tissue. The target gene for these data is the prolactin gene
whose regulation is of physiological interest due to its important roles in mammalian reproduction and also
its frequent over-production by pituitary adenomas (Featherstone and others, 2012). For further details
of the reporter construct used and associated experimental framework; see Semprini and others (2009),
Harper and others (2010) and Featherstone and others (2011). We assume that the observed fluorescent
time course, Y, are indirect measurements of reporter protein levels, Y =« P + €, € ~ N(0, 062), and are
conditionally independent given the latent states, X := (M, P)T, consisting of the unobserved reporter
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Fig. 2. Fluorescent time course data of 15 randomly selected cells from (a) an immature (post-natal day 1.5) rat pituitary
tissue slice and (b) a mature (adult male) rat pituitary slice. Measurements were taken every 15 min over 42 h.

Fig. 3. A graphical representation of the state-space model for single cell imaging data. The arrows depict conditional
dependencies between nodes, where square nodes are observed variables and circular nodes are unobserved. The
observed light intensities, Y;, are conditionally independent given the unobserved latent states X, := (M;, P;) consist-
ing of reporter mRNA, M,, and reporter protein, Py, levels at time 7. Moreover, the latent states follow a Markov jump
process with X, depending only upon the previous states X;_.

species, mRNA (M) and protein (P). Consequently, the system follows a state-space model (Figure 3)
where X is a Markov jump process given in the following section.

3. STOCHASTIC REACTION NETWORKS AND THEIR APPROXIMATIONS

SRNSs can be used to model systems of reactions such as (2.1) and (2.2) by Markov jump processes (MJPs).
Consider a system of v stochastic reactions involving D molecular species, X = (X1, ..., Xp)T, in a well-
mixed environment of volume 2. The stochastic process can be represented by the set of reactions, PX LY
QX, for matrices P and Q. The vector of hazards h, describes the rate at which each reaction occurs and
in general will depend on x, the current state of the random vector X, and kinetic rates 6. The vectors v;
of the stoichiometric matrix S:=Q — P :=[vy, ..., v,] describe the change in state for each reaction ;.
By the law of mass action, the hazards are given by

D
hj(x,ej)zejH(Pfo for j=1,...,v, 3.1)
k=1
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where Pj; is the jkth element of P and x; is the kth element of the state vector x. Given the sys-
tem is currently in state x, the probability of reaction j occurring so that the state vector becomes
X +v;, in the next infinitesimal dt time is given by A ;(x,6;)dt. From this, it is straightforward
to derive that the next reaction to occur will be at time ¢+t and of type j with probability,
PX(t+ 1) =x+Vv; | X() =x) =e "&DTh (x,0;), where ho(x,0) = > i1 hj(x,6)). This identity
forms the basis of a stochastic simulation algorithm (Gillespie, 1977), from which we can generate exact
sample paths of a given system. If complete data on all species and reactions were available, inference
would be straightforward since the likelihood is then given by

n n
Fx10) =[] h;x(@).0,) exp <— > " hox(t:), O)ltip1 — n—]) : (32)

i=1 i=0
where n is the number of reactions that take place, ji, ..., j, is the sequence of reaction types, and
t, ..., t, are the associated timings of each reaction. However, in molecular biology, complete data paths

are not available and commonly only a subset of species are measured indirectly with error.

One approach for exact inference on partially observed SRNs is to integrate out the latent reac-
tion paths and recent attention has been focused on evaluating these high-dimensional integrals in
a computationally efficient way. Andrieu and others (2010) show how particle Markov chain Monte
Carlo (MCMC) methods can be used to perform inference on MIPs, in particular the stochas-
tic kinetic Lotka—Volterra model, although this was found to perform poorly in low measurement
error scenarios (Golightly and Wilkinson, 2011). Other approaches for inference on the exact system
include a simulation-based method (Amrein and Kiinsch, 2012), a reversible jump (RJ) MCMC method
(Boys and others, 2008), an implementation of uniformization (Choi and Rempala, 2012) and the MCEM?
of Daigle and others (2012) which makes use of rare simulation techniques. Two recent examples that also
consider real data are the delayed acceptance MCMC method of Golightly and others (2014) applied to
epidemic data and the dynamic prior propagation method of Zechner and others (2014) who model an arti-
ficially controlled gene expression system in yeast. All these exact inference techniques assume a known
scaling factor, k, of 1 and often also known measurement error. Moreover, the techniques used are often
computationally burdensome with respect to the size of data we consider (Figure 2). In a molecular biology
framework, experimental methods will invariably result in a measurement process with both unknown error
and scaling as the direct number of molecules is unobservable. One approach is to rescale the data based
on additional experiments (Zechner and others, 2014). The incorporation of both unknown measurement
error and scaling is non-trivial and we will consider this in some detail.

In our study we consider the feasibility of approximating the underlying MJP by approximating the
transition densities, P(x, 7) := P(X(¢) = x | X(0) = xq), which solve the, rarely tractable, chemical mas-
ter equation

%]P’(x,t):Zhj(x—vj,ej)]}’(x—vj,t)—hj(X,Qi)]P’(X,t), P(x,0) =I[x=x0].  (3.3)

J=1

The reader is referred to Appendix A (see supplementary material available at Biostatistics online) for
detailed derivations of each approximation.
We first note that, in the macroscopic limit, a deterministic approximation, X, is given by

dxP .
o AXP) = Z vih;(XP,0,)=Sh(X,0), XP°(0)=xo, (3.4)
j=1
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which may be appropriate for modeling high-level aggregate data with negligible intrinsic variability as in
Jenkins and others (2013).

At the mesoscopic level there are two approximations that have been used to model SRNs, namely the
chemical Langevin equation (CLE) and the LNA, both of which give rise to systems of SDEs. The LNA
is a linearization of the master equation and always results in analytical transition densities. Derivations of
varying degrees of rigour can be found (van Kampen, 1961; Wallace and others, 2012) with Kurtz (1971)
deriving it as a central limit theorem for the underlying MJP. The LNA is specified by

X“(t) = (1) + Q7 V2E), (3.5)

d¢

i A(P()), d&=J(p(1)&)dt + B(g(1)) dW, (3.6)
where ¢ is the macroscopic ODE solution, d; are independent Wiener processes, A4 is defined as in
(3.4),B:= \/Sdiag(h(¢ (1),0))ST, and J = (J;;) = (04,/3¢;) is the Jacobian. Since the SDE in equation
(3.6) is linear with Ito representation, the transition P(&(z + 7) | £(¢)) is Gaussian with mean and variance
(Komorowski and others, 2009) defined by

d
BT o)),

@ _ (@) + T @NZ®) T + Bp)B(p(1)" (3.7)
dr o ’ ’

d

Thus, the transition probabilities of the state vector are given by P(X'(r + 1) | X (1)) = N(¢(r) +
Q7 '2u(t 4+ 1), Q7' Z(t + 1)). In the case of a linear system where J (¢ (¢)) = J is independent of time,
as in our gene transcription model, (3.7) can be simplified to give u(t + 1) =e’7&(¢) and (¢ + 1) =
frH‘f [eJ(H-r—s)B(S)][eJ(H—r—s)B(S)]T ds.

Both the CLE and LNA are derived in the limit as the system size 2 — oo with precise statements
given in Kurtz (1971, 1978). Despite the LNA commonly being derived as an approximation to the CLE,
Anderson and Kurtz (2011) show that in fact less stringent assumptions are required for the derivation.
Inference on different transcription networks including autoregulatory and dimerization systems using the
LNA are given in Ruttor and Opper (2009), Komorowski and others (2009), Stathopoulos and Girolami
(2013), Finkenstadt and others (2013) and Fearnhead and others (2014). Although the LNA is derived
in the large system size limit, these studies found reasonable performance when the system is of meso-
scopic size.

Finally, we construct a further approximation for the gene expression reaction network (2.1)—(2.2),
consisting of conditionally independent birth—death networks (Appendix A.4 of supplementary material
available at Biostatistics online) given by

/LN VN V . Ny} (3.8)
g MO p p_ Ly (3.9)

This approximation corresponds to the following factorization of the joint transition density:

P(M@), P(t) | M(0), P(0)) =P(M(#) | M(0), P(O)P(P () | M(z), P(0))
~P(M () | MO)P(P(t) | M*(t), P(0)). (3.10)
Note that the exact system is obtained by setting M™* to be the continuous time mRNA process, m(t),

while our approximation arises from setting M*(¢) := m, to be the discrete time mRNA process. Although
alternative definitions of M™* have been considered (Appendix A.4 of supplementary material available
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Fig. 4. 95% pointwise confidence envelopes for simulated mRNA (top) and protein (bottom) processes under the true
process (black), the BDD (blue), the truncated normal BDA (red), and the LNA (green) for two different scenarios
corresponding to different molecular abundances. Scenario 1 (left) is simulated from the parameters 8,, = 1, §,, =0.7,
o =3, Bp =6, B1 =20, B, =2 with switches occurring at # = 12, 20. Scenario 2 (right) is simulated with parameters
On=1,8,=0.7,a =3, Bop =20, f; =40, B> = 60 with switches occurring at t = 12, 20.

at Biostatistics online), we find M*(¢t) =m, provides the best proxy to the exact continuous time pro-
cess. Under this birth—death decomposition (BDD), one can obtain the exact transition densities for the
two separable birth—death subsystems in (3.8)—(3.9) and note that the approximation only affects infer-
ence regarding the protein process since marginal inference for the mRNA process will be exact. The
resulting transition densities are Poisson-binomial convolutions which may be approximated by a normal
density truncated to the positive real line. We term this approach the birth—death approximation (BDA).
The improved precision of the BDA becomes apparent in Figure 4, which shows 95% pointwise simu-
lation envelopes for different scenarios. In all scenarios, the BDD and BDA envelopes for both mRNA
and protein are closer to the true envelopes with the truncated normal approximation modeling the skew-
ness at low molecular numbers better than the symmetric LNA. The LNA improves as molecular numbers
increase although consistently overestimates the variance of the true process for low numbers and will con-
sequently be likely to miss switch points in the transcriptional profiles. This empirical validation, supported
by Appendix A.4 (see supplementary material available at Biostatistics online), reinforces the intuition that
the BDA may be a preferable approximation for systems of low molecular levels.

4. INFERENCE

In the presence of a measurement process, state-space models (as depicted in Figure 3) provide a framework
for modeling SRNs and their approximations. Specifically, we have

Xt+1’\’h(xl+1|xl79)1 Yt"'g(J/t|xts9)’ (41)
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where £ is the transition density of the approximating SRN and g is the density of the measurement
process. For ease of notation, we have dropped any explicit dependence on time, i.e. the sequence of

observations (Yy, ..., Y7) are assumed to occur at arbitrary times, (0, 71, ..., f7) and are equivalent to
(Y(0), Y (1), ..., Y(tr)) in the notation of Section 3. Moreover, we let y denote the vector of observed
data points yy, ..., yr and let 8 denote the unknown parameter vector.

We now investigate the performance of the LNA and BDA for approximating the posterior /(0 |y) of
the underlying SRN. The data likelihood is given by the marginal density,

T
fy16)= / f(y.x]0)dx= / 7o 10)g G0 | x0.0) [ hxi 1301, Ogve 5. 0) dx. (4.2)
X X =1

Under the LNA with Gaussian measurement error, the above integral can be computed explicitly using
the Kalman methodology (see Appendix B.1 of supplementary material available at Biostatistics online).
Under the BDA, equation (4.2) is intractable and one instead targets the joint posterior f (6, x |y) through
the following Gibbs sampler (GS):

(1) Sample the parameter vector 6 from f(6 |y, X).
(2) Sample the latent states, x, from the conditional density, f(x |y, ).

Parameter inference. In order to sample 6 from either (0 |y, x) or f(6 |y), depending on the approx-
imation used, we construct an appropriate MCMC sampler. In particular, inference about 0 includes infer-
ence on the number, k, and position, sy, ..., s; of switches as well as the associated kinetic parameters
(Bo, - --» Br» o, 8, 8,,), the measurement parameters, (k, 03) and the initial state of the latent molecular
processes, (My, Py). Details of all prior distributions are given in Appendix C of supplementary material
available at Biostatistics online. Since the dimension of 6 varies with the number of switches, we employ
a RJ scheme (Green, 1995) to sample across the differing dimensions. In particular, at each iteration of
the MCMC, we propose one of three possible moves: (1) add a switch, (2) delete a switch, and (3) move
a switch. Further details can be found in Appendix D of supplementary material available at Biostatistics
online.

Owing to the high dimensionality of the integral in (4.2), there is a strong correlation between different
model parameters. In order to sample efficiently, we reparameterize & := k« and P, := k P, and target the
posterior of the log-parameters (log 6). Efficiency was further increased through the adaptive scheme of
Haario and others (2001). Specifically, these log-parameters were sampled in two blocks where proposals
are drawn from a multivariate Gaussian centered at the previous value, with the covariance matrix propor-
tional to the covariance of the Markov chains. This adaptation results in an ergodic Markov chain provided
the target density is bounded from above and has bounded support.

Inferring the latent states. There are many ways one can perform the filtering procedure in step
2 of the GS (see Fearnhead, 2011 for a review). Under the BDA, we found a conditional sequential
Monte Carlo particle filter (Andrieu and others, 2010) to perform well. The approach is based on for-
ward simulations to sequentially approximate the filtering density, f(x; | vo;, #) and can be applied to
very general state-space models that are not necessarily linear or Gaussian. The filtering density is

approximated by f No (x| Yo, 0) = ZlNz”l w,(i)(SY<f>, where 8, is a delta function centered at x, and w,(i)
X

are importance weights. Given the approximate filtering density f No(x | y,0):=f No (xo:7 | o1, 0), one
can obtain a sample of the latent states x as required and the resulting algorithm is termed Particle Gibbs
(Andrieu and others, 2010). Further details of the algorithm and proposal densities used for the BDA can
be found in Appendix B.2 (see supplementary material available at Biostatistics online).

Hierarchical modeling. In order to incorporate as much information as possible into the algorithm, infor-
mative prior distributions are desirable. In the example of single cell imaging data, additional experiments
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can be performed to obtain estimates of the degradation parameters, §,, and §,. A hierarchical structure
can be used to aid in the identification of the remaining parameters since a dataset will typically consist of
multiple time series from the same experiment (Finkenstadt and others, 2013). Let y®) denote the observed
time series for cell i, and 69 := (B (¢), oV, 8D, 81(5), k@ oD, Mé’), PO(’)), the vector of parameters, for
i=1,..., N. We assume a log-normal hierarchical structure for translation rates, log @™ ~ N (fi,, a(f),
and measurement parameters, log k' ~ N (i1, 0.2),log o) ~ N(u,, 02), which allows a conjugate update
of the hyper-parameters (Appendix E of supplementary material available at Biostatistics online).

Specifying a hierarchical model for the transcription rates f8:= (8", ..., B™), where @ :=
(ﬂéi), R ﬂ,ﬁi)) is the vector for each cell 7, is less straightforward. To use the same specification as above
would dilute the effect of switching events since all rates would be shrunk to a single distribution. On
the other hand, vague proper priors are not a feasible option since it gives too much prior probability
to the zero switch model (Green, 1995). As an alternative, we specify a hierarchical mixture model with
log B ~ Z,},\Ll wg, N(g, Uém ), which reduces the hierarchical shrinkage. Without resorting to a second
RJ, it is necessary to specify the number of components in advance. One could choose several candidates
and perform model selection a posteriori, although we found two components sufficient to capture the
variability in the data, which is supported by the biological hypothesis that transcription will typically
occur at either a high or low rate. Simulations showed that if the rates truly come from a single component,
then this is elicited from a two-component specification with one weight estimated to be very low.

The hyper-parameters 9 := (o, 0o, b, 07+ o> Op » g, 05, Wp) are assigned uninformative prior den-
sities (Appendix C of supplementary material available at Biostatistics online) and are estimated in addition
to each 6.

Consequently, the algorithm specification for sampling from the full posterior £, ..., W),
91y, ..., y™) has the following structure where additional steps required only under the BDA are
given in italics:

(1) Initialization

(a) Initialize parameters, 6. _ ' _ »
(b) Initialize the latent states Ml(’), ol M(Tl), Pl(l), e P}’).

(2) Update hyper-parameters, @, from the full conditional, f(|6W,...,0M y  yW))=
F@16M] .. e,
(3) Forcelli=1,..., N, sample 0 and the latent states,

(a) update the log transcriptional step function by RJ step;

(b) sample log(B)’, .., B, 8%, 80, M) parameters by a random walk Metropolis—Hastings
(MH) step;

(c) sample log(@?, k@, 69, B{") parameters by a random walk MH step;

(d) update the latent states, Ml(i), R ;i), }51(1‘)’ P, by a particle Gibbs step.

(4) Repeat steps 2 and 3 until convergence.

5. SIMULATION STUDY

In order to investigate the performance of the LNA and BDA, we perform a comprehensive simulation
study where data were generated from the exact MJP via a stochastic simulation algorithm (Gillespie,
1977). The synthetic data were constructed to replicate the main features observed in the data (Figure 2)
with further details given in Appendix F (see supplementary material available at Biostatistics online).
Applying both the LNA and BDA models to these data, it was found that informative priors for the
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degradation parameters were essential in order to identify both the transcriptional profile, 8(¢), and
translation rate, ov. We therefore imposed informative prior distributions, log §,, ~ N (us,, » oazm) andlogd, ~
N(us,, aazp), where the hyper-parameters were fixed at the true values. Analyses showed that, under the
BDA, the scaling parameter, «, remained unidentifiable in the majority of simulations. We hypothesize
this is because, under the BDA, we are targeting an extended space by explicitly sampling the latent states.
To our knowledge, there has been no application within this extended framework that has been able to
incorporate a scaling parameter in the measurement equation. We hence consider two scenarios under the
BDA: (1) « is fixed at the true value and (2) « is fixed at the posterior median obtained from the LNA.

The simulation study was coded in MATLAB® and typically took 10—32 h to run on a standard PC under
the LNA, for 200-700 K iterations. Despite the fact that the BDA methodology is computationally faster
to run per MCMC iteration, due to the high autocorrelation in the chains and poorer mixing properties,
we found it would take ~1-3 million iterations to sufficiently explore the posterior, which could take 20—
40 h. This is unsurprising since the BDA methodology requires the sampling of all latent states in addition
to the parameter vector. For all scenarios under the BDA, 100 particles were used to give a sufficient
number of independent samples in the particle filter. Comparing the simulation results in Appendix F
(see supplementary material available at Biostatistics online), we find the BDA often produces tighter
credible intervals. In addition, in some scenarios, the BDA is better able to identify o and 8, which are
highly correlated, whereas the LNA identifies the product «f. The hierarchical structure greatly aids this
identifiability and, moreover, also enables the algorithm to differentiate between intrinsic variability and
transcriptional switches.

Prior estimation of the degradation parameters is essential and, moreover, the precision of these priors
influences the posterior inference. Typically, 10—15 time series consisting of around 100 observations are
sufficient to inform the hierarchy. More cells may be included in the hierarchy at an increased computa-
tional cost, with our methods having been successfully applied to datasets of 100 or more cells consisting
of ~190 time points each.

6. APPLICATION TO DATA

To apply our methods to the data shown in Figure 2, priors over the reporter degradation rates are obtained
from Finkenstadt and others (2013). We first apply the LNA and then apply the BDA with « fixed at the
posterior median obtained from the LNA. For real data, significantly more iterations were required to fully
explore the posterior under the BDA (8 and 4.5 million iterations for the two datasets given in Figures 2(a)
and (b)) compared to the LNA (300 and 900 K, respectively). The estimated transcriptional profiles for both
datasets are given in Figure 5. Both tissues exhibit dynamic switching behavior with multiple switching
events occurring throughout the time course that would not be exhibited under the traditional binary model.
Figure 6 shows a single backcalculation under both the LNA and BDA along with 95% credible intervals of
the posterior switch times and transcription rates. This example typifies the two methods, where although
the estimated transcription rates differ, the product of translation and transcription, «f, along with the
estimated switch times are comparable with tighter intervals obtained under the BDA. The model fit was
assessed through the analysis of recursive residuals of the one-step ahead predictive distribution and are
shown in Appendix G (see supplementary material available at Biostatistics online) with no departure
from the model assumptions detected, indicating that the SSM under both the LNA and BDA fits the
data well.

More extensive biological analyses of these and other datasets will be presented in forthcoming work,
including analyses of the inter-switch times which can provide further insight into gene regulation. For
instance, if the inter-switch time distribution departs from exponential behavior it may indicate the presence
of a refractory period as introduced in Harper and others (2011).
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Fig. 5. Heatmaps of the posterior transcriptional profiles for (a) the immature tissue sample and (b) the mature tissue
sample calculated under the LNA. (c) and (d) are calculated under the BDA. Each row within a heatmap corresponds
to a separate cell and the color is indicative of the posterior transcription rate (calculated as mRNA molecules per
hour). To obtain the posterior profiles, we extract the marginal distribution of the number and position of switch
times. Conditional on these times, the posterior rates are then extracted from the MCMC output.

7. DISCUSSION

In this study, we have proposed a general methodology for inferring transcriptional regulation for data
obtained through single cell imaging techniques. The underlying biological model is flexible enough to
describe a wide range of behaviors that cannot be captured by the traditional binary model and can be
estimated reliably through a RJ scheme. In order to achieve the above, we consider two approximations
to the true stochastic system. With a slight loss in precision, the LNA has the advantage both in terms
of computational speed, through the use of the Kalman methodology, and also its ability to identify the
scaling parameter of the measurement process. This parameter is of interest as it allows one to obtain
an estimate of the underlying system size. However, since the BDA can give a more accurate represen-
tation of the stochastic system, it may suggest the use of this in conjunction with the LNA estimate of
k. The BDA, although more expensive than the LNA, is still considerably cheaper than the exact meth-
ods reviewed within this paper as we continue to work with the underlying transition densities albeit
through a normal approximation. It therefore provides a realistic alternative to both the LNA and exact
approaches when inferring systems of very small molecular numbers. The BDA is specific to our gene
expression model, however, many different SRNs can be approximated by sequences of conditionally inde-
pendent birth—death reactions and a similar approach may be more widely applied. Despite the theoretical
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Fig. 6. (a) The raw time course data for a single cell from the mature tissue sample, with the backcalculated transcrip-
tional profile given in (b) under the LNA and in (c) under the BDA. The reparameterized profile of transcription x
translation, af is given in (d) for the LNA and (e) for the BDA. Dashed lines represent the 95% credible intervals
about the posterior median transcriptional switches (vertical lines) and transcriptional rates (horizontal lines).

advantages of the more exact BDA, for practical implementation on large datasets we consider the LNA
to give reasonable approximations in realistic computational run time. For further increases in computa-
tional time one may consider approximate inference methods such as variational Bayes (see, for example,
Opper and Sanguinetti, 2010; Opper and others, 2010).

This paper has focussed on the implementation of a SSM for transcription. We have shown how these
methods may readily be applied to data whereupon further analysis of the posterior transcriptional profiles
may give insight into the underlying mechanisms of gene expression. This is in contrast to a priori assuming
a specific regulatory network, which, to ensure model identifiability, often requires a steady-state assump-
tion (Tkacik and Walczak, 2011) that does not correctly model the intrinsic noise (Thomas and others,
2012).
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The SSM provides an approach which is both flexible and scientifically interpretable. The natural
hierarchical structure enables the differentiation of intrinsic variability and transcriptional switches. This
has been exemplified through the application to the prolactin gene where our posterior inference shows
a clear dynamic switching regime for many different transcriptional levels. Moreover, the prolactin gene
provides a good example for modeling gene expression through stochastic processes with random tran-
scriptional pulses as it exemplifies features found in many different genes (Suter and others, 2011).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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