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Abstract: Time-related cognitive function refers to the
capacity of the brain to store, extract, and process specific
information. Previous studies demonstrated that the cer-
ebellar cortex participates in advanced cognitive func-
tions, but the role of the cerebellar cortex in cognitive
functions is unclear. We established a behavioral model
using classical eyeblink conditioning to study the role of
the cerebellar cortex in associative learning and memory and
the underlying mechanisms. We performed an investigation

to determine whether eyeblink conditioning could be estab-
lished by placing the stimulating electrode in the middle cer-
ebellar peduncle. Behavior training was performed using a
microcurrent pulse as a conditioned stimulus to stimulate
the middle cerebellar peduncle and corneal blow as an
unconditioned stimulus. After 10 consecutive days of training,
a conditioned response was successfully achieved in the
Delay, Trace-200-ms, and Trace-300-ms groups of guinea
pigs, with acquisition rates of >60%, but the Trace-400-ms
and control groups did not achieve a conditioned stimulus-
related blink conditioned response. It could be a good model
for studying the function of the cerebellum during the estab-
lishment of eyeblink conditioning.

Keywords: cerebellar cortex, delay eyeblink conditioning,
lateral pontine nuclei, middle cerebellar peduncle, trace
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1 Introduction

The classic eyeblink conditioning combines events asso-
ciated with time cognition using conditioned stimulus
and unconditioned stimulus and, therefore, is widely
used as an associative learning and memory model for
studying the mechanisms of temporal information pro-
cessing in specific brain areas [1,2]. Delay and trace con-
ditioning are distinguished not by the interval between
stimuli, which can be identical, but by the difference in
the offset of the stimuli. In trace conditioning, the onset
and offset of the conditioned stimulus occur before the
onset of the unconditioned stimulus, and there is a gap
(or “trace”) between them. In delay conditioning, the
onset between the conditioned and unconditioned sti-
muli is different, but the offset is usually the same, i.e.,
they end together, and there is an overlap between the
two stimuli. The two behavioral models differ according
to the presence of a time interval between stimuli. As a
result, there is a gap between the onsets of the condi-
tioned and unconditioned stimuli. The length of this
gap can be used to study the ability of specific brain areas
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to process information related to temporal information
processing.

Patients with autism spectrumdisorders [3], cerebellar dis-
eases [4], cerebellar degeneration [5],migraine [6], fetal alcohol
syndrome [7], schizophrenia [8,9], severe depression [10], and
other neuropsychiatric disorders [11–13] all show the abnormal
ability of temporal information processing. Thus, using the eye-
blink conditioning model to study the brain areas involved in
temporal information processing would help to understand
further the neurobiological mechanism of time-related learning
and memory in mammalian animals [14,15].

Previous studies have suggested that temporal infor-
mation processing mainly occurs in cerebral neural cir-
cuits, including the thalamus, cerebral cortex, medial
prefrontal cortex, and hippocampus [16–18]. In addition,
similar to the cerebral cortex, the cerebellum also exerts
advanced functions in temporal information processing.
Indeed, patients with cerebellar injury develop motor
sequence learning disorders [19,20], suggesting the impor-
tance of the cerebellum in time estimation. In addition,
neuroimaging studies have shown significant differences
in the area of cerebellar activation before and after sequence
training and learning [21,22]. Cerebellar lesions can lead to
a wide range of clinical cognitive impairments, and the
most common is impaired temporal information processing
[23,24]. In addition, pathological changes in cerebellar dis-
orders, including cerebellar hypoplasia [25], space-occu-
pying intracranial lesions [26,27], and trauma [26], among
others, can also lead to dysfunction or loss of temporal
information processing-related abilities. Animal experi-
ments have shown that decerebrated guinea pigs (the cer-
ebral cortex and subcortical hippocampus were removed
completely, and only the brainstem and cerebellum were
left) still acquired conditioned responses [28]. Recordings
of basket cell discharge have shown that the activation of
certain cerebellar neurons is closely associated with clas-
sical eyeblink conditioning [29–31]. In addition, physical
damage to the cerebellar cortex significantly inhibits
the ability of rabbits to establish eyeblink conditioning
[32–39]. These results all demonstrate that the cere-
bellum is closely related to temporal information pro-
cessing, but whether it independently participates in
temporal information processing in associative learning
and memory is still controversial. Therefore, exploring
the role of the cerebellar cortex in associative learning
and memory would help understand the mechanism of
specific brain areas in handling time-related events.
Based on the foregoing, this issue has attracted consid-
erable research in the field of neuroscience.

Classical eyeblink conditioning often uses peripheral
sensory stimuli as the conditioned stimulus and conducts

the signal via visual or auditory pathways to the thalamus,
cerebral cortex, or medial prefrontal cortex. With respect
to eyeblink conditioning established via the forebrain–
cerebellum circuit, the conditioned stimulus is often
affected by many external factors, and this limits the study
of specific brain areas in related neural circuits. Since neu-
rons or circuits can hardly be analyzed specifically, deter-
mining whether the cerebellar cortex is directly involved in
associative learning and memory is therefore difficult.
Neuroanatomy has shown that the middle cerebellar ped-
uncle, with mossy fiber as its main component, is one of the
major afferent fibers in the cerebellar cortex. It is constituted
by the pontine-cerebellar fiber derived from the lateral pon-
tine nucleus, and it ends at the cerebellar cortex [40].

At present, it is still unclear how mammals connect
two independent events based on time and by which
neurobiological mechanism they process related infor-
mation and take appropriate action within the corre-
sponding time [41,42]. The eyeblink conditioning model
has been widely used in exploring the mechanism of cer-
tain brain areas in learning and memorizing [43]. As pre-
viously used by several authors and studies, we used
microcurrent pulse and photosensitive receptors to sub-
stitute traditional sound and light as the conditioned
stimulus to directly stimulate the middle cerebellar ped-
uncle and used corneal blow as the unconditioned stimulus,
as previously described for different parts of the brain
[18,44–48]. This design successfully established a delay
eyeblink conditioning model and trace eyeblink condi-
tioning models within a certain time interval range. Our
results suggested that the cerebellar cortex could accom-
plish the process of associative learning and memory inde-
pendently for time-related events. A similar approach was
used by Steinmetz et al. [49], who showed conditioned
blinks using mossy fiber stimulation in the rabbit, and
by Swain, Shinkman, and Thompson in the 1990s [50],
who used electrical stimulation of the cerebellar cortex
to mediate conditioned eyeblinks in the rabbit.

Thus, this study aimed to use a microcurrent pulse to
directly stimulate the middle cerebellar peduncle and
observe whether the cerebellar cortex could establish
an eyeblink conditioning independently, and analyze
the cerebellum’s role in recognizing time in Guinea pigs.
Using induced action potential on mossy fiber as the con-
ditioned stimulus, we prevented persistent neuronal activity
generated from mixed information input to different fore-
brain structures and, therefore, avoided this influence on
the establishment of eyeblink conditioning. Briefly, this
study substituted traditional sound and light stimuli with
electrophysiology as the conditioned stimulus. It also inves-
tigated whether the cerebellar cortex could establish
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eyeblink conditioning and its amplitude under such stimu-
lation. By doing this, we further revealed the role and
mechanism of the cerebellar cortex in associative learning
and memory. This study provides conclusive evidence for
the function of the cerebellum in advanced temporal infor-
mation processing. Our study will facilitate the application
of neurobiology in clinical diagnosis and treatment. It will
also provide a theoretical foundation for managing cere-
bellar cognitive dysfunction, particularly temporal informa-
tion processing. This study could help determine the impact
of the location of an injury on cognitive behavior and infer
whether the lesion location could impact the prognosis.
Eyeblink conditioning was used in previous studies of var-
ious medical conditions [11–13].

2 Materials and methods

2.1 Experimental animals

The animals were provided by the Laboratory Animal
Center (license #SCXK (Chongqing) 2007-0001). Male
guinea pigs aged 4–5 months, weighing 400–450 g and
without obvious eye diseases, were selected for electrode
neuronal stimulation. All animals were kept separately in
cages with dry sawdust matting and free access to food
and water. Animals were reared in an environment of
20–25°C temperature, 50–80% relative humidity, and a
12/12 h light-dark cycle.

Ethical approval: The research related to animal use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals,
and was approved by the Ethics Committee of Guizhou
Provincial People’s Hospital (No. 2015014).

2.2 Intracranial implantation of the
stimulating electrode

Guinea pigs were anesthetized by intraperitoneal injec-
tion of ketamine (80mg/kg) and phenothiazine (5mg/kg).
Thirty guinea pigs were selected for implantation shocks.
The guinea pigs were divided into (1) delay group, (2)
Trace-200ms group, (3) Trace-300ms group, (4) Trace-
400ms group, and (5) control group, with six animals
per group, 30 in total. In the end, one animal in the
Trace-200ms group and one in the Trace-400ms group
were implanted with electrodes but their placement was

incorrect. Therefore, 28 guinea pigs were included in the
final behavioral groups: (1) Delay group, n = 6; (2) Trace-
200ms group, n = 5; (3) Trace-300ms group, n = 6; (4)
Trace-400ms group, n = 5; and (5) control group, n = 6.
For electrode implantation, the head was fixed in a stereo-
tactic apparatus (SR-6N, Narishige Scientific Instrument,
Japan). Then, using the bregma suture as the zero-refer-
ence point, a welded stimulating electrode (A-M Systems,
Sequi, USA, external diameter: 0.7 mm, coating diameter:
330.2mm, and internal diameter: 0.254mm)was implanted
into the brain at 15mm posterior to the bregma, 3.5mm
laterally (left) from the midline, and 7mm ventrally from
the bregma line. The electrode tip was fixed using dental
cement in the left middle cerebellar peduncle. A reference
electrode was also implanted in the left middle cerebellar
peduncle. The guinea pigs were observed for 1 week after
surgery. Those with no significant infection and high
activity were taken for behavior training.

2.3 Behavior training

Thirty male guinea pigs that successfully underwent the
implantation were randomized (lottery method) into the
experimental groups (Delay, Trace-200ms, Trace-300ms,
and Trace-400ms groups) and the control group (n =
6/group). According to whether there was a fixed time
relationship between CS and US, they were divided into
the experimental and control groups. According to the time
interval (trace interval, TI) between CS and US, they were
divided into the (1) the Delay group, (2) Trace-200ms group,
(3) Trace-300ms group, and (4) Trace-400ms group, for a
total of five groups (including the control group) with six
animals in each group. For adaptation, all guinea pigs were
placed in a shielding cabinet with light and sound insula-
tion for 2 days, 60min each day, without any stimulation.
After adaptation, the animals underwent 10 consecutive
days of behavior training, with a session of 100 stimulations
each day. A given animal was trained at the same time each
day. A conditioned stimulus was produced using a micro-
current pulse generated from a YC-2 stimulator (Chengdu
Instrument, China) and an isolation unit (ISO-Flex, AMPI,
Israel) to stimulate the right middle cerebellar peduncle.
The output intensity was min 40%, which could initiate
a blink reaction (based on the preliminary experiment,
this was obtained by increasing the output intensity until
eyelid closing could be measured). For the electrical stimu-
lations, the waveform was a train of 0.1ms pulses delivered
at 200Hz for 350ms. The waveform was a square wave,
and the pulse was a 200Hz series of single-pulse current
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(pulse interval time: 4.9ms, single pulse width: 0.1ms, and
pulse: 70 groups). A 100-ms pure oxygen flow was used
as the unconditioned stimulus, and the outlet pressure
was strictly adjusted to 3 psi by a pressure-reducing valve.
The time interval for trace eyeblink conditioning is shown
in Figure 1 for the different experimental groups. For the
control group, the time interval between the conditioned
and unconditioned stimuli was randomly chosen within
10–40 s (20 s on average). There was no intrinsic relation-
ship between the times of occurrence of the conditioned
stimulus and unconditioned stimuli stimulus events.

2.4 Data collection and recording

For neuronal stimulation by the electrode, the end of a
frog heart clamp with a surgical suture was connected to
a muscular-tension transducer (JZ100, Beijing, China),
and the head was clipped to the free edge of the left upper
eyelid of the guinea pigs, with the intensity maintained at
a level that would allow the guinea pig to open the eyelid
naturally. The movement could initiate tensional changes
that could be transduced into an electric signal to record
eyelid movements. Taking conditioned stimulus onset as
the zero points, the baseline signal was taken from the
average signal of 1 ms within 350ms before conditioned
stimulus onset. Blinks satisfying the following two con-
ditions were determined as effective eyeblinks: (1) the
upper eyelid movement was ≥baseline +1 mV; and (2)
the total time was ≥15 ms. The analytical parameters

were active eyeblinks within 200ms before uncondi-
tioned stimulus onset and the magnitude of the difference
between the maximum active eyeblinks within 200ms
before unconditioned stimulus onset eyeblink signal and
the conditioned stimulus onset signal. The magnitude of
the difference was based on the nictitating membrane
response classical pathway [39].

2.5 Statistical analysis

Data were input into Microsoft Excel, and statistical ana-
lysis was performed using SPSS 18.0 (IBM, Armonk, NY,
USA). Data were presented as means ± standard devia-
tions. Graphs were plotted using Excel. Data were ana-
lyzed by the t-test and one-way ANOVA, and statistical
significance was defined as P < 0.05.

3 Results

3.1 Successful eyeblink conditioning
modeling using microcurrent pulse
stimulation of the middle cerebellar
peduncle

After behavior training, the site of electrode implantation
was observed on slices. Based on our observation, a total

Figure 1: The training patterns of four traditional eyeblink conditioning groups. Based on whether the time of conditioned stimulus and
unconditioned stimulus overlapped, eyeblink conditioning could be further divided into delay eyeblink conditioning and trace eyeblink
conditioning. In delay eyeblink conditioning, (a) the conditioned stimulus happens prior to the unconditioned stimulus and ends with the
unconditioned stimulus, whereas in trace eyeblink conditioning, (b–d) a time interval presents between the ending of the conditioned
stimulus and the starting of the unconditioned stimulus.
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of 28 guinea pigs had correct implantation at the left
middle cerebellar peduncle (Figure 2a), out of which six
belonged to the Delay group, five to the Trace-200ms
group, six to the Trace-300ms group, five to the Trace-
400ms group, and six to the control group. The two
guinea pigs with incorrect electrode implantation were
excluded from the statistical analysis. None of the ani-
mals had infections.

After 10 consecutive days of behavior training, the
Delay, Trace-200ms, and Trace-300ms groups showed
conditioned stimulus-associated active eyeblinks within
200ms before unconditioned stimulus onset. On the 10th
day of training, the CR-acquisition rate (AR) of all three
groups was greater than 60%, indicating that the eyeblink

conditioning model was established successfully.
Furthermore, the CR-AR increased gradually with time.
In the Trace-400ms group, however, the CR-AR on the
10th day of 2.50 ± 1.37% was not significantly different
from that on the 1st day. Likewise, the control guinea
pigs had a CR-AR of 1.66 ± 1.03% on the 10th day of
training, which was not significantly different from that
on the 1st day. Since there were no conditioned sti-
mulus-associated active eyeblinks within 200ms before
unconditioned stimulus onset, the eyeblink conditioning
model was, therefore, not established (Figure 2b). During
the 10-day training, themagnitude of the difference between
the maximum active eyeblinks of the Delay, Trace-200ms,
and Trace-300ms groups increased gradually with time, and

Figure 2: The location of implanted peduncle cerebellar medius-stimulating electrode and the variation pattern of CR-AR and the magnitude
of the difference between the maximum active eyeblinks in trace eyeblink conditioning guinea pigs. (a) The red arrow points to the injured
brain tissue after electrode implantation (magnification: 100×). (b and c) The line graph of CR-AR and the magnitude of the difference
between the maximum active eyeblinks in different groups when constructing eyeblink conditioning models.
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their values on the 10th day were significantly different from
those on the 1st day. Nevertheless, the magnitude of the
difference between the maximum active eyeblinks of the
Trace-400ms group showed no significant difference
between the 10th and 1st days, which again indicated
that eyeblink conditioning was not established in these
animals (Figure 2c). These results suggest that a microcur-
rent pulse could substitute the traditional sound and light
as the conditioned stimulus to stimulate the middle cere-
bellar peduncle directly. In addition, using corneal blowing
as the unconditioned stimulus, two types of conditioned
reflex, namely delay eyeblink conditioning and trace eye-
blink conditioning, could be established successfully with
certain time intervals. It indicates that for time-associated
events, the cerebellar cortex could independently complete
the process of associative learning and memory.

According to our results, using specifically activated
lateral pontine nucleus neurons and the projected middle
cerebellar peduncle fibrous bundles as the conditioned
stimulus, as well as an air puff to the left eyelid as the
unconditioned stimulus, the trace eyeblink conditioning
model with a conditioned stimulus-unconditioned sti-
mulus time interval of 200 ms could be established
successfully.

4 Discussion

As suggested by previous studies, during eyeblink con-
ditioning, the cerebellar cortex receives signals from the
mossy fiber and climbing fiber that are, respectively, acti-
vated by conditioned stimulus and unconditioned sti-
mulus, and then, the signals are gathered and processed
in the cerebellar cortex and deep nuclei, followed by
appropriate active eyeblinks within 200ms before uncon-
ditioned stimulus onset activity initiated by downstream
motor circuits under the control of contralateral nucleus
ruber and other nerves [29,51]. The delayed eyeblink con-
ditioning only requires the participation of the cere-
bellum-brain stem circuit; therefore, the cerebellum could
be directly excited without the involvement of the forebrain
structures [52–54]. Studies of electrophysiology [29] and
functional imaging [21,22] have also demonstrated that
during delayed eyeblink conditioning, the cerebellar cortex
is significantly activated in areas specific to motion and
memory. Nevertheless, a study has suggested that in
patients with cerebellar degeneration, eyeblink condi-
tioning with a time interval of 1,000 ms could still be
achieved [4]. Therefore, whether the cerebellar cortex
can independently exert the function of temporal

information processing is still controversial. In contrast
to the models above, we used a microcurrent pulse to
excite the input mossy fiber of the cerebellar cortex
directly. It avoided the traditionally used forebrain–cer-
ebellum circuit [2]. Gao et al. [55] showed that the cer-
ebellar excitatory nucleocortical closed-loop circuitry
relays premotor signals in a corollary discharge fashion.
Therefore, our design excluded the influence of external
factors as much as possible and facilitated the analysis
of the cerebellum in terms of its independent role in
associative learning and memory.

The presence of a time interval in the trace eyeblink
conditioning model increased the difficulty of the cere-
bellar cortex to extract and process information based on
the association between the conditioned and uncondi-
tioned stimuli. With unchanged conditioned stimulus
and unconditioned stimulus, the establishment of the
Trace model is harder than that of the Delay model;
nevertheless, with an increasing time interval, the Trace
model could be achieved with a lower CR-AR [56]. In this
study, the Trace-200ms and Trace-300ms groups did not
reach a CR-AR greater than 60% until the middle (6th
day, 76.80 ± 6.76%) and late (9th day, 64.5 ± 7.00%)
phases, but they still acquired trace eyeblink condi-
tioning successfully. It indicates that when the time of
occurrence of the conditioned and unconditioned stimuli
does not overlap, the cerebellar cortex still establishes
trace eyeblink conditioning independently, as suggested
by a previous study [30]. The Albus–Marr Calculation
Model suggests that when a conditioned stimulus-excited
mossy fiber discharge does not overlap with the uncondi-
tioned stimulus-driven climbing fiber discharge, the ability
of the cerebellum to establish trace eyeblink conditioning
would be weakened in comparison to the condition of the
overlapped conditioned and unconditioned stimuli. For
trace eyeblink conditioning with a time interval ≥400ms,
additional input of nervous signal is needed to maintain the
persistent excitation of mossy fiber, and thus, the time
interval between climbing fiber could be compensated
[57]. When the time interval was set at 400ms, microcur-
rent pulse stimulation of the middle cerebellar peduncle
failed to achieve trace eyeblink conditioning, and this is
supported by the literature [30,55,56], aswell as by Thompson
and Steinmetz [2], Lee et al. [58], and Li et al. [59], who
suggested that the cerebellum plays a role in the timing of
associative learning and memory.

On the other hand, the studies by Kalmbach et al.
[60–62] showed that when establishing a Delay/Trace
double eyeblink conditioning, the achievement of trace
eyeblink conditioning under a time interval >400ms
needs multistage forebrain impulse to mediate the
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process of learning and memorizing. Another study showed
that patients with cerebellar degeneration could acquire
trace eyeblink conditioning with a stimulation interval of
400ms [4]. These results are different from our study’s, and
some reasons might account for the differences. First, the
animals used are rodents, whereas the above study used
rabbits and even humans as their study subjects. Though
the basic components of the cerebellar structures are
similar, we cannot deny that the volume of the brain and
the complexity of the brain structures among different spe-
cies might cause some differences in the results [63,64].
Cats [65], rabbits [66], and mice [67] show conditioned
responses at 400ms. Our results will be validated in rabbits
in future experiments. Second, Kalmbach et al. [60–62]
used electric stimulation to the medial prefrontal cortex as
the conditioned stimulus, and the excitation was conducted
to the cerebellar cortex via the lateral pontine nucleus,
whereas in our study, we directly stimulated themossy fiber
connected to the cerebellar cortex. Besides, the location of
the microcurrent pulse excitation and the intensity of the
microcurrent were also different. The intensity of the electric
stimulation was only 20–80 μA, which is far lower than that
used by Kalmbach et al. (200mA). Indeed, large currents
might cause peripheral sensory stimulation, which further
triggers forebrain stimulation induced by other projection
neurons and participate in the process of trace eyeblink
conditioning as a compensatory signal.

Unfortunately, the present study was not designed to
examine what occurs at the cellular level. Nevertheless, it
is known that in cerebellar learning, the instruction sig-
nals for long-term depression (LTD) are from the climbing
fiber along with the parallel fiber input [68]. The LTD
plays a role in the output signal through the disinhibition
of cerebellar nucleus neurons that receive GABAergic sig-
nals from Purkinje cells. A climbing fiber stimulus will
elicit a voltage and calcium signal in Purkinje cells, pro-
moting the induction of LTD [68]. Based on this model,
we will analyze the number and morphology of dendritic
spines in cerebellar Purkinje cells and granular cells and
will also observe whether there is differential expression
of mRNA, miRNA, lncRNA, and related proteins, thereby
exploring possible downstreammolecular targets. Ammann
et al. [69] described that the motor cortex lead (in advance
to the cerebellum) the generation of conditioned responses.
Therefore, we will test in the future whether the electrical
stimulation of the middle peduncle can backward activate
the motor cortex circuits.

In conclusion, a microcurrent pulse stimulation was
used to excite the lateral pontine nucleus-middle cere-
bellar peduncle circuit, thereby avoiding interference

factors from either the external environment or other
brain areas. It could be a good model for studying the
function and molecular mechanism of the cerebellum
during the establishment of eyeblink conditioning.
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