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Abstract: The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during
development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is
characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other
organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related
effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with
cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory
effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone,
combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced
expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These
results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved
treatment strategies to inhibit and prevent EMT-based cancer progression.
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1. Introduction

Among cancer deaths, lung cancer accounts for the largest share, with an incidence rate
that is increasing every year worldwide [1]. Lung cancer occurs as one of two broad types,
small cell lung cancer and non–small cell lung cancer (NSCLC). Of these, NSCLC accounts
for approximately 80–85% of cases [1]. The NSCLC also has been classified into three
main types: adenocarcinoma, squamous cell carcinoma, and large cell [2]. Depending on
the epithelial nature of lung cancer, adenocarcinomas (approximately 70–75% of NSCLC)
exhibit a completely different epithelial phenotype (derived from simple epithelium),
whereas squamous cell carcinomas or epidermoid carcinomas of lung (25–30%) cancer
are derived from keratinocytes or squamous (multilayered) epithelia of the lung. In these
two tumor subtypes, cellular plasticity-related processes such as EMT and invasiveness
have different properties and require different molecular mechanisms [2]. The process of
cell conversion from epithelial to mesenchymal, known as the epithelial-to-mesenchymal
transition (EMT), is normal in embryonic development, wound healing, and fibrosis [1,3].
In NSCLC, however, this transition represents a cellular shift from polarized, tightly bound
epithelial cells to the motile and invasive fusiform mesenchymal cells of metastasis. For
this reason, a candidate strategy for preventing NSCLC metastasis and invasion to other
organs is inhibiting pathways associated with EMT, in addition to the use of conventional
therapeutic drugs.

Among the factors that trigger the EMT process, one of the most important is a
cytokine, transforming growth factor (TGF)-β [4–7]. In TGF-β–induced EMT, TGF-β
binds to the transmembrane Ser/Thr receptors TGF-β type I (TβR-I) and type II (TβR-II),
triggering phosphorylation of TβR-I, followed by downstream phosphorylation of the
effectors Smad2 and Smad3 [8,9]. The phosphorylated Smad2/3 recruits Smad4 to form a
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complex, then translocates from the cytoplasm to the nucleus and binds to transcription
factors such as Snail/Slug and Twist to activate EMT-related genes [10–12]. The EMT
process also can occur through non-Smad signaling pathways such as Wnt/β-catenin or
MAPK/ERK [13–15].

Erlotinib (trade name Tarceva) is an epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor (TKI) in NSCLC cells and, along with gefitinib, is a first-generation TKI
used to treat NSCLC with EGFR mutation [16]. Erlotinib is approved by the U.S. Food
and Drug Administration as a second-line treatment for NSCLC that has not responded
to first-line treatment. Because long-term use can lead to resistance and side effects, it is
combined with other therapies [17,18]. Various treatment strategies for overcoming the
side effects of chemotherapy for NSCLC are being studied [19–25].

Cilengitide is a cyclic peptide based on a tripeptide RGD (arginine, glycine, aspartic
acid)-containing structure and is used to increase therapeutic efficacy along with various
drugs for the treatment of several tumors [26]. Since integrins involved in angiogenesis
and metastasis in the tumor microenvironment can be recognized by substances containing
RGD sequences, RGD-containing peptides or peptidomimetics targeting integrins can be
utilized as candidates for anticancer chemotherapy [27–29]. Several in vitro or clinical
studies have demonstrated the efficacy of cilengitide and the effect of co-administration
with existing anticancer drugs, but few studies have been conducted on the mechanism for
EMT inhibition in NSCLC and its combination with cancer therapeutics [30–35]. In addition,
we recently described an enhancing effect of cilengitide with gefitinib on limiting TGF-β–
mediated EMT in NSCLC cells. By inhibiting Smad and non-Smad signaling, cilengitide
enhanced the effect of gefitinib on NSCLC cell death and TGF-β–induced EMT phenotype
change without severe cytotoxicity in normal cells [36].

Here, we investigated the anticancer effect of erlotinib and its inhibition of TGF-
β–induced EMT. We also assessed whether the combination of erlotinib and cilengitide
could enhance the inhibitory effects of erlotinib on TGF-β–induced EMT while minimizing
side effects.

2. Results
2.1. Erlotinib Inhibits Tgf-B1–Induced Emt-Related Phenotype Changes

Before evaluating the effect of erlotinib on the TGF-β1–induced EMT process, we
investigated cell viability in NSCLC A549, H1299, normal lung epithelium CPAE, and
normal lung fibroblast IMR90 cells. Treatment with an erlotinib concentration of 1 µm or
higher reduced the viability of A549 and H1299 cells (Figure 1A,B) but scarcely reduced
the viability of CPAE cells (Figure 1C). In addition, the viability of IMR90 was slightly
decreased compared with A549 and H1299.

TGF-β1 reduces expression of the epithelial marker E-cadherin but induces an increase
in the mesenchymal markers N-cadherin, vimentin, and α-SMA [37,38]. For this reason, we
checked the effect of erlotinib on the TGF-β1–induced EMT-related phenotype changes in
NSCLC A549 and H1299 cells. As shown in Figure 2A and Figure S4, erlotinib suppressed
expression of TGF-β1–related increases in N-cadherin, vimentin, and α-SMA in A549 and
H1299 cells. However, the EMT-related decreased expression of E-cadherin did not fully
recover with erlotinib. Moreover, in CPAE cells, erlotinib did not suppress the expression
of EMT-related genes according to the concentration gradient (Figure S5).
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Figure 1. Erlotinib inhibits proliferation of human NSCLC A549 and H1299 cells. (A) A549, (B) 
H1299, (C) CPAE, and (D) IMR90 cells were treated with erlotinib for 24–72 h. After incubation, cell 
viability was measured by the EZ-Cytox Enhanced Cell Viability Assay Kit. Experiments were per-
formed in triplicate. Data represent mean ± SD. 
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changes in NSCLC A549 and H1299 cells. As shown in Figures 2A and S4, erlotinib sup-
pressed expression of TGF-β1–related increases in N-cadherin, vimentin, and α-SMA in 
A549 and H1299 cells. However, the EMT-related decreased expression of E-cadherin did 
not fully recover with erlotinib. Moreover, in CPAE cells, erlotinib did not suppress the 
expression of EMT-related genes according to the concentration gradient (Figure S5). 

Figure 1. Erlotinib inhibits proliferation of human NSCLC A549 and H1299 cells. (A) A549, (B) H1299,
(C) CPAE, and (D) IMR90 cells were treated with erlotinib for 24–72 h. After incubation, cell viability
was measured by the EZ-Cytox Enhanced Cell Viability Assay Kit. Experiments were performed in
triplicate. Data represent mean ± SD.

The inhibitory effects of erlotinib were confirmed using the TGF-β1–mediated tran-
scription of epithelial and mesenchymal marker genes CDH1, CDH2, and VIM (encoding
E-cadherin, N-cadherin, and vimentin, respectively). Treatment with TGF-β1 decreased
expression of CDH1 mRNA (Figure 2B) and increased expression of CDH2 (Figure 2C) and
VIM mRNA (Figure 2D). However, the expression of CDH1 mRNA slightly recovered at
1 µM, and the expression of CDH2 and VIM mRNA was inhibited at erlotinib concentra-
tions >1 µM. These results indicate that erlotinib concentrations >1 µM have inhibitory
effects on TGF-β1–induced EMT-related phenotypic changes and related gene expression
in A549 cells.
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Figure 2. Erlotinib inhibits TGF-β1–induced expression of EMT markers. (A) Serum-deprived A549 
cells were treated with TGF-β1 (5 ng/mL) or in combination with erlotinib for 72 h. Protein expres-
sion of an epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin, vimentin, and α-
smooth muscle actin) was determined by Western blot analysis. Actin was used as a loading control. 
(B–D) Serum-deprived A549 cells were incubated with TGF-β1 (5 ng/mL) and erlotinib for 48 h. 
After RNA extraction and cDNA synthesis, we performed qRT-PCR to measure the expression of 
CDH1, CDH2, and VIM mRNA using GAPDH as an internal control. # p < 0.01 versus control; * p < 
0.05 versus the group treated with TGF-β1 only. 

The inhibitory effects of erlotinib were confirmed using the TGF-β1–mediated tran-
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E-cadherin, N-cadherin, and vimentin, respectively). Treatment with TGF-β1 decreased 
expression of CDH1 mRNA (Figure 2B) and increased expression of CDH2 (Figure 2C) 
and VIM mRNA (Figure 2D). However, the expression of CDH1 mRNA slightly recovered 
at 1 μM, and the expression of CDH2 and VIM mRNA was inhibited at erlotinib concen-
trations >1 μM. These results indicate that erlotinib concentrations >1 μM have inhibitory 
effects on TGF-β1–induced EMT-related phenotypic changes and related gene expression 
in A549 cells. 

2.2. Erlotinib Inhibits Tgf-Β1–Induced Smad and Non-Smad Signaling 
Because the TGF-β1–induced EMT process could be modulated through the activa-

tion of Smad or non-Smad signaling [8,9,13–15], we investigated the effect of erlotinib on 
TGF-β1–induced Smad and non-Smad signaling pathways in A549 and H1299 cells. As 
shown in Figure 3A, erlotinib suppressed phosphorylation of Smad2/3. To determine 

Figure 2. Erlotinib inhibits TGF-β1–induced expression of EMT markers. (A) Serum-deprived
A549 cells were treated with TGF-β1 (5 ng/mL) or in combination with erlotinib for 72 h. Protein
expression of an epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin, vimentin, and
α-smooth muscle actin) was determined by Western blot analysis. Actin was used as a loading control.
(B–D) Serum-deprived A549 cells were incubated with TGF-β1 (5 ng/mL) and erlotinib for 48 h.
After RNA extraction and cDNA synthesis, we performed qRT-PCR to measure the expression of
CDH1, CDH2, and VIM mRNA using GAPDH as an internal control. # p < 0.01 versus control;
* p < 0.05 versus the group treated with TGF-β1 only.

2.2. Erlotinib Inhibits Tgf-B1–Induced Smad and Non-Smad Signaling

Because the TGF-β1–induced EMT process could be modulated through the activation
of Smad or non-Smad signaling [8,9,13–15], we investigated the effect of erlotinib on TGF-
β1–induced Smad and non-Smad signaling pathways in A549 and H1299 cells. As shown
in Figure 3A, erlotinib suppressed phosphorylation of Smad2/3. To determine whether
erlotinib inhibits non-Smad signaling, we measured EGFR-triggered phosphorylation of
downstream MAPK ERK1/2 and translocation of β-catenin into the nucleus. As shown
in Figure 3B, Figures S6 and S7, erlotinib inhibited TGF-β1–induced phosphorylation
of ERK1/2 and nuclear localization of β-catenin. In particular, erlotinib inhibited phos-
phorylation of the downstream target ERK1/2 more strongly than it inhibited Smad2/3
phosphorylation. These results suggest that erlotinib has an inhibitory effect on both Smad
and non-Smad signaling mediating EMT progression in NSCLC cells.
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Figure 3. Erlotinib inhibits TGF-β1–induced Smad and non-Smad signaling pathways. Serum-
deprived A549 cells were treated with TGF-β1 (5 ng/mL) with erlotinib for 48 h (A) or 72 h (B,C).
Protein expression of the p-Smad2/3 (A), p-ERK1/2 (B), β-catenin (C), and endogenous forms of
Smad2/3 and ERK1/2 was determined by Western blot analysis. Actin was used as a loading control.

2.3. Combination Cilengitide with Erlotinib Exerts a Synergistic Inhibitory Effect on NSCLC Cell
Viability and EMT Markers

In a previous report on cilengitide combined with the EGFR inhibitor gefitinib, we
confirmed their cytotoxicity in CPAE cells and a synergistic effect on NSCLC cell viability
and TGF-β1–induced EMT phenotype changes [36]. Based on that study, we investigated
the combined treatment effect of cilengitide with erlotinib on NSCLC cell viability and
TGF-β1–induced EMT marker expression. As shown in Figure 4, compared to treatment
with erlotinib or cilengitide (Figure 4A) alone, combined treatment exhibited a synergistic
effect on A549 (Figure 4B) and H1299 cell proliferation (Figure 4C). The CI calculated using
the raw data confirmed this result (Table 1 and Table S2, Figure S8). Synergistic effects were
observed at concentrations >0.1 µM.

Table 1. Combination index (CI) values for the two-drug combination against A549 and H1299
cell viability.

Cell line. Erlotinib (µM) Cilengitide (µM) CI Value

A549

0.1 0.1 0.2655
0.3 0.3 0.5058
1 1 0.6415
3 3 0.2346

10 10 0.0298
30 30 0.0100

H1299

0.1 0.1 0.5450
0.3 0.3 0.7446
1 1 1.7137
3 3 0.4097

10 10 0.0357
30 30 0.0359
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mRNA expression of EMT markers in A549 cells. As shown in Figure 5A, although com-
bination treatment did not lead to recovery of the TGF-β1–induced decrease in E-cad-
herin, inhibition of N-cadherin, vimentin, and α-SMA was stronger with combined treat-
ment than with erlotinib alone. To confirm the synergistic effect of the two combined 
drugs, we investigated their influence on Smad and non-Smad signaling. As shown in 

Figure 4. Cilengitide enhances the inhibitory effect of erlotinib on the cell viability of A549 and H1299
cells. (A) Chemical structure of cilengitide. (B) A549 and (C) H1299 cells were treated with erlotinib
alone or with cilengitide for 24–72 h. After incubation, cell viability was measured by the CCK-8
assay. Experiments were performed in triplicate. Data represent mean ± SD.

We also evaluated the combination effect of cilengitide with erlotinib on protein
and mRNA expression of EMT markers in A549 cells. As shown in Figure 5A, although
combination treatment did not lead to recovery of the TGF-β1–induced decrease in E-
cadherin, inhibition of N-cadherin, vimentin, and α-SMA was stronger with combined
treatment than with erlotinib alone. To confirm the synergistic effect of the two combined
drugs, we investigated their influence on Smad and non-Smad signaling. As shown in
Figure 5B, the combination showed stronger inhibition than either agent singly against
TGF-β1–induced phosphorylation of Smad2/3. In addition, TGF-β1–induced expression
of β-catenin was suppressed more with combined treatment (Figure 5C), although the
combination did not affect phosphorylation of EGFR or ERK1/2 more than either agent
alone (Figure S9). These results indicate that combined treatment may enhance the efficacy
of erlotinib in inducing NSCLC cell death and inhibit the TGF-β1–induced EMT process
through the suppression of Smad and non-Smad Wnt/β-catenin signaling.
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Figure 5. Effect of combined treatment on TGF-β1–induced EMT marker expression and Smad and
non-Smad signaling. A549 cells were treated with gefitinib (1 µM) and cilengitide (3 µM) individually
or in combination, and then incubated with TGF-β1 (5 ng/mL) for 72 h (A,C) or 48 h (B). (A) The
expression of EMT markers was measured by Western blot analysis. Actin was used as a loading
control. (B,C) The expression of protein was measured by Western blot analysis. β-actin was used as
a loading control.

2.4. The Combination of Cilengitide with Erlotinib Exerts a Synergistic Inhibitory Effect on
Tgf-B1–Mediated Invasion and MMP Secretion

We also tested the effect of cilengitide with erlotinib on TGF-β1–induced invasion
in A549 cells. In our previous report, we confirmed that cilengitide has an inhibitory
effect and that combined treatment with gefitinib yielded a synergistic effect [36]. As
shown in Figure 6A, either erlotinib or cilengitide inhibited the TGF-β1–induced invasion
of A549 cells across the gelatin-coated membrane, and their combination increased this
inhibitory effect.

During extracellular matrix (ECM) disruption, matrix metalloproteinases (MMPs)
cleave the ECM in ways that promote shape changes in cancer cells so that they can
maintain viability and develop invasive and migratory properties [37]. We used gelatin
zymography to investigate the combination effect of the major gelatinases MMP-2 and
MMP-9 on TGF-β1–induced EMT activation. As shown in Figures S10 and S11, erlotinib
treatment inhibited TGF-β1–induced gelatinase activities of both MMP-2 and MMP-9, but
cilengitide did not significantly affect them. However, the combination of erlotinib and
cilengitide yielded stronger inhibition than either agent singly (Figure 6B). Collectively,
these results indicate that combined treatment with erlotinib and cilengitide can exert
enhanced inhibitory effects on the TGF-β1–induced invasion process (Figure 7).



Int. J. Mol. Sci. 2022, 23, 3423 8 of 14
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 6. The combination of erlotinib and cilengitide exerts an enhanced inhibitory effect on TGF-
β1–induced invasion and MMP activities in A549 cells. Serum-deprived A549 cells were treated 
with TGF-β1 (5 ng/mL) and erlotinib alone or in combination with cilengitide for 48 h. (A) The effect 
of the combination on TGF-β1–induced invasion of A549 cells was evaluated using Boyden cham-
bers. Numbers of invaded cells were represented by an average number of cells per randomly se-
lected three high-power field (HPF). (B) Activation of MMP-2 and MMP-9 was measured by gelatin 
zymography. # p < 0.01 versus control; * p < 0.05 versus the group treated with TGF-β1 only. 

During extracellular matrix (ECM) disruption, matrix metalloproteinases (MMPs) 
cleave the ECM in ways that promote shape changes in cancer cells so that they can main-
tain viability and develop invasive and migratory properties [37]. We used gelatin zy-
mography to investigate the combination effect of the major gelatinases MMP-2 and 
MMP-9 on TGF-β1–induced EMT activation. As shown in Figures S10 and S11, erlotinib 
treatment inhibited TGF-β1–induced gelatinase activities of both MMP-2 and MMP-9, but 
cilengitide did not significantly affect them. However, the combination of erlotinib and 
cilengitide yielded stronger inhibition than either agent singly (Figure 6B). Collectively, 

Figure 6. The combination of erlotinib and cilengitide exerts an enhanced inhibitory effect on TGF-
β1–induced invasion and MMP activities in A549 cells. Serum-deprived A549 cells were treated
with TGF-β1 (5 ng/mL) and erlotinib alone or in combination with cilengitide for 48 h. (A) The
effect of the combination on TGF-β1–induced invasion of A549 cells was evaluated using Boyden
chambers. Numbers of invaded cells were represented by an average number of cells per randomly
selected three high-power field (HPF). (B) Activation of MMP-2 and MMP-9 was measured by gelatin
zymography. # p < 0.01 versus control; * p < 0.05 versus the group treated with TGF-β1 only.
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of erlotinib and cilengitide.

3. Discussion

Here we show that co-administration of cilengitide with erlotinib increases the in-
hibitory effects of erlotinib alone on NSCLC cell survival and TGF-β1–induced EMT
changes. Collectively, these results suggest that EFGR inhibitors such as gefitinib and
erlotinib, when combined with cilengitide, may synergize in the treatment of EMT-related
diseases, including human lung cancer, pulmonary fibrosis, and other metastatic cancers.

During the progression of lung cancer, cells acquire metastatic and invasive properties
through the EMT process [3,38]. This process also is responsible for maintaining NSCLC
cell survival by activating anti-apoptotic signals that both alter cell shape to a mesenchymal
phenotype and confer resistance to chemotherapy [39]. Therefore, in the treatment of
NSCLC, inhibition of EMT along with the induction of cancer cell death can be an important
therapeutic strategy for suppressing cancer cell metastasis. We confirmed this hypothesis
in the current study, showing that the cyclic pentapeptide cilengitide is effective as co-
treatment with erlotinib, an EGFR-targeting drug that induces NSCLC cell death, to increase
inhibitory efficacy against TGF-β1–induced EMT and reduce metastatic potential in NSCLC.

For the treatment of NSCLC, drugs such as the TKIs erlotinib and gefitinib are used
in chemotherapy, but long-term administration may cause side effects, including cancer
cell resistance and the death of healthy cells [39]. To reduce these side effects and increase
therapeutic efficacy, studies have increasingly focused on combined treatment therapies
such as immunotherapy, radiation therapy, and targeted therapy [22]. In general, with
combination drug therapy for NSCLC treatment, side effects arising from the use of small
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molecule drugs can be reduced. In particular, cyclic peptides are being actively studied
as biochemical tools and therapeutic agents because of their excellent in vivo stability and
high affinity and selectivity for target molecule binding compared to linear peptides [40].

Cyclic peptides such as cRGDfK and cRGDyK exhibit high binding affinity and se-
lectivity for the overexpressed integrins ανβ3 and ανβ5 in cancer cells, facilitating the
delivery of anticancer drugs to the target [41,42]. We recently demonstrated that cRGDfK
increased NSCLC apoptosis and enhanced the inhibitory effects of the TKI sunitinib on
TGF-β1–induced EMT [43]. Single compound treatment with TKI involves toxic effects at
high concentrations, but in that study, EMT could be effectively inhibited when a cyclic
peptide was added to a low concentration of TKI in combined treatment. Combination
therapy using cilengitide also has been suggested as a way to improve the therapeutic
efficacy of cancer treatment [30–33,44]. Clinical trials to evaluate the enhancement co-
administration effect of cilengitide with conventional drugs are also ongoing or have been
conducted [29,33,34]. In the meantime, many clinical studies have been conducted on
the effects of co-administration of erlotinib with other drugs [22–25]. However, another
co-administration strategy is also required because there is a limit to the co-administration
of small molecule drugs and the possibility for conversion into resistant cells.

Although studies on cilengitide co-administration with various drugs are underway,
the mechanism for EMT inhibition and the combination effects in NSCLC have not yet
been examined. In a pair of studies on NSCLC cells, we have confirmed the inhibitory
effect of cilengitide co-administration and the EGFR inhibitor gefitinib [36] or erlotinib (the
current work) on EMT. Collectively, our findings show that the combination of cilengitide
and EGFR inhibitors could represent a new chemotherapeutic option for modulating
growth and invasive changes in EMT-associated NSCLC cell changes. Because EGFR
inhibitors effectively inhibit downstream signaling even when used alone, we found little
effect of cilengitide co-administration on EGFR signaling. The current study describes
the co-administration effect of EGFR inhibitors and cilengitide only on EMT, and future
studies should investigate the co-administration of cilengitide with other classes of NSCLC
therapeutics. Among the various types of RGD-based cyclic peptides developed, cilengitide
has been most investigated for its anticancer efficacy, but other peptides are understudied.
In addition, with few studies evaluating the co-administration effect of small molecules
and cyclic peptides in various diseases affected by EMT, the current findings offer a helpful
basis for future research on inhibiting EMT-induced progression in other cancers.

We are currently synthesizing cyclic RGD peptide derivatives such as cilengitide and
studying the effects of NSCLC cell growth inhibition and EMT inhibition. Through a recent
study and this study, we verified the efficacy of TKIs such as gefitinib and erlotinib and
cyclic RGD peptides in EMT. Based on these results, we plan to continuously study the
effect of a new cyclic RGD peptide on NSCLC treatment and increase anticancer effect
through co-administration. In addition, despite these findings, there is a need to diversify
the approach to dealing with EMT according to the characteristics of lung epithelial cells.
For example, in squamous carcinoma, Notch and Wnt signaling are shown to be very
important, whereas in adenocarcinoma, RAS mutations occur frequently and have different
biology. Therefore, we need to address these issues in more depth in future studies.

4. Materials and Methods
4.1. Materials

Erlotinib was purchased from Sigma–Aldrich (St. Louis, MO, USA), and cilengi-
tide was synthesized by Kyeong-Yong Park (CHA Meditech Co., Ltd., Daejeon, Korea)
(Figures S1–S3). Fetal bovine serum (FBS), RPMI-1640 medium, and antibiotics (100 U/mL
penicillin and 100 µg/mL streptomycin) were purchased from Corning Inc. (Corning, NY,
USA). Recombinant human TGF-β1 was purchased from R&D Systems, Inc. (Minneapolis,
MN, USA). Antibodies against E-cadherin (No. 3195), α-smooth muscle actin (α-SMA)
(No. 19245), p-ERK1/2 (No. 4370), ERK1/2 (No. 4695), p-EGFR (No. 3777), EGFR (No.
4267), and p-Smad2/3 (No. 8828) were purchased from Cell Signaling Technology, Inc.
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(Danvers, MA, USA). Antibodies against Smad2/3 (No. sc-133098), vimentin (No. sc-6260),
N-cadherin (No. sc-59987), and β-catenin (No. sc-7199), horseradish peroxidase (HRP)-
conjugated secondary antibodies (No. sc-516102 and No. sc-2357), HRP-conjugated actin
(No. sc-1615), and HRP-conjugated β-actin (No. sc-47778) were purchased from Santa Cruz
Biotechnology, Inc. (Dallas, TX, USA).

4.2. Cell Culture and Cell Viability Assay

Bovine pulmonary epithelium CPAE (KCLB No. 10209), human lung fibroblast IMR90
(KCLB No. 10186), human NSCLC A549 (KCLB No. 10185), and H1299 (KCLB No. 91299)
cell lines were obtained from Korean Cell Line Bank. All NSCLC and CPAE cells were
maintained in RPMI-1640 medium (Corning, NY, USA), and IMR90 cells were maintained
in minimum essential medium (Corning) containing 10% heat-inactivated FBS and 1%
antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin). All cells were maintained
at 37 ◦C in a humidified atmosphere of 5% CO2.

To assess cell viability, cells were seeded in 96-well plates for 24 h. After incubation,
erlotinib or cilengitide were added for 24–72 h in culture medium containing 10% FBS. Cell
viability was assessed using EZ-Cytox Enhanced Cell Viability Assay Kit (DogenBio, Seoul,
Korea) according to the manufacturer’s instructions. The absorbance was measured by a
MultiscanTM FC microplate photometer (Thermo Fisher Scientific, Waltham, MA, USA),
and cell viability is presented as a percentage of control cells (untreated cells).

4.3. Western Blot Analysis

All cell lysates were prepared using Nuclear and Cytoplasmic Extraction Reagent
(Thermo Fisher Scientific, Waltham, MA, USA). Quantified proteins were separated by
SDS-PAGE, transferred to nitrocellulose membranes, and incubated with specific primary
antibodies and HRP-conjugated secondary antibodies. We used all primary or secondary
antibodies diluted in TBST buffer containing 5% skim milk at a ratio of 1:1000. The
band intensities were visualized using SuperSignalTM West Femto maximum sensitivity
substrate (Thermo Fisher Scientific, Waltham, MA, USA) and measured using X-ray films
and development solution (Fujifilm, Tokyo, Japan). The detected bands were quantified
using ImageJ software (NIH, New York, NY, USA), and the relative ratios between each
sample and the loading control are presented in this paper.

4.4. Invasion Assay

Serum-deprived A549 cells were treated with TGF-β1 (5 ng/mL) and erlotinib or
cilengitide or their combination for 48 h. Cells were collected using trypsin-EDTA and
resuspended in serum-free medium for counting. Culture medium (30 µL) containing 5%
FBS was added to the bottom of a Boyden chamber. After placement of a gelatin-coated
membrane filter, silicone gasket, and top chamber, the cell suspension (5 × 103 cells/50 µL)
was added to the top chamber and incubated at 37 ◦C in 5% CO2 for 4 h. The membrane
filter was collected, fixed, and stained using the Diff-Quick Staining Kit (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.

4.5. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was isolated using the AccuPrep® RNA Extraction Kit (Bioneer Corp.,
Daejeon, Korea), and the cDNA was synthesized from 1 µg of total RNA using oligo (dT)
primers (Bioneer Corp., Daejeon, Korea) and the RocketScriptTM Reverse Transcriptase
Kit (Bioneer Corp., Korea). qRT-PCR was performed using Prime Q-Mastermix (GeNet
Bio, Daejeon, Korea) and the CFX96TM Real-Time System (Bio-Rad, Hercules, CA, USA).
The cycling conditions were as follows: 95 ◦C for 3 min followed by 40 cycles at 95 ◦C for
15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. The primer sequences are shown in Table S1. All
reactions were run in triplicate, and data were analyzed using the 2−∆∆CT method [41]. The
internal standard was GAPDH. Significance was determined by the Student’s t-test with
GAPDH-normalized 2−∆∆CT values [45].
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4.6. Gelatin Zymography

A549 cells were incubated in a 6-well plate for 24 h. After serum starvation, cells
were treated with TGF-β1 (5 ng/mL) and erlotinib or cilengitide, or their combination,
for 48 h. The supernatants were collected, and centrifuged at 3000× g for 10 min, and
protein was concentrated using Amicon® Ultra Centrifugal Filters (Merck, Kenilworth, NJ,
USA). After protein quantification using the BCA protein assay (Thermo Fisher Scientific,
Waltham, MA, USA), proteins (40 µg) were loaded onto a gelatin-containing acrylamide gel
and separated by electrophoresis. Protein separated gel was washed with 2.5% Tween-20
solution, developed overnight at 37 ◦C in Zymogram incubation buffer (50 mM Tris-HCl,
pH 7.6; and 5 mM CaCl2), stained with 0.25% Coomassie blue R250 solution, and destained
with a solution of 50% methanol and 10% acetic acid until the part of membrane degraded
by MMP-2 or MMP-9 became clear. The activity of matrix metalloproteinase (MMP)-2 and
MMP-9 was measured according to a previously described experimental procedure [46].

4.7. Analysis of Combined Drug Effects

We analyzed the effects of the drug combination using the CalcuSyn software program
(Biosoft, Cambridge, UK). To determine whether the result of treatment with the two com-
pounds was additive or synergistic, we applied the combination index (CI) derived from
the median effect principle of Chou and Talalay (1984) [47]. The CI was calculated using the
formula published by Zhao et al. (2004) [48]. A CI of 1 indicates an additive effect between
the two compounds, a CI > 1 indicates antagonism, and a CI <1 indicates synergism.

4.8. Statistical Analysis

Data are presented as the mean ± SD of at least three independent experiments.
Significant differences were evaluated by one-way ANOVA with post-hoc Tukey HSD test.
p < 0.05 was considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23073423/s1.
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