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Abstract

In conventional linear models for whole-genome prediction and genome-wide association studies (GWAS), it is usually assumed that the re-
lationship between genotypes and phenotypes is linear. Bayesian neural networks have been used to account for non-linearity such as
complex genetic architectures. Here, we introduce a method named NN-Bayes, where “NN” stands for neural networks, and “Bayes”
stands for Bayesian Alphabet models, including a collection of Bayesian regression models such as BayesA, BayesB, BayesC, and Bayesian
LASSO. NN-Bayes incorporates Bayesian Alphabet models into non-linear neural networks via hidden layers between single-nucleotide
polymorphisms (SNPs) and observed traits. Thus, NN-Bayes attempts to improve the performance of genome-wide prediction and GWAS
by accommodating non-linear relationships between the hidden nodes and the observed trait, while maintaining genomic interpretability
through the Bayesian regression models that connect the SNPs to the hidden nodes. For genomic interpretability, the posterior distribution
of marker effects in NN-Bayes is inferred by Markov chain Monte Carlo approaches and used for inference of association through posterior
inclusion probabilities and window posterior probability of association. In simulation studies with dominance and epistatic effects, perfor-
mance of NN-Bayes was significantly better than conventional linear models for both GWAS and whole-genome prediction, and the differ-
ences on prediction accuracy were substantial in magnitude. In real-data analyses, for the soy dataset, NN-Bayes achieved significantly
higher prediction accuracies than conventional linear models, and results from other four different species showed that NN-Bayes had simi-
lar prediction performance to linear models, which is potentially due to the small sample size. Our NN-Bayes is optimized for high-
dimensional genomic data and implemented in an open-source package called “JWAS.” NN-Bayes can lead to greater use of Bayesian
neural networks to account for non-linear relationships due to its interpretability and computational performance.
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Introduction
Genomic prediction plays an important role in animal and plant
breeding by using genomic information to estimate genotypic val-
ues or breeding values of complex traits. The adoption of geno-
mic information, such as single-nucleotide polymorphisms
(SNPs), has greatly shortened the generation interval and im-
proved the prediction accuracy (Meuwissen et al. 2001; Heffner
et al. 2009; Hayes et al. 2009a; Hickey et al. 2017). Genome-wide as-
sociation studies (GWAS) are used to detect associations between
SNPs and traits. It has been applied in human diseases (e.g.,
Ozaki et al. 2002; Hirschhorn and Daly 2005; Klein et al. 2005;
Visscher et al. 2012, 2017; Buniello et al. 2019), as well as for traits
of interest in animals and plants (e.g., Atwell et al. 2010; Korte and
Farlow 2013; Sharma et al. 2015; Freebern et al. 2020).

Based on the work of Fisher (1918), we typically assume that
complex traits are affected by many genes with small additive

effects, and that the relationship between genotypes and pheno-

types is linear. Based on this assumption, the landmark paper of

Meuwissen et al. (2001) introduced Bayesian regression models

for whole-genome prediction. In Meuwissen et al. (2001), they pro-

posed a model referred to as BayesA, where the marker effects

were assigned a Student’s-t prior distribution, and a model
BayesB, where a priori only a proportion of markers had non-zero

effects. Since Meuwissen et al. (2001), several variations to these

regression models have been proposed, and, hereafter, they will

be collectively referred as Bayesian Alphabet models. Most of the

widely-used Bayesian regression models, including BayesA,

BayesB, BayesC (Kizilkaya et al. 2010; Habier et al. 2011), Bayesian
LASSO (Park and Casella 2008; Gianola and Fernando 2019), and

BayesR (Erbe et al. 2012; Moser et al. 2015), differ only in the prior

used for the marker effects. Another well-known linear model for

genomic prediction is genomic best linear unbiased prediction
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(GBLUP) (Habier et al. 2007; VanRaden 2008; Hayes et al. 2009b),
where a genomic relationship matrix is used to account for the
covariances among genetic values. It has been shown that GBLUP
is equivalent to a Bayesian regression model with a normal prior
for the marker effects (Fernando 1998; Habier et al. 2007;
Strandén and Garrick 2009). These models, including their varia-
tions, have been widely used in GWAS (Wang et al. 2012, 2016;
Moser et al. 2015; Fernando et al. 2017; Legarra et al. 2018). The as-
sumption of linearity in these analyses, however, may affect their
performance on genome-wide prediction and association studies
(Nelson et al. 2013). Thus, machine learning models have been
suggested due to their ability to capture the intricate non-linear
relationship between high-dimensional inputs (genotypes) and
outputs (phenotypes) (Szymczak et al. 2009; Azodi et al. 2019;
Montesinos-López et al. 2021).

Artificial neural networks, inspired by information processing
of brain, are a subset of machine learning models. Neural net-
works utilize multi-layer architectures to learn the representa-
tion of data (LeCun et al. 2015), where the processing layers are
composed of neurons (i.e., nodes) converting the input data into a
more abstract representation. Neural networks have demon-
strated their predictive ability in many fields such as speech rec-
ognition, object recognition, and detection (LeCun et al. 2015). It
has also been applied in biological fields such as protein structure
prediction, protein classification, and brain decoding (Min et al.
2017).

In some genomic prediction studies, neural networks with dif-
ferent architectures were compared to conventional linear mod-
els, such as GBLUP and Bayesian regression models. In genomic
prediction applications, single hidden layer neural networks are
typically applied, but they vary in the number of nodes in the hid-
den layer (Gianola et al. 2011; Okut et al. 2011, 2013; Ehret et al.
2015). Neural networks achieved higher prediction accuracies in
some studies (e.g., Gianola et al. 2011; Ma et al. 2018), but a gain in
prediction performance was not consistently observed (e.g., Okut
et al. 2013; Bellot et al. 2018; Azodi et al. 2019; Abdollahi-Arpanahi
et al. 2020), potentially due to the sample sizes in these studies or
genetic architecture of the traits (Abdollahi-Arpanahi et al. 2020;
Montesinos-López et al. 2021).

Besides the absence of a substantial improvement in predic-
tion accuracy in genomic prediction, a major criticism of neural
network models is the lack of interpretability. For example, deep
learning (“deep” typically refers to neural networks with more
than two hidden layers (Schmidhuber 2015)) is applied in a black-
box manner, i.e., it is hard to interpret results biologically for
genome-wide analyses, although the neural network architecture
may capture the complex relationships between inputs (geno-
types) and outputs (phenotypes). Unlike neural networks, con-
ventional linear models provide an explicit interpretation to link
phenotypes to genotypes under some assumptions, and thus,
they are used in many genome-wide analyses, e.g., GWAS. This
lack of interpretability of results from neural networks impedes
their application for association studies (Ehret et al. 2015;
Waldmann 2018; Montesinos-López et al. 2021). In some studies
(e.g., Okut et al. 2011; Glória et al. 2016; Waldmann 2018), weights
in neural networks were interpreted as regression coefficients to
obtain the effect of each SNP, and these effects without signifi-
cance measures (e.g., P-value) were used to rank all SNPs.

Bayesian regularization has been applied to the neural net-
works to reduce their complexity by treating the networks
weights as random variables with prior densities (e.g., Gianola
et al. 2011; Okut et al. 2011, 2013; Glória et al. 2016; van Bergen
et al. 2020). However, in most Bayesian neural network studies on

genomic prediction, in part due to computational reasons, infer-
ences of unknowns were only based on the posterior mode via
the maximum a posteriori (MAP) estimator (e.g., Gianola et al.
2011; Okut et al. 2011, 2013; Glória et al. 2016). Chen et al. (2017)
showed that in association studies, the performance of MAP
inferences may be inferior to Markov chain Monte Carlo (MCMC)
approaches, which exactly estimate the posterior distribution. In
Demetci et al. (2021), variational inference was used to approxi-
mate the posterior distribution of posterior inclusion probabilities
(PIPs) for all SNPs. However, simulations in Demetci et al. (2021)
showed that such approximation may mis-estimate the network
weights.

Although Bayesian methods had been proposed for analyses
of genetic populations (Dempfle 1977; Gianola and Fernando
1986) in the 1980’s, these methods were not widely adopted until
MCMC approaches were introduced to draw inferences from pos-
terior distributions (Wang et al. 1994). In the method proposed
here, the posterior distribution of marker effects is inferred using
MCMC approaches, and it is used to produce significance meas-
ures such as PIP (Guan and Stephens 2011) and window posterior
probability of association (WPPA) (Fernando et al. 2017). The
method is called NN-Bayes, where “NN” stands for neural net-
works, and “Bayes” stands for Bayesian Alphabet models, a col-
lection of Bayesian regression models such as BayesA, BayesB,
BayesC, and Bayesian LASSO. As shown in Figure 1, the frame-
work of NN-Bayes starts with SNPs that are linearly connected to
hidden nodes, through a multi-trait, multiple regression model,
that are then non-linearly connected to the observed trait. Multi-
trait Bayesian Alphabet models (Cheng et al. 2018b) will be
employed to fit the regression model that connects the SNPs to
the hidden nodes. The hidden nodes, sampled via Hamiltonian
Monte Carlo, represent unobserved intermediate traits that are
non-linearly connected to the observed trait to accommodate

Figure 1 Framework of NN-Bayes. SNPs are linearly connected to
unobserved intermediate traits (i.e., hidden nodes). Multi-trait Bayesian
Alphabet models will be employed to sample marker effects on hidden
nodes (i.e., weights between input and hidden layers). Then hidden nodes
are non-linearly connected to the observed trait to accommodate
complex genetic architecture including non-additive genetic effects, and
the non-linearity is achieved by the non-linear function gð:Þ.
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complex genetic architecture including non-additive genetic

effects. In summary, NN-Bayes attempts to improve the perfor-

mance of genome-wide prediction and GWAS by accommodating

non-linear relationships between the hidden nodes and the ob-

served trait, while maintaining genomic interpretability through

the Bayesian regression models that connect the SNPs to the hid-

den nodes.
Compared to other neural network applications of genome-

wide prediction and association studies, our NN-Bayes using

MCMC approaches is optimized for high-dimensional genomic

data to be computationally efficient. In most neural network

applications of genomic prediction, neural networks were imple-

mented using existing general purpose software tools which are

not optimized for genomic analyses, and it would be time con-

suming to estimate effects of a large number of genome-wide

molecular markers (i.e., weights between input layer and hidden

nodes). For example, in van Bergen et al. (2020), it took about

4 hours to run 1000 iterations for a single-layer neural network

with 20 hidden nodes using a dataset of 500 individuals and 5000

SNPs. However, the computing time of our NN-Bayes, imple-

mented in an open-source package “JWAS” (Cheng et al. 2018a), is

about 2 minutes for such an analysis on a laptop (with 2.6 GHz

Intel Core i7 processor), and it scales nearly linearly by the num-

ber of observations, the number of markers, and the number of

hidden nodes. More details and examples are available in the

JWAS documentation https://github.com/reworkhow/JWAS.jl.

Materials and methods
Bayesian neural network alphabet
Bayesian analyses using NN-Bayes will be demonstrated for a sin-

gle observed trait. The hierarchical Bayesian model of NN-Bayes

is shown in Figure 2. For individual i, the observed trait is mod-
eled as

yi ¼ lð1Þ þ
Xl1

j¼1

wð1Þj gðzi;jÞ þ ei; (1)

where yi is the observed phenotype for individual i, lð1Þ is the
overall mean, zi;j is the jth hidden node for individual i, gð:Þ is an
element-wise non-linear function, wð1Þj is the effect of gðzi;jÞ on yi,
and ei is a random residual. Non-linearity in the model is
achieved through use of the function gð:Þ, which is called an acti-
vation function in the artificial neural network literature (Leshno
et al. 1993), and the hyperbolic tangent function was applied in
this paper. Flat priors are used for the weights wð1Þj and the over-
all mean lð1Þ; the prior for ei is a normal distribution with null
mean and unknown variance r2

e , i.e., ei �
i:i:d Nð0; r2

e Þ. A scaled in-
verse chi-squared distribution is assigned as the prior for r2

e , i.e.,
ðr2

e j�e; S2
e Þ � �eS2

e v
�2
�e

.
For ith individual, the prior for the hidden nodes,

zi ¼ ½zi;1; . . . ; zi;l1 �
T, can be presented as a multi-trait Bayesian re-

gression model (Cheng et al. 2018b):

zi ¼ lð0Þ þ
Xl0

m¼1

xi;mwð0Þm þ �i; (2)

where zi is the vector of l1 hidden nodes, which can be thought of
as unobserved intermediate traits, for individual i, lð0Þ ¼
½lð0Þ1 � � � l

ð0Þ
l1
�T is a vector of overall means for the l1 hidden nodes,

xi;m is the observed genotype covariate at locus m for individual i
(coded as 0,1,2), wð0Þm ¼ ½wð0Þ1;m � � �w

ð0Þ
l1 ;m
�T are the marker effects of lo-

cus m on the l1 unobserved intermediate traits (i.e., weights be-
tween m-th input node and all hidden nodes in the neural
network), and �i is a vector of random residuals for the l1 hidden
nodes.

The overall means, lð0Þ, are assigned flat priors. Conditional
on R, the residuals, �i, have independently and identically distrib-
uted multivariate normal priors with null means and covariance
matrix R, which itself is assumed to have an inverse Wishart
prior distribution, W�1

t ðS�; ��Þ. As shown in Cheng et al. (2018b), by
employing the data augmentation, wð0Þm can be written as
wð0Þm ¼ Dmbm, where Dm is a diagonal matrix, where the kth diago-
nal entry indicates whether the marker effects of locus m for the
unobserved intermediate trait k is zero or not. bm follows some
multivariate distribution, e.g., the multivariate normal distribu-
tion in multi-trait BayesCP or the multivariate t distribution in
multi-trait BayesB. Note that multi-trait Bayesian regression
models may be computationally intensive if a large number of
hidden nodes are used. In this case, we assume that hidden
nodes are independent such that multiple single-trait Bayesian
regression models can be used in parallel at each iteration.

In Figure 1, we also present the hierarchical Bayesian model
described above as a single hidden layer feed-forward Bayesian
neural network. This architecture is typical for neural networks
used in genomic prediction (Gianola et al. 2011; Okut et al. 2011,
2013; Ehret et al. 2015).

In the neural network, for each observation, the input layer is
composed of a vector of l0 molecular markers (coded as 0, 1, 2),
and the output layer is the observed trait. Nodes in the hidden
layer, between input and output layer, represent unobserved in-
termediate traits, and the relationship between hidden nodes
and observed trait is non-linear. The weights between the input
layer and the hidden layer represent marker effects on

Figure 2 NN-Bayes represented as a hierarchical Bayesian model.
Mixture priors in multi-trait BayesCP are used for marker effects on
unobserved intermediate traits.
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unobserved intermediate traits, the “biases” of hidden nodes can

be regarded as the overall means. The weights and bias between

the hidden layer and the output layer help to define the non-

linear relationship between unobserved intermediate traits and

observed trait. Note that extra input nodes can be included in the

neural network if additional random or fixed effects are fitted in

the model.

Inference using Markov chain Monte Carlo
From a Bayesian perspective, inferences of unknowns are based

on their posterior distributions. However, closed-form expres-

sions of those posteriors are usually unavailable. Thus, in prac-

tice, samples are obtained using MCMC techniques, where

statistics computed from the resulting Markov chain converge to

those from the posterior as chain length increases (Norris 1998;

Sorensen and Gianola 2007). Here, to construct the Markov chain,

we will use Gibbs sampling, where each unknown variable or

block of variables is sampled from its full conditional distribu-

tion, conditioned on the observed data and the latest samples of

all the other unknowns.
Given the sampled values of hidden nodes zi in equation (2),

unknown parameters between the input layer and the hidden

layer do not depend on the observed trait. Sampling of those

unknowns, including the overall means lð0Þ, the marker effects

wð0Þm , and the residual covariance matrix R, given the sampled val-

ues of zi, is based on the multi-trait Bayesian regression models

described in Cheng et al. (2018b). Given the sampled values for

the hidden nodes (after activation) gðziÞ and output node yi, the

sampling of weights and bias between the hidden layer and the

output layer is straightforward (derivations are given in the

Appendix). As shown below, we consider Hamiltonian Monte

Carlo to draw samples for the hidden nodes. The sampler is

implemented in the open-source package “JWAS” (Cheng et al.

2018a).

Sampling hidden nodes using Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is used to sample hidden nodes,

i.e., zi. In HMC, each unknown parameter is paired with a

“momentum” variable /i. The HMC constructs the Markov chain

by a series of iterations. A useful introduction to the principles

and concepts underlying HMC is given by Betancourt (2017).

Following notation in Gelman et al. (2013), there are three steps in

each iteration of the HMC:
1) updating the momentum variable independently of the cur-

rent values of the paired parameter, i.e., /i�MVNð0;MÞ.
2) updating ðzi, /i) via L “leapfrog steps.” In each leapfrog step,

zi and /i are updated dependently and scaled by �. The leap-

frog step below is repeated L times:

a) /i  /i þ 1
2 �

dlogpðzi jyi ;ELSEÞ
dzi

;

b) zi  zi þ �M�1/i;

c) /i  /i þ 1
2 �

dlogpðzi jyi ;ELSEÞ
dzi

The resulting state at the end of L repetitions will be denoted

as ðz�i ;/
�
i Þ.

3) calculating the acceptance rate, r, and above resulting state

will be accepted with probability min(1, r).

In our method, the gradient of log full conditional posterior

distribution of zi is:

dlogf ðzijyi; ELSEÞ
dzi

¼ �R�1ðzi � lð0Þ �
Xl0

m¼1

xi;mwð0Þm Þ

þ yi � lð1Þ � ðwð1ÞÞTgðziÞ
r2

e
wð1Þ�g0 zið Þ;

(3)

where wð1Þ ¼ ½wð1Þ1 ; . . . ;wð1Þl1
�T is the vector of weights between hid-

den nodes and observed trait, ELSE denotes the sampled values of
remaining unknowns, and the symbol “�” denotes the element-
wise production.

In the round t of HMC, the acceptance rate, r is:

r ¼ elogðpðz�i jyi ;ELSEÞpð/�i ÞÞ�logðpðz½t�1�
i
jyi ;ELSEÞpð/½t�1�

i
ÞÞ (4)

A detailed derivation can be found in the Appendix. In our
analyses, 10 leapfrog steps was applied in each iteration of HMC,
i.e., L¼ 10, the scale parameter � was 0.1, and M was set as an
identity matrix.

NN-Bayes for genomic prediction
The MCMC sample from the posterior distribution of genotypic
values for individuals of interest is obtained as

ĝ ¼ gð1lð0Þ0 þ Xwð0ÞÞwð1Þ; (5)

where X is the genotype covariate matrix for individuals of inter-
est, wð0Þ is a matrix of size p-by-l1 of samples of marker effects on
the l1 hidden nodes, lð0Þ is a vector of samples of overall means
for the l1 hidden nodes, and wð1Þ is a vector of samples of l1
weights between hidden nodes and the observed trait, and gð:Þ is
a non-linear function. The prediction accuracy is calculated as
the Pearson correlation between the posterior mean of genotypic
values and the phenotypic values in the validation dataset.

NN-Bayes for genome-wide association studies
In NN-Bayes, the PIP for each single marker is computed as the
frequency that its effect is non-zero on at least one of hidden
nodes. Here we prefer the use of the posterior probability of asso-
ciation of a genomic window (WPPA) (Fernando et al. 2017) to ac-
count for the fact that highly correlated SNPs within a genomic
window jointly affect the phenotype, and it is difficult to identify
the effect of a single marker (Hayes et al. 2010).

Given that an investigator is interested in identifying genomic
segments that explain more than a proportion T of the genetic
variance, WPPA is defined as the posterior probability of this
event (Fernando et al. 2017). To estimate WPPA, first, MCMC sam-
ples of genotypic values for all individuals are obtained from their
posterior distribution, using equation (5). Next, using the notation
in equation (5), the genotypic values that are attributed to geno-
mic window t are sampled from their posterior distribution as

ĝt ¼ gðXtw
ð0Þ
t Þwð1Þ; (6)

where Xt is the genotype covariate matrix of markers in window
t, and wð0Þt represents the samples of marker effects in window t
on hidden nodes. The proportion of the genetic variance
explained by the genomic window t, qt, is now sampled as

r2
at

r2
a
,

where r2
a and r2

at
are the variances of a random sample from g

and gt, respectively. Then, the posterior probability that window t
accounts for more than a proportion T of the genetic variance
(i.e., WPPA) can be estimated from the MCMC samples by
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counting the number of samples where qt > T (Fernando and
Garrick 2013; Chen et al. 2017; Lloyd-Jones et al. 2017). In this arti-
cle, non-overlapping windows of 1 Mb were used to identify geno-
mic windows that explain over 1% of the total genetic variance
(i.e., T¼ 0.01)

Data analysis
Simulated data
Real pig genotypes in Duarte et al. (2014) were used to simulate
phenotypes with dominance and epistatic effects. All SNP
markers on the chromosome 1 were used, resulting a genotypic
data with 5023 markers for 928 individuals. A random sample of
5% of these 5023 markers were selected as quantitative trait loci
(QTL). Following the simulation in van Bergen et al. (2020), the ad-
ditive effects (a) of QTL were sampled from a univariate normal
distribution with null mean and variance one. Dominance factors
(d) were sampled from a univariate normal distribution with
mean 1.2 and standard deviation 0.3. Dominance effects (d) were
computed as djaj. The epistatic factors (c) of all pairwise combina-
tions of QTL were sampled from a univariate normal distribution
with null mean and variance one. The epistatic effect (�) between
ith and jth QTL was computed as c

ffiffiffiffiffiffiffiffiffiffiffi
jaiajj

q
. The complementary

epistasis scenario in van Bergen et al. (2020) was used to simulate
the total genetic value. Phenotypes were simulated with a broad-
sense heritability of 0.5 and were scaled to have a phenotypic var-
iance equal to one. Based on the simulation processes described
above, 20 different datasets were simulated.

Real data
Publicly available genotypic and phenotypic data of multiple spe-
cies were used to compare NN-Bayes and conventional linear
models. These datasets include the pig dataset from Duarte et al.
(2014), and data for soy, maize, switchgrass, and spruce from
Azodi et al. (2019). Traits used in our analyses were the 13 week
tenth rib backfat (BF), yield (YLD), wood density (DE) and flower-
ing time (FT). The description of each dataset, such as the num-
ber of SNP markers and the number of observations, are showed
in Table 1.

Genomic prediction
Twenty and fifty replicates were applied for each real and simu-
lated dataset, respectively. In each replicate, a random subset of
80% of all observations were used for training, and the remaining
were used for validation. The prediction accuracy is calculated as
the Pearson correlation between the posterior mean of genotypic
values and the phenotypic values in the validation dataset. In
NN-Bayes, different priors for marker effects (i.e., weights be-
tween inputs and hidden nodes) in Bayesian Alphabet models

(i.e., RR-BLUP, BayesA, BayesB, BayesCp, and Bayesian LASSO)
were used. Linear models with priors in Bayesian Alphabet mod-
els were also performed. Different number of hidden nodes (i.e.,
2, 3, 5 and 10) were tested in the analyses. Chains of length 10,000
and 20,000 were applied to simulated datasets and real datasets,
respectively, to ensure the convergence.

Genome-wide association studies
For each dataset, PIP and WPPA were used for association infer-
ence. In the simulated study, non-overlapping windows of 1 Mb
were tested. Genomic windows that explain over 1% of the total
genetic variance were assumed to be of potential interest (i.e.,
T¼ 0.01). The area under the receiver operating characteristic
curve (AUC) was calculated using the R package pROC (Robin
et al. 2011) to assess the performance of NN-Bayes in GWAS.

Results
Genomic prediction
Simulated data
Overall, the prediction accuracies of NN-Bayes were significantly
higher than those of conventional linear models, and the differ-
ences were substantial in magnitude. The number of hidden
nodes did not significantly affect the performance of NN-Bayes.
No significant differences were found with different priors for
marker effects used in NN-Bayes. Here, we only present the com-
parison of prediction accuracy between NN-Bayes composed of
10 hidden nodes with BayesCP priors (named as NN-BayesCP-10)
and the linear model with BayesCp prior (LM-BayesCp). In Figure
3, the 20 simulated datasets were distinguished by color.
Prediction accuracies of NN-BayesCP-10 were higher than LM-
BayesCp in 949 out of 1,000 validation sets (i.e., above the diago-
nal black line), and the prediction accuracy for NN-BayesCP-10
was significantly higher than for LM-BayesCp in 16 out of 20 sim-
ulated datasets under the t-test with a significance level of 0.05.
The results show that our NN-Bayes has the potential to improve
the prediction accuracy for a trait with non-additive genetic
effects.

Real data
In each of the five species, the prediction accuracies of NN-Bayes
with different numbers of hidden nodes were not significantly
different under the t-test with a significance level of 0.05.
Significant differences were found among different priors for
marker effects in the pig data. Comparison of prediction accura-
cies among all methods is shown in Table 2 in the Appendix. In
detail, NN-Bayes using BayesA and BayesB priors performed bet-
ter than methods using other priors in the pig data. The

Table 1 Comparison among five species in prediction accuracies of NN-Bayes composed of 10 hidden nodes with BayesCP prior (NN-
BayesCP-10) and a linear model with BayesCp prior (LM-BayesCp)

Prediction accuracy

Reference Species Traita #SNPs #Observations NN-BayesCP-10 LM-BayesCp

Duarte et al. (2014) Pig BF 42,246 928 0.530 (0.05) 0.533 (0.04)
Azodi et al. (2019) Soy YLD 5014 4234 0.663 (0.02) 0.656 (0.02)
Azodi et al. (2019) Spruce DE 6785 1722 0.418 (0.05) 0.412 (0.05)
Azodi et al. (2019) Switchgrass FT 217,150 514 0.860 (0.03) 0.865 (0.03)
Azodi et al. (2019) Maize FT 244,771 391 0.754 (0.10) 0.757 (0.09)

a BF: 13 week tenth rib backfat; YLD: yield; DE: wood density; FT: flowering time; #SNP, number of SNP markers; #Observations, number of observations;
Prediction accuracy: the average prediction accuracy from 20 replicates with the standard deviation in the bracket.
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prediction accuracies of NN-Bayes composed of 10 hidden nodes
with BayesCP priors (named as NN-BayesCP-10) and the linear
model with BayesCp prior (LM-BayesCp) are showed in the last
column of Table 1. Among the five species, the prediction accura-
cies for NN-BayesCP-10 were higher than those for LM-BayesCp

when the ratio between number of observations and number of
markers was relatively high (e.g., soy and spruce). However, the
prediction accuracies of NN-BayesCP-10 were not significantly
different from those for LM-BayesCp under the t-test with a sig-
nificance level of 0.05. This may be because the sample size is not
large enough for accurate parameter estimates, or the architec-
ture of the neural network may not be sufficiently complex to
represent the intricate hidden relationships between genotypes
and phenotype. Alternatively, the additive genetic effects may
have already accounted for a majority proportion of the varia-
tion, so the improvement based on non-additive effects is limited.
When we considered a significance level of 0.1, the prediction ac-
curacies for NN-Bayes composed of 10 hidden nodes with priors
for marker effects in BayesCP or RR-BLUP were significantly
higher than conventional linear models for the soy dataset. As
showed in Figure 4, for the soy dataset, in 15 out of 20 validation
sets, the NN-BayesCP-10 had a higher prediction accuracy than
the LM-BayesCp (i.e., above the diagonal black line).

Genome-wide association studies
Simulated data
GWAS was conducted on 20 simulated datasets. NN-Bayes com-
posed of 2 hidden nodes with priors for marker effects in
BayesCP (named as NN-BayesCP-2) was tested and compared to
results from a linear model with BayesCp prior (LM-BayesCp).
Chain of length 500,000 with 200,000 burn-in was used to ensure
the convergence, and samples were saved for every 50 iterations.

For both NN-BayesCP-2 and LM-BayesCp, when PIP was used
for association inference, the AUC was around 0.5, indicating the
performance of PIP was similar to a random classifier. Thus, we
will only present the GWAS results using WPPA in all analyses.
The AUC of NN-BayesCP-2 was significantly higher than that of
LM-BayesCp, under the t-test with a significance level of 0.15. As
showed in Figure 5, the AUC for NN-BayesCP-2 was higher than
that for LM-BayesCp in 16 out of the 20 simulated datasets (i.e.,
above the diagonal black line).

Real data
GWAS was conducted on the real pig dataset. NN-Bayes com-
posed of two hidden nodes with priors for marker effects in
BayesCP (named as NN-BayesCP-2) was tested. Chain of length 1
million with 500,000 burn-in was used to ensure the convergence,
and samples were saved for every 10 iterations.

For NN-BayesCP-2, a WPPA >0.95 was used to identify signifi-
cant associations because it results in controlling the proportion
of false positives to � 0:05 (Fernando et al. 2017). The GWAS
results from NN-BayesCP-2 had a similar pattern as those in
Duarte et al. (2014). The significant window on chromosome 6
was identified, which is consistent with the GWAS results in
Duarte et al. (2014).

Discussion
In conventional linear models used for genomic prediction, it is
usually assumed that complex traits are affected by many genes
with small additive effects, and that the relationship between
genotypes and phenotypes is linear. To account for non-linear
relationships such as non-additive genetic effects, we proposed a
method named NN-Bayes, where “NN” stands for neural net-
works, and “Bayes” stands for Bayesian Alphabet models. NN-
Bayes incorporates Bayesian Alphabet models into non-linear
neural networks via hidden layers between SNPs and observed
traits. Priors in multi-trait Bayesian Alphabet models are as-
sumed for marker effects on hidden nodes, and flexible non-
linear relationships between hidden nodes and the observed trait
are assumed through activation functions, e.g., the hyperbolic
tangent function. Thus, NN-Bayes attempts to improve the accu-
racy of prediction by accommodating non-linear relationships be-
tween the hidden nodes and the observed trait, while
maintaining genomic interpretability through the Bayesian re-
gression methods that connect the SNPs to the hidden nodes.
Compared to other neural network applications on genomic pre-
diction, NN-Bayes has been optimized for MCMC based inference
with high-dimensional genomic data, and it is thus more compu-
tationally efficient. Our NN-Bayes is implemented in an open-
source package called “JWAS” (Cheng et al. 2018a).

In the analyses of the simulated data, where the phenotypes
were simulated with both additive and non-additive effects (i.e.,
dominance and epistasis), performance of NN-Bayes was signifi-
cantly better than conventional linear models for both GWAS
and whole-genome prediction, and the differences on prediction
accuracy were substantial in magnitude. In real-data analyses,
for the soy dataset, NN-Bayes was able to achieve significantly
higher prediction accuracies than conventional linear models,
and results from other four different species showed that NN-
Bayes had similar prediction performance to linear models.
Results in Azodi et al. (2019) showed that artificial neural net-
works did not tend to outperform linear models for the multiple
plant datasets used in our analyses. This may be because the
sample size is not large enough for accurate parameter

Figure 3 The prediction accuracy of NN-Bayes composed of 10 hidden
nodes with BayesCP priors (NN-BayesCP-10) versus a linear model with
BayesCp prior (LM-BayesCp) on scenarios with both additive and non-
additive effects (i.e., dominance and epistasis). Twenty simulated
datasets were distinguished by color. For each dataset, 50 replicates for
validation were applied. The diagonal line is used for reference such that
a dot above the line represents a validation with higher accuracy for NN-
Bayes.
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estimates, or the architecture of the neural network may not be
sufficiently complex to represent the intricate hidden relation-
ships between genotypes and phenotype. Alternatively, the addi-
tive genetic effects may have already accounted for a majority
proportion of the variation, so the improvement based on non-
additive effects is limited.

In most neural network applications on genomic prediction,
single hidden layer, feed-forward neural networks have been
used (e.g., Gianola et al. 2011; Okut et al. 2011, 2013; Ehret et al.
2015). These neural networks are often trained by gradient-based
back-propagation, and the training process stops when it reaches
the maximum number of training iterations or stops early when
a criterion is met, for example, the optimal mean squared error
on a validation dataset. To reduce the overfitting in such neural
networks with large numbers of molecular markers as input, reg-
ularization technology, such as Bayesian regularization (Gianola
et al. 2011) and L1-norm penalty on unknown parameters (Wang
et al. 2018), are usually applied. In Bayesian regularized neural
networks, the effective number of parameters were similar when
different numbers of neurons were used in the middle layer
(Gianola et al. 2011; Okut et al. 2013; Ehret et al. 2015) and were
usually much smaller than the sample size. Moreover, dropout
may be applied to reduce the complexity of neural networks by
setting a random proportion of weights to zero in each training it-
eration (Waldmann 2018; Azodi et al. 2019). In van Bergen et al.
(2020), variable selection was used in a Bayesian neural network
by fitting a “marker selection vector” into the Bayesian neural
networks.

Most Bayesian neural network studies on genomic prediction
heavily rely on approximations in part because they were per-
formed using general algorithms implemented in existing soft-
ware tools that were not optimized for genomic data analyses.
For example, in Gianola et al. (2011) and Okut et al. (2013), the ra-
tionale of using relationship matrix as input of neural networks

is from the representation of the infinitesimal model as a regres-

sion on relationship matrix, so weights connecting the input

and hidden layers should follow the prior distribution of

Nð0;A�1r2
wÞ, where A is the relationship matrix. However, due to

the use of MATLAB (Beale et al. 2010) in Gianola et al. (2011) and

Okut et al. (2013), this prior was restricted in the form of

Nð0; Ir2
wÞ. In addition to approximations, it is usually computa-

tionally intensive or infeasible to analyze large datasets on ge-

nomic prediction using general algorithms implemented in

existing software tools. Okut et al. (2013) reported that MATLAB

required about 2 h to train a neural network with �2500 SNPs as

input, and van Bergen et al. (2020) reported that PyMC3

(Salvatier et al. 2016) took about 4 h with 500 individuals and

5000 SNPs. For a dense genotype, such as the Jersey cow data

with 35,798 SNPs, the relationship matrix of size 297 was used

as input to make computations feasible in MATLAB (Gianola

et al. 2011). These methods (Gianola et al. 2011; Okut et al. 2011,

2013; Ehret et al. 2015; Bellot et al. 2018; Azodi et al. 2019) were

not used for GWAS due to the lack of interpretability. Our NN-

Bayes using MCMC approaches is computationally efficient and

can be further sped up by a recently developed parallel comput-

ing strategy (Zhao et al. 2020).

Data availability
The genotypic and phenotypic data used in the real-data analy-

ses are publicly available in Duarte et al. (2014) and Azodi et al.

(2019). The simulated data and scripts are available at https://

github.com/zhaotianjing/NN-Bayes. The authors state that all

data necessary for confirming the conclusions presented in the

article are represented fully within the article.

Figure 4 The prediction accuracy of NN-Bayes composed of 10 hidden
nodes with BayesCP priors (NN-BayesCP-10) versus the linear model
with BayesCp prior (LM-BayesCp) for the soy dataset. 20 replicates for
validation were applied. The diagonal line is used for reference such that
a dot above the line represents a validation with higher accuracy for NN-
Bayes.

Figure 5 The AUC of GWAS results on 20 simulated datasets for NN-
Bayes composed of two hidden nodes with BayesCP priors (NN-
BayesCP-2) versus a linear model with BayesCp prior (LM-BayesCp), on
scenarios with both additive and non-additive effects (i.e., dominance
and epistasis). Inference of association is based on genomic windows.
The diagonal line is used for reference such that a dot above the line
represents a simulated dateset with higher AUC for NN-Bayes.
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al. 2009. Machine learning in genome-wide association studies.

Genet Epidemiol. 33:S51–S57.

van Bergen GH, Duenk P, Albers CA, Bijma P, Calus MP, et al. 2020.

Bayesian neural networks with variable selection for prediction

of genotypic values. Genet Sel Evol. 52:14.

VanRaden PM. 2008. Efficient methods to compute genomic predic-

tions. J Dairy Sci. 91:4414–4423.

Visscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five years of

GWAS discovery. Am J Hum Genet. 90:7–24.

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, et al. 2017. 10

years of GWAS discovery: biology, function, and translation. Am J

Hum Genet. 101:5–22.

Waldmann P. 2018. Approximate Bayesian neural networks in geno-

mic prediction. Genet Sel Evol. 50:70.

Wang CS, Rutledge JJ, Gianola D. 1994. Bayesian analysis of mixed

linear models via Gibbs sampling with an application to litter size

in Iberian pigs. Genet Sel Evol. 26:91–115.

Wang H, Misztal I, Aguilar I, Legarra A, Muir W. 2012. Genome-wide

association mapping including phenotypes from relatives with-

out genotypes. Genet Res (Camb). 94:73–83.

Wang T, Chen Y-PP, Bowman PJ, Goddard ME, Hayes BJ. 2016. A hy-

brid expectation maximisation and MCMC sampling algorithm to

implement Bayesian mixture model based genomic prediction

and QTL mapping. BMC Genomics. 17:21.

Wang Y, Mi X, Rosa GJ, Chen Z, Lin P, et al. 2018. An R package for fit-

ting sparse neural networks with application in animal breeding.

J Anim Sci. 96:2016–2026.

Zhao T, Fernando R, Garrick D, Cheng H. 2020. Fast parallelized sam-

pling of Bayesian regression models for whole-genome predic-

tion. Genet Sel Evol. 52:11.

Communicating editor: E. Huang

Appendix
MCMC in NN-Bayes

Sampling weights between hidden layers and output layers
The full conditional posterior distribution of lð1Þ and wð1Þ; lð1Þ

wð1Þ

� �
,

is a multivariate normal distribution with mean:

��
1 gðZÞ

�0 1 gðZÞ
� ���1�

1 gðZÞ
�0y (7)

and covariance matrix:

��
1 gðZÞ

�0 1 gðZÞ
� ���1

r2
e (8)

where y is a vector of n phenotypes for the observed trait, and Z is

a matrix of size n-by-l1 for hidden nodes.

Sampling hidden nodes using Hamiltonian Monte Carlo
In the round t of HMC, the acceptance rate, r, can be expressed as:

r ¼
pðz�i ;/

�jyi; ELSEÞ
pðz½t�1�

i ;/½t�1�jyi; ELSEÞ

¼
pðz�i jyi; ELSEÞpð/�Þ

pðz½t�1�
i jyi; ELSEÞpð/½t�1�Þ

¼ elogðpðz�i jyi ;ELSEÞpð/�i ÞÞ�logðpðz½t�1�
i
jyi ;ELSEÞpð/½t�1�

i
ÞÞ

(9)

As showed in equation (3) and (9), the log full conditional poste-

rior distribution of the hidden nodes and their gradients are re-

quired in HMC. Following equation (3), the full conditional
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posterior distribution of the hidden nodes for individual i, i.e., zi,
can be expressed as:

f ðzijyi; ELSEÞ
/ f ðzijlð0Þ;wð0Þ1 ; . . . ;wð0Þl0

; xi;1; . . . ; xi;l0 ;RÞ
f ðyijlð1Þ;wð1Þ1 ; . . . ;wð1Þl1

; zi;r
2
e Þ

/ jRj�
1
2 exp �ðzi � lð0Þ �

P
xi;mwð0Þm ÞTR�1ðzi � lð0Þ �

P
xi;mwð0Þm Þ

2

( )

� ðr2
e Þ
�1

2 exp
½yi � lð1Þ � ðwð1ÞÞTgðziÞ�2

�2r2
e

)
:

(10)
Thus, the log full conditional posterior distribution of zi is:

logf ðzijyi; ELSEÞ
/ � 1

2
logðjRjÞ

�
ðzi � lð0Þ �

P
xi;mwð0Þm ÞTR�1ðzi � lð0Þ �

P
xi;mwð0Þm Þ

2

� 1
2

logðr2
e Þ �

½yi � lð1Þ � ðwð1ÞÞTgðziÞ�2

2r2
e

(11)

Thus, the gradient of the log-full conditional posterior distribu-
tion of zi is:

dlogf ðzijyi; ELSEÞ
dzi

/ �R�1ðzi � lð0Þ �
Xl0

m¼1

xi;mwð0Þm Þ

þ yi � lð1Þ � ðwð1ÞÞTgðziÞ
r2

e
wð1Þ�g0 zið Þ;

(12)

where the symbol “�” denotes the element-wise production.

Sampling residual variance of the observed trait
The full conditional posterior distribution of r2

e is a scaled inverse
chi-squared distribution with nþ �e degrees of freedom and scale
parameter e0eþ S2

e , where the e is y� 1lð1Þ � gðZÞwð1Þ.

Genomic Prediction using real datasets
Prediction accuracies for each real dataset are showed in Table 2.
In each of the five species, the prediction accuracies of NN-Bayes
with different numbers of hidden nodes were not significantly
different under the t-test with a significance level of 0.05.
Significant differences were found among different priors for
marker effects in the pig data.

Table 2 Prediction accuracy of NN-Bayes and linear models for real datasets

#hidden nodesa Priors Pig Soy Spruce Switchgrass Maize

Linear model RR-BLUP 0.534 (0.04) 0.657 (0.02) 0.413 (0.04) 0.865 (0.03) 0.755 (0.09)
BayesA 0.560 (0.05)

† b 0.655 (0.02) 0.410 (0.05) 0.866 (0.03) 0.754 (0.09)
BayesB 0.562 (0.05)

†
0.655 (0.02) 0.411 (0.05) 0.866 (0.03) 0.755 (0.09)

BayesCp 0.533 (0.04) 0.656 (0.02) 0.412 (0.05) 0.865 (0.03) 0.757 (0.09)
BayesL 0.527 (0.04) 0.655 (0.02) 0.409 (0.04) 0.864 (0.03) 0.755 (0.09)

NN-Bayes 2 RR-BLUP 0.529 (0.04) 0.660 (0.01) 0.418 (0.05) 0.865 (0.03) 0.756 (0.10)
BayesA 0.562 (0.05)

†
0.659 (0.02) 0.420 (0.05) 0.866 (0.03) 0.757 (0.10)

BayesB 0.568 (0.05)
†

0.658 (0.02) 0.420 (0.05) 0.865 (0.03) 0.757 (0.10)
BayesCP 0.529 (0.04) 0.660 (0.01) 0.419 (0.05) 0.864 (0.03) 0.758 (0.10)
BayesL 0.523 (0.05) 0.658 (0.02) 0.420 (0.05) 0.866 (0.03) 0.756 (0.10)

3 RR-BLUP 0.530 (0.04) 0.662 (0.01) 0.420 (0.05) 0.861 (0.03) 0.757 (0.10)
BayesA 0.562 (0.05)

†
0.659 (0.02) 0.419 (0.05) 0.865 (0.03) 0.756 (0.10)

BayesB 0.565 (0.05)
†

0.659 (0.02) 0.419 (0.05) 0.862 (0.03) 0.756 (0.10)
BayesCP 0.531 (0.04) 0.662 (0.01) 0.419 (0.05) 0.862 (0.03) 0.756 (0.10)
BayesL 0.524 (0.04) 0.661 (0.02) 0.419 (0.05) 0.863 (0.03) 0.759 (0.10)

5 RR-BLUP 0.530 (0.04) 0.663 (0.01) 0.419 (0.05) 0.861 (0.03) 0.760 (0.10)
BayesA 0.565 (0.05)

†
0.660 (0.02) 0.420 (0.05) 0.860 (0.03) 0.760 (0.10)

BayesB 0.565 (0.05)
†

0.660 (0.02) 0.418 (0.05) 0.864 (0.03) 0.754 (0.10)
BayesCP 0.529 (0.04) 0.662 (0.01) 0.419 (0.05) 0.857 (0.03) 0.757 (0.10)
BayesL 0.523 (0.05) 0.662 (0.02) 0.418 (0.05) 0.861 (0.03) 0.757 (0.10)

10 RR-BLUP 0.531 (0.04) 0.664 (0.02)‡c 0.419 (0.05) 0.859 (0.03) 0.754 (0.10)
BayesA 0.563 (0.04)

†
0.660 (0.02) 0.419 (0.05) 0.860 (0.03) 0.753 (0.10)

BayesB 0.569 (0.04)
†

0.660 (0.02) 0.418 (0.05) 0.859 (0.03) 0.755 (0.10)
BayesCP 0.530 (0.05) 0.663 (0.02)‡ 0.418 (0.05) 0.860 (0.03) 0.754 (0.10)
BayesL 0.524 (0.05) 0.662 (0.02) 0.418 (0.05) 0.859 (0.03) 0.756 (0.10)

a #hidden nodes, number of hidden nodes in NN-Bayes. No significant difference among NN-Bayes with difference number of hidden nodes (i.e., 2, 3, 5, 10).
Priors, prior used for marker effects. Prediction accuracy, the average of prediction accuracies from 20 replications with standard deviation in the brackets.

b For pig dataset, with significance level¼ 0.05, the priors used for marker effects in BayesA and BayesB had significantly higher prediction accuracy than other
priors, as denoted by † symbol.

c For soy dataset, with significance level¼ 0.1, NN-Bayes composed of 10 hidden nodes with priors for marker effects in BayesCP or RR-BLUP had significantly
higher prediction accuracy than conventional linear models, as denoted by ‡ symbol.
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