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Simple Summary: Natural killer group 2, member D ligand (NKG2DL) is the most relevant ligand
of NK cells to perform immune surveillance and is rarely expressed in most small cell lung cancer
(SCLC) with the unclear mechanism. This study aimed to investigate the mechanisms underlying
the NKG2DL deficiency in C-MYC (MY C)-amplificated N-type SCLC (SCLC-N) with less immune
infiltrate. Our data showed that c-Myc was the suppressor of NKG2DL in SCLC-N. Further, c-Myc
suppressed the transcription of NKG2DL by recruiting HDAC3 to deacetylate H3K%ac at the promoter
of MICA and MICB in SCLC-N and inhibited the cytotoxicity of NK cells. The above findings revealed
the role of c-Myc/HDACS3 axis in the regulation of NKG2DL expression, supplying a new perception
for comprehending the mechanism of SCLC-N immune escape, which was poorly understood and
providing the therapeutic targets that SCLC-N may benefit from.

Abstract: SCLC is an aggressive malignancy with a very poor prognosis and limited effective
therapeutic options. Despite the high tumor mutational burden, responses to immunotherapy are
rare in SCLC patients, which may be due to the lack of immune surveillance. Here, we aimed to
examine the role and mechanism of oncogene MYC in the regulation of NKG2DL, the most relevant
NK-activating ligand in SCLC-N. Western Blotting, Immunofluorescence, flow cytometry, quantitative
real-time PCR (qRT-PCR), Co-Immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP),
and Cytotoxicity assay were used on H2227 cells, H446 cells, and other SCLC cell lines, and we
found that c-Myc negatively regulated NKG2DL expression in SCLC-N cells. Mechanistically, c-Myc
recruited HDACS3 to deacetylate H3K9ac at the promoter regions of MICA and MICB, suppressing
the MICA /B expression of SCLC-N cells and the cytotoxicity of NK cells. Treatment with selective
HDACS3 inhibitor up-regulated the expression of NKG2DL on SCLC-N cells and increased the
cytotoxicity of NK cells. Furthermore, analysis of the CCLE and Kaplan-Meier plotter data performed
the negative correlation between MYC and NKG2DL in SCLC-N cells and the correlation with the
prognosis of lung cancer patients. Collectively, the results provided the new insight into the role and
mechanism of c-Myc/HDACS3 axis in NKG2DL expression and innate immune escape of SCLC-N,
suggesting the potential target for SCLC-N immunotherapy.

Keywords: SCLC; c-Myc; NKG2DL; HDACS3; innate immune response; histone deacetylation

1. Introduction

Small cell lung cancer (SCLC), an extremely malignant subtype of lung cancer, is
featured by rapid growth and tendency to metastasize, with a dismal prognosis and
high relapse rate. Among all patients with SCLC, about two-thirds are diagnosed with
advanced-stage disease that is generally accompanied by distant metastasis and has a
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five-year survival rate of less than 5% [1]. SCLC is sensitive to chemoradiotherapy, but
most patients experience disease relapse and drug resistance within six months [2]. In the
immunotherapy era, despite the addition of immunotherapy to frontline chemotherapy,
the absolute improvements in progression-free survival (PFS) and overall survival (OS)
are modest and the effective rate of immune checkpoint inhibitor monotherapy is only
10-20% [3—-6]. Therefore, there is an urgent need to identify new targets or treatment
modalities to improve the effectiveness of immunotherapy for SCLC. Abundant clinical
trials of immunotherapy that do not differentiate among SCLC patients are underway, but
the results of the experiments are disappointing.

In SCLC, responses to immune checkpoint blockade (ICB) are rare, which may be
related with the low infiltration by immune cells, especially cytotoxic lymphocytes [7,8].
SCLC has an immune cold tumor microenvironment (TME) with few infiltrated cytotoxic
lymphocytes and one-fifth total immune cells compared with NSCLC [9]. Antitumor
activity of the immune system largely depends on cytotoxic cells, T cells, and NK cells.
While T cells depend on specific antigens and act as an important component of adaptive
immune response, NK cells are part of innate immunity and recognize tumors by germline-
encoded patterns [10]. NK cells are critical in preventing lung tumor growth, as depletion
of NK cells were shown to facilitate lung cancer initiation and metastasis in experimental
models [11,12]. They are activated by natural killer group 2, member D ligand (NKG2DL)
present on the surface of tumor cells and attack tumor cells by secreting cytotoxic proteins,
such as perforin and granzymes [13,14]. In humans, NKG2DL can be classified into two
subsets, MICA /B and ULBP. While mice only have orthologs of human RAETI genes,
including Raela/B/v/6/e, MULT1, and H60a/b/c [15]. NKG2D is expressed on cytotoxic T
cells, and NKG2DL can stimulate cytotoxicity of T cells [16]. Our previous research found
that NKG2DL could recruit the cytotoxicity immune cells into the tumor nest [17]. However,
according to reports, SCLC cell lines and patient-derived SCLC showed a significantly lower
level of total NKG2DL compared with NSCLC cell lines [18], suggesting that NKG2DL
might be the key molecule that modulates the immunosuppressive TME of SCLC.

SCLC has been treated as a single disease without patient stratification and exhibits
genetic loss of both tumor suppressors RB1 and TP53, along with mutually exclusive
expression of MYC paralog (MYC, MYCN, MYCL) [19-23]. Nowadays, next-generation
gene sequencing-based gene expression analysis of human tumors and cell lines revealed
that SCLC comprised four distinct subtypes based on the expression of ASCL1(SCLC-A),
NeuroD1(SCLC-N), YAP1(SCLC-Y), and POU2F3(SCLC-P) [24]. The research on SCLC
typing is endless, and the typing methods are not completely consistent. The researchers
analyzed the sequencing results of patients enrolled in the IMpower133 study and named
the ASCL1™NeuroD1 POU2F3 ™~ tumor tissues as subtype-I (SCLC-I) with high expression
of inflammatory genes and increased number of immune cells including T cells, NK cells,
and macrophages [8]. Survival analysis showed that SCLC-I tumors derived greater benefit
from ICB. According to the reports that MYC drove the SCLC-N and SCLC-Y subtype of
SCLC in a temporal evolution by reprograming neuroendocrine fate [25], SCLC-N cell lines
highly expressed c-Myc with low level of NKG2DL and showed less immune infiltrate
than other types [26], and SCLC-Y cell lines expressed low level of c-Myc with high level of
NKG2DL [8], we speculated that MYC may contribute to the construction of SCLC-N im-
mune microenvironment and the effect of immunotherapy through modulating NKG2DL.

Here, the study aimed to identify the c-Myc-dependent mechanism of suppressing
NKG2DL expression and innate immune response in SCLC-N and found that c-Myc tar-
geted HDAC3 to deacetylate H3K9ac at NKG2DL promoter and inhibited the transcription
of NKG2DL in SCLC-N cells. The study might suggest the inhibition of HDACS3 to be the
selectively beneficial therapeutic approaches for MYC-amplificated SCLC-N.
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2. Materials and Methods
2.1. Cell Culture

Human SCLC cell lines NCI-H2227 (H2227), NCI-H446 (H446), NCI-H69 (H69), NCI-
H524 (H524), and NCI-H196 (H196) (American Type Culture Collection, Manassas, VA,
USA) were maintained at 37 °C in RPMI-1640 medium or Dulbecco’s Modified Eagle
Media supplemented with 10% (v/v) FBS and antibiotics (100 IU/mL of penicillin and
streptomycin). Human malignant non-Hodgkins Lymphoma cell line NK-92MI were
maintained at 37 °C in NK-92MI special complete medium (Procell, Wuhan, China). All
the cell lines were cultured in a 5% CO; in air humidified incubator.

2.2. Plasmids and Transfection

For the overexpression of c-Myc, full-length MYC encoding sequence (CDS) (Gene
ID: 4609) was subcloned into CMV-MCS-IRES-EGFP-5V40-Neomycin vector (MYC-OE,
GENECHEM, Shanghai, China). The empty vector was used as a negative control. All plas-
mids were isolated using TTANprep Mini Plasmid Kit (DP103, TTANGEN, Beijing, China)
and transfected using Lipofectamine 3000 Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacture’s protocol. After 48 or 72 h, the cells were collected for
the following studies.

2.3. MYC siRNA Transfection

Endogenous c-Myc expression in H446 cells and H2227 cells was reduced using
transient siRNA transfection. Around 24 h post-seeding when reaching 50% cell density,
the cells were transfected with either 40 nM of MYC siRNAs (siMYC#1, GAGGAUAU-
CUGGAAGAAAUTT; siMYC#2, GCUUGUACCUGCAGGAUCUTT; siMYC#3, GGAA-
GAAAUCGAUGUUGUUTT) or 40 nM of Negative Control siRNA (NC-siRNA, UUCUC-
CGAACGUGUCACGUTT) (GeneParma, Shanghai, China). The transfection was per-
formed for 4 h using a dilution of 1:50 in Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA, USA) in serum-free DMEM followed by a 48 or 72 h incubation in FBS
containing media.

2.4. Inhibitor Incubation

H2227, H446, and H196 cells were co-cultured with Entinostat (HY-12163, MCE,
Monmouth Junction, NJ, USA) or 10058F4 (SC6650, Beyotime, Shanghai, China) for 48 h
and collected for the following studies. The H2227 and H446 cells transfected with MYC-OE
plasmid for 48 h were incubated with RGFP966 (HY-13909, MCE, Monmouth Junction, NJ,
USA). After 48 h, the cells were collected for flow cytometry analysis.

2.5. Cell Proliferation Analysis

SCLC cells (5 x 10%) were seeded into 96-well plates treated with different concentra-
tions of Entinostat (1 uM, 2 uM, 4 uM, 8 uM, 16 uM, and 32 uM). After 48 h, the numbers
of live cells were detected by Cell Counting Kit-8 (CCK8) (C0038, Beyotime, Shanghai,
China). Absorbance at 450 nm was measured. Cell viability = (ODsample — ODspontaneous)/
(ODcontrol - ODspontaneous) % 100%.

2.6. Cell Migration Analysis

SCLC cells (5 x 10%) were seeded into the chamber of BD BioCoat Matrigel coated
plates (354480, BD, Franklin Lakes, NJ, USA). After 24 h, migrated cells were recorded after
staining with crystal violet.

2.7. Western Blotting

Western blotting was conducted as described previously [17]. The parental and
72 h-transfected cells were lysed in RIPA buffer containing 1 mM phenylmethylsulphonyl
fluoride. The supernatant was collected after the centrifuge at 15,000 x g for 15 min at 4 °C
and quantified using Enhanced BCA Protein Assay Kit (P0010, Beyotime, Shanghai, China).
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Equal amounts of protein were fractionated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and transferred to polyvinylidene fluoride membranes (Milli-
pore, Billerica, MA, USA), blocked with skimmed milk and then incubated overnight at
4 °C with different primary antibodies in buffer containing 5% skimmed milk. Membranes
were washed with TBS containing 0.05% Tween-20 three times, incubated with a secondary
antibody for 1 h at room temperature, and then washed again three times. The blotting was
examined using chemiluminescence (P0018AM, Beyotime, Shanghai, China) and analyzed
with Image ] software (version 1.8.0). Antibodies against GAPDH (AP0066, bioworld, MN,
USA), c-Myc (WL01781, Wanleibio, Shenyang, China; 10828-1-AP, Proteintech, Chicago,
IL, USA), NeuroD1 (4373S, CST, Boston, MA, USA), YAP1 (14074S, CST, Boston, MA,
USA), ASCL1 (ab74065, Abcam, Cambridge, UK), HDAC1 (WL01297, Wanleibio, Shenyang,
China), HDAC2 (WL03149, Wanleibio, Shenyang, China), HDAC3 (WL02946, Wanleibio,
Shenyang, China), and horseradish peroxidase-conjugated goat anti-rabbit IgG (RM3002,
Ray Antibody Biotech, Beijing, China) were used.

2.8. Immunofluorescence Analysis

The cells were seeded in 24-well plates. After overnight incubation, the cells were
washed with PBS and fixed with 4% paraformaldehyde for 20 min. After being washed in
PBS, the cells were permeabilized with 0.1% Triton X-100 for 10 min and blocked with 5%
bovine serum albumin. After 1 h incubation the cells were stained with rabbit anti-human c-
Myc (10828-1-AP, Proteintech, Chicago, IL, USA, 1:500) at 4 °C overnight, followed by being
incubated with fluorescein (FITC)-conjugated goat anti-rabbit IgG (SA00003-2, Proteintech,
Chicago, IL, USA, 1:100) for 1 h at room temperature. After being washed, the cells were
counterstained with antifade mounting medium with DAPI (P0131, Beyotime, Shanghai,
China). The images of the cells were taken under the fluorescence microscope.

2.9. Flow Cytometry Analysis

The cultured cells were harvested, washed twice with PBS containing 2% FBS, and
stained with PE-labelled mouse anti-human MICA /MICB (320906) or PE-labelled mouse
IgG2a « isotype ctrl antibody (400212, BioLegend, San Diego, CA, USA) for 30 min on ice
in the dark followed by being washed twice with PBS containing 2% FBS. All stained cells
were analyzed by FACSCanto II (BD, Franklin Lakes, NJ, USA). Live cells were carefully
gated by forward and side scatter. Data were analyzed using FlowJo software (version 10).

2.10. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was extracted using TRIzol Reagent (15596026, Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions and reverse transcribed using First Strand
c¢DNA Synthesis Kit (TOYOBO, Shanghai, China). Analyses of qRT-PCR were performed
using SYBR qPCR Mix (QPS-201, TOYOBO, Shanghai, China) on a system (Cobas z480,
Roche, Basel, Switzerland). The primers used for analysis were shown in Supplementary
Table S1. The fold change of target mRNA expression was calculated based on the threshold
cycle (Ct). ACTB was used as an internal control. Relative mRNA expression levels were
analyzed using the 2~44Ct method.

2.11. Co-Immunoprecipitation (Co-IP) Assay

The lysates of the cultured H446 and H2227 cells were harvested and subjected to
c-Myc immunoprecipitation using anti-c-Myc antibody (4 ug, 10828-1-AP, Proteintech,
Chicago, IL, USA). Antibody-protein complexes were captured using 20 uL protein A + G
sepharose beads (P2012, Beyotime, Shanghai, China). Immunoprecipitates were then
analyzed by Western Blotting. The HRP conjugated light-chain specific mouse anti-rabbit
IgG antibody (93702, CST, Boston, MA, USA) was used as secondary antibody, and rabbit
IgG (3900S, CST, Boston, MA, USA) was used as a negative control.
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2.12. Chromatin Immunoprecipitation (ChIP)-gPCR Assay

The predicted promoter sequence of MICA and MICB promoters were searched by
UCSC Genome Browser (http://genome.ucsc.edu/; accessed on 4 February 2021) and
Cistrome Data Browser (http://cistrome.org/db/#/; accessed on 4 February 2021). ChIP
assay kit (P2078, Beyotime, Shanghai, China) was used for ChIP assay following the
manufacturer’s instructions. Briefly, cells were fixed with 1% formaldehyde and quenched
with 0.125 M glycine. Next, the cells were sonicated using an ultrasonic cell disruptor in the
lysis buffer. DNA was immunoprecipitated with either control IgG (B900610, Proteintech,
Chicago, IL, USA), H3K9ac (AF5611, Beyotime, Shanghai, China), H3K14ac (AF5614,
Beyotime, Shanghai, China), H3K27ac (AF5620, Beyotime, Shanghai, China), HDAC3
(10255-1-AP, Proteintech, Chicago, IL, USA), or c-Myc (10828-1-AP, Proteintech, Chicago, IL,
USA) primary antibody. RNA and protein were digested using RNase A (ST576, Beyotime,
Shanghai, China) and Protein K (ST533, Beyotime, Shanghai, China), respectively. DNA
were purified using DNA Purification Kit (D0033, Beyotime, Shanghai, China) followed by
gqPCR analysis. The qPCR primers are listed in Supplementary Table S2.

2.13. Cytotoxicity Assay

H2227, H196, or H446 cells (T) were seeded into 96-well plates (5 x 103 cells per
well) and cultured overnight. Next, the SCLC cell lines were co-cultured with NK-92MI
cells (E) at different E/T ratio (2:1, 10:1, 50:1). After 4 h, the lysate of SCLC cells was
tested using LDH Cytotoxicity Assay Kit (C0017, Beyotime, Shanghai, China). Absorbance
at 490 nm was measured using a microplate reader (CLARIOstar, BMG LABTECH, Of-
fenburg, Germany). Percent cell death was calculated as (ODsample — ODgpontaneous)/
(ODMax - ODspontaneous) x 100%.

2.14. Analysis of Differential Gene Expression from Cancer Cell Line Encyclopedia (CCLE) Dataset

Gene expression data of the SCLC cell lines were downloaded from CCLE (https:
/ /sites.broadinstitute.org/ccle; accessed on 9 March 2021). The correlation between MYC
expression and NKG2DL expression was evaluated by Linear Regression test.

2.15. Kaplan-Meier Survival Analysis

To investigate the association between MYC, MICA, or MICB and the survival of pa-
tients, we downloaded the information related to the survival time of patients with lung can-
cer from Kaplan-Meier plotter (http://kmplot.com/analysis/; accessed on 8 January 2022).

2.16. Statistical Analysis

All experiments were performed in triplicate. Data were analyzed using GraphPad
Prism software (version 8.0), and the results are presented as the mean + SD. Comparisons
between groups were conducted using analysis of unpaired ¢ tests. Correlations between
MYC and NKG2DL in SCLC cell lines were analyzed by Spearman’s rank test. p value < 0.05
was considered statistically significant.

3. Results
3.1. c-Myc, NKG2DL Expression and Susceptibility to NK Cell Killing of SCLC Cell Lines

To explore the expression levels of c-Myc and NKG2DL of SCLC cell lines, we firstly de-
tected the expression of c-Myc, key transcription regulators of SCLC-N and SCLC-Y (ASCL1,
NeuroD1, and YAP1) [24] and major NKG2DL (MICA, MICB, ULBP1-3) [18] in H2227, H446,
H69, H524, and H196 cells by Western Blotting, flow cytometry, and gRT-PCR. Consistent
with the previous reports, H2227 and H446 cells were MYC-amplificated SCLC-N cells [25],
both of which expressed c-Myc and neuroendocrine markers (Figure 1A and File S1). While
the expression levels of MICA /B were exactly different: H446 and H196 cells expressed the
highest level of MICA /B and H69 expressed the lowest level of MICA /B; H2227 and H524
cells expressed equivalent levels of MICA /B (Figure 1B). The qRT-PCR results showed
that the expression level of MYC was higher in H2227 cells than in H446 cells, while the
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expression level of MICA was lower in H2227 cells than in H446 cells (Figure 1C). Further,
the immunofluorescence assay and cytotoxicity assay were used to verify the c-Myc expres-
sion and susceptibility to NK cell killing of H2227, H446, and H196 cells. We found that
compared to H446 and H196 cells, H2227 expressed a higher level of c-Myc and obtained a
lower susceptibility to the killing by NK-92MI cells (Figure 1D,E). The above results indi-
cated that c-Myc may be negatively correlated with NKG2DL expression and susceptibility
to NK cell killing in SCLC-N cells.
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Figure 1. The expression of c-Myc and NKG2DL, and the susceptibility to NK-92MI cell killing in
SCLC cell lines. (A) Western blotting spots of c-Myc, YAP1, NeuroD1, ASCL1, and GAPDH in H69,
Hb524, H2227, H446, and H196 cells. (B) Flow cytometry analysis of MICA /B expression levels on
the surface of the above cells. (C) qRT-PCR analysis of MYC, MICA, MICB, and ULBP1-3 mRNA
expression levels of the above cells. (D) Immunofluorescence staining of c-Myc in H2227, H446, and
H196 cells (40x). Scale bar = 100 pm. (E) Cytotoxicity assay of the susceptibility of H2227, H446,
and H196 cells to NK-92MI cell killing, respectively. Data are represented as mean + SD (n = 3).
* #,p <0.05; %, ##,p < 0.01. * p: H446 group vs. H2227 group; # p: H446 group vs. H196 group.

3.2. c-Myc Inhibited Expression of NKG2DL and Susceptibility to NK Cell Killing in
SCLC-N Cells

To verify whether c-Myc was involved in regulating the expression of NKG2DL in
SCLC-N cells, we constructed the overexpression plasmid containing the CDS of human
MYC gene and named it MYC-OE. H2227 and H446 cells were transfected with MYC-
OE and the overexpression of c-Myc in H2227 cells was determined by western blotting
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(Figures 2A and S1A). Further, flow cytometry analysis showed that the Median Fluores-
cence Intensity (MFI) of MICA /B and the percentage of MICA /B™ cells were lower in
MYC-OE-transfected H2227 cells than in empty vector (EV)-transfected cells (Figure 2B).
The results of qRT-PCR also showed that as MYC was up-regulated, the expression level
of MICB in H2227 cells was down-regulated (Figure 2C). The cytotoxicity assay revealed
that the susceptibility of H2227 cells to the killing by NK-92MI cells was decreased after
MYC-OE transfection (Figure 2D).
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Figure 2. c-Myc was a negative regulator of NKG2DL in H2227 cells. H2227 cells were transfected
with MYC-OE or MYC siRNAs (40 pmol/mL). (A,E) Western blotting analysis of the c-Myc expression
levels in the transfected H2227 cells. (B,F) Flow cytometry analysis of MICA /B expression on
the transfected H2227 cells. (C,G) qRT-PCR analysis of MYC, MICA, MICB, and ULBP1-3 mRNA
expression levels in H2227 cells after transfected with MYC-OE or MYC siRNA-3, respectively.
(D,H) LDH analysis of the susceptibility of transfected H2227 cells to NK-92MI cell killing. (I) qRT-
PCR analysis of IFNG mRNA expression levels in the transfected H2227 cells. Data are represented
as mean £ SD (n = 3). ¥, p < 0.05; **, p < 0.01.
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Next, we transfected the human MYC siRNA (siMYC) into H2227 cells to silence c-Myc.
As a result, siMYC transfection silenced the expression of c-Myc (Figure 2E), up-regulated
the expression of MICA /B protein (Figure 2F), and MICB, ULBP1, and ULBP2 mRNA
(Figure 2G), enhanced the susceptibility to the killing by NK-92MI cells (Figure 2H) and
the expression levels of IFNG in NK-92MI cells (Figure 2I). Similar results were obtained
from H446 cells, in which c-Myc expression was up-regulated and silenced, respectively
(Figures S1B and S2). The incubation of 10058F4 (the inhibitor of c-Myc) with SCLC cells
obviously caused the co-cultured NK cells to aggregate into larger tumor spheres (Figure S3)
which represented higher killing ability [27,28]. These data indicated a potential role for
c¢-Myc in suppressing the expression of NKG2DL and anti-tumor immune response of NK
cells in SCLC-N.

3.3. HDACs Involved in the Modulation of NKG2DL Expression in SCLC-N Cells

To explore the mechanism of c-Myc inhibiting MICA /B in SCLC, we used ChIP-qPCR
assay to perform whether c-Myc directly binds to the promoter region of MICA or MICB.
The data showed that c-Myc may not directly bind to the promoter of MICA or MICB in
H2227 or H446 cells (Figure 3A). Recently, NKG2DL on SCLC-A cells was reported to be
modulated by HDAC [18], which could interact with c-Myc to regulate gene expression [29].
Therefore, we speculated that c-Myc might regulate the expression of NKG2DL through
HDACs in SCLC-N. Here, we found that the inhibitor of class I HDACs, the highly-
expressed HDAC s in the locally advanced, dedifferentiated, and strongly proliferating
tumors [30], Entinostat, could inhibit the expression of HDAC1, HDAC2, and HDACS3, the
three most studied class I HDACSs that this article focused on, with a final concentration
greater than 2.5 pM in H2227 cells (Figure 3B), and inhibit the proliferation and migration of
H2227 cells (Figure S4). Furthermore, the results of Flow Cytometry showed that Entinostat
could up-regulate the MFI of MICA /B on H2227 cells (Figure 3C). Similar results were
obtained from H446 cells (Figures 3D,E and S4). Further, the results of cytotoxicity assay
showed that Entinostat distinctly increased the susceptibility of H2227 cells and H446
cells to the killing by NK-92MI cells (Figure 3F,G). Intriguingly, the MFI of MICA /B and
the susceptibility to NK cell killing of H196 cells, the SCLC-Y cells, were not significantly
altered by Entinostat treatment (Figure 3H,I). The above results indicated that the class
I HDAC inhibitor, Entinostat, could induce the expression of MICA /B and improve the
killing by NK cells of H2227 and H446 cells.

3.4. c-Myc Regulated NKG2DL Expression on SCLC-N Cells through HDAC3

To clarify whether and which subtype of HDAC participated the modulation of c-Myc
on NKG2DL expression in SCLC-N cells, we firstly detected the combination of c-Myc
and HDAC1, HDAC2, or HDAC3 by Co-IP and found that only HDACS3 substantially
interacted with c-Myc in H2227 and H446 cells (Figures 4A and S5A). Further, the ChIP-
qPCR analysis performed that HDAC3 could directly bind the promoter of MICA and
MICB in control H2227 cells, and the binding was prevented by the transfection of siMYC
(Figure 4B). Next, to confirm that c-Myc was indeed inhibiting the NKG2DL expression in
SCLC-N cells through HDACS3, a highly selective HDACS3 inhibitor, RGFP966, was added
to block the HDAC3 in H2227 cells after the transfection of MYC-OE. Since there is no
effective inhibition of any other HDACs at concentrations of up to 15 pm [31,32], we chose
the relatively high concentration, 10 um, of RGFP966 to treat H2227 cells. The results of
flow cytometry and LDH analysis showed that the percentage of MICA /B* cells, MFI of
MICA /B, and the susceptibility to NK-92MI cell killing of H2227 cells were decreased by
the transfection of MYC-OE and recovered by RGFP966 (Figure 4C,D), suggesting that
HDACS3 was the key molecule of c-Myc to suppress the expression of MICA /B and the
susceptibility to NK cell killing of H2227 cells. Furthermore, we found RGFP966 could
increase the acetylation of histone H3K9, H3K14, and H3K27 (Figure 4E), the possible
sites of HDAC3 deacetylation [33-35], in H2227 cells. Importantly, the ChIP-qPCR assay
confirmed that RGFP966 markedly increased the enrichment of H3K9ac, but not H3K14ac
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or H3K27ac, at the promoter of MICA and MICB in H2227 cells, which was recovered by
the transfecting of siMYC (Figure 4F). The similar results were obtained from H446 cells
(Figure S5). Collectively, these findings indicated that c-Myc suppressed the expression of
NKG2DL in SCLC-N cells by recruiting HDAC3 to deacetylate H3K9ac at the promoter
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Figure 3. HDAC inhibitor modulated NKG2DL expression and susceptibility to NK cell killing of
SCLC-N cells. (A) ChIP-gPCR analysis of c-Myc enrichment at MICA and MICB promoters in H2227
and H446 cells. (B,D) Western blotting analysis of HDAC1, HDAC2, and HDAC3 in H2227 and H446
cells treated with or without Entinostat (2.5 pM, 5 M, and 10 uM). (C,E,H) Flow cytometry analysis
of MICA /B expression levels on H2227, H446, and H196 cells treated with or without Entinostat
(10 uM). (F,G,I) LDH analysis of the susceptibility to NK-92MI cell killing of H2227, H446, and H196
cells treated with or without Entinostat (10 uM). Data are represented as mean =+ SD (1 = 3). * p < 0.05,
**p <0.01, ** p <0.001 vs. DMSO group.
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Figure 4. c-Myc modulated HDACS3 to deacetylate histone H3K9ac at MICA and MICB promoters.
(A) Co-IP assay of the binding of c-Myc with HDAC1, HDAC?2, or HDAC3 in H2227 cells transfected
with or without MYC-OE. (B) ChIP-qPCR analysis of the binding of HDAC3 and MICA/B promoter
in MYC-silencing H2227 cells. (C) Flow cytometry analysis of MICA /B expression in H2227 cells
transfected with EV or MYC-OE followed the treatment of RGFP966 (10 uM) or not. (D) LDH analysis
of the susceptibility to NK-92MI cell killing of H2227 cells transfected with EV or MYC-OE followed
by the treatment of RGFP966 (10 uM) or not. (E) Western blotting analysis of H3K9ac, H3K14ac, and
H3K27ac in H2227 cells treated with or without RGFP966 (2.5 pM, 5 uM, and 10 uM). (F) ChIP-qPCR
analysis of H3K9ac, H3K14ac, and H3K27ac enrichment at MICA promoter and MICB promoter in
H2227 cells treated with or without RGFP966 (10 uM) or transfected with siMYC. Data are represented
as mean £ SD (n = 3). *, #,p < 0.05; * p: EV + RGFP966 group vs. EV group; # p: MYC + RGFP966
group vs. MYC group.
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3.5. Correlation between MYC and NKG2DL Expression in SCLC Cells and Lung Cancer Patients

In order to further determine the universality of the negative correlation between
MYC and NKG2DL expression levels in SCLC cells, we analyzed the relationship between
MYC and NKG2DL expression levels in online SCLC cell line data. CCLE data analysis
showed that MYC mRNA expression levels were negatively associated with MICA and
MICB mRNA expression levels in 18 SCLC-N cell lines [25] (p = 0.0167 and p = 0.0033,
respectively) (Figure 5A, Table S3), but not in total 71 SCLC cell lines (Figure S6), indicating
that the negative correlation between MYC and NKG2DL expression levels may only exist
in SCLC-N. Due to the lack of studies on SCLC samples in the database, we analyzed
the prognostic significance of MYC and MICA/B expression levels in lung cancer using
Kaplan-Meier plotter to investigate the clinical significance of MYC and NKG2DL. We found
that the patients with high MYC mRNA expression had worse OS (HR 1.38 [1.02-1.86],
p = 0.0035), and the patients with high MICA mRNA expression had better OS (HR 0.7
[0.52-0.95], p = 0.019) (Figure 5B) which also suggested the negative correlation between
MYC and MICA in lung cancer.
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Figure 5. The negative correlation between MYC and NKG2DL expression in SCLC-N cells and lung
cancer patients. (A) CCLE data analysis of the correlation between MYC and MICA, MICB, ULBP1,
ULBP2, or ULBP3 in SCLC-N cells lines, respectively (n = 18). (B) Kaplan-Meier survival curve of
MYC, MICA, and MICB expression groups, respectively (n = 504).
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4. Discussion

NKG2DL has been considered as an activating signal on the surface of cancer cells to
trigger the cytotoxicity cells including NK cells and CD8" T cells and was the substantial
mechanism of immune surveillance to initiate the immune response to find and eliminate
NKG2DL* tumor cells. In this study, we found that compared to the SCLC-Y cells, which
was reported to express high level of inflammation gene and be infiltrated by more im-
mune cells [8,36], SCLC-N cells expressed a lower level of NKG2DL, especially MICA /B
(Figure 1B), which may be one of the reasons that SCLC-N was infiltrated with less immune
cells [26]. Further, we found MICA and MICB, the most widely expressed NKG2DL, on
SCLC-N cells were suppressed by MYC (Figures 2 and S2), whose encoded protein, c-Myc,
was higher expressed in SCLC-N cells than in other types of SCLC cells [8], indicating
the key role of MYC in the immune characteristics of SCLC. In addition, previous studies
reported that H2227 and H446 cells were SCLC-N cells [25] while H196 cells were SCLC-Y
cells [24], which was consistent with our results that H2227 and H446 cells expressed
higher level of c-Myc than H196 cells (Figure 1A,D). Since the structure and regulatory
mechanism of ULBP family was quite different from MIC family [14,37-39], ULBPs may
not be mainly regulated by MYC, which is consistent with the increased level of ULBP3
in both MYC-overexpressed and -silenced cells (Figure 2). Notably, among the five major
NKG2DL, MICB was the main NKG2DL regulated by MYC in H2227 cells (Figure 2C),
while MICA was the main one regulated by MYC in H446 cells (Figure S2C), indicating
that the regulatory pathways of the same NKG2DL may be different in distinct tumor cells,
which required to be further studied.

Additionally, the study on the mechanism revealed that c-Myc recruited HDAC3
to deacetylate histone H3K9ac, which was bound to the promoter region of NKG2DL
(Figure 4), thereby suppressing the transcription of NKG2DL in SCLC-N cells and inhibiting
the cytotoxic effect of NK cells (Figures 2 and 6). Consistently, Entinostat up-regulated
NKG2DL expression and susceptibility to NK cell killing in SCLC-N, but not in SCLC-Y
(Figure 3). Supporting our finding, rising evidence of RNA-seq showed the HDAC inhibitor
sensitive gene signature of NEURODI1-subtype SCLC, but the immune system-enriched
HDAC inhibitor resistant gene signature of SCLC-Y [40], which was consistent with the
enrichment of immune signaling pathways in SCLC-Y [8,41,42]. However, it appeared that
c-Myc did not up-regulate the expression of HDAC3 in SCLC-N, as the HDACS3 level in
input was not up-regulated by overexpression of MYC (Figure 4A). The specific inhibitor of
HDACS3, RGFP966, could recover the expression levels of NKG2DL and the susceptibility to
the killing by NK cells that down-regulated by the overexpression of MYC (Figure 4), which
was consistent with the reports that NKG2DL in SCLC-A subtype cells was suppressed by
deacetylation [18]. Unexpectedly, we found that high concentration (10 uM) of RGFP966
did not significantly alter the acetylation levels of H3K9 and H3K14, but slightly down-
regulated the level of H3K27 (Figure 4E), indicating that the compensatory mechanisms
may be activated. Despite both the promoters of MICA and MICB could be regulated by
HDACS3 (Figure 4B,F), only MICB mRNA was regulated by MYC (Figure 2C,G), indicating
that MICA might be regulated by the unknown specific mechanism which needed further
study. Moreover, SCLC-I tumors, which obtained the highest total immune infiltrate
and cytolytic activity score [8], expressed higher level of NKG2DL. Whether the highly
expressed NKG2DL are regulated by acetylation and the distinction in the acetylation
level of NKG2DL in different types of SCLC is what we will focus on next. Considering
for the increased susceptibility of SCLC-N cells to the killing of NK cells by both c-Myc
inhibitor and HDAC inhibitor, we speculated that the application of HDAC inhibitor,
especially HDACS3 inhibitor, might be an effective immunotherapy strategy targeting innate
immunity for MYC-amplificated SCLC-N and could solve the problem that c-Myc is largely
unstructured, falling in the category of ontrinsically disordered proteins [43] and is difficult
to be targeted by small molecule inhibitors. Similarly, the effect of HDAC inhibitors and
MYC on the cytotoxicity of NK cells is worthy of further study.
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Figure 6. Schematic model of c-Myc regulating the expression of NKG2DL and the cytolysis in SCLC-
N. c-Myc recruited and combined with HDACS3, which may facilitate the deacetylation of histone
H3K9ac at the NKG2DL promoter region of SCLC-N cells, resulting in the decreased transcription
level of NKG2DL and the inability to activate cytotoxic cells and the reduced cell lysis. HDAC3
inhibitor could reverse the decline of the cytotoxic cell killing effect by up-regulating the expression
of NKG2DL.

Here, it was found that c-Myc in SCLC-N cells could combined with HDACS3, but not
HDAC1 or HDAC?2 (Figure 4A), indicating that HDAC3 in SCLC-N cells might be combined
with and recruited by c-Myc due to its special structure. In Non-Hodgkin B-cell lymphoma
and acute myeloid leukemia, c-Myc was also reported to regulate the gene transcription by
recruiting HDAC3 [44,45], while HDAC1/2 were most likely to be recruited to the promoter
of MYC and regulated the transcription of MYC [46,47]. The above results were consistent
with that HDAC1 and HDAC?2 formed the functional complex with mSin3A, NuRD, and
RCOR1/Co-REST, while HDAC3 formed a functional complex with N-CoR [48]. Due to
the particularity of HDAC3, the mechanism of HDAC3 regulating NKG2DL transcription
deserved further study. We found that HDAC3 may regulate the accessibility of the
promoter and inhibit the transcription of NKG2DL by deacetylating histone H3K9ac and
the treatment with HDACS3 specific inhibitors increased the acetylation level of H3K9
(Figure 4F) and up-regulated NKG2DL expression in SCLC-N cells (Figure 4C). Since the
binding of HDAC3 and the promoters of MICA/B and the level of H3K9ac were prevented
by the silencing of MYC (Figure 4B,F), it is further demonstrated the c-Myc/HDACS3 axis
in the modulating of NKG2DL expression. This study proved the role and mechanism of
HDACS in c-Myc-regulated SCLC-N immune characteristics, implying that HDAC3 may
be a new target for the treatment of SCLC-N.

5. Conclusions

To date, evidence for c-Myc to participate in the regulation and mechanism of SCLC
immune microenvironment and immune characteristics is still lacking. Based on our study,
we confirmed that in MYC-amplificated SCLC cells, c-Myc was involved in regulating
the expression of NKG2DL, the activating ligand for cytotoxic cells such as NK cells. The
main mechanism might be that c-Myc recruited HDAC3 to deacetylate the histone H3K%ac,
which bind to the promoter region of NKG2DL, thereby inhibiting the transcription of
NKG2DL. Our findings suggested that the role of c-Myc in SCLC-N cells as a key modulator
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for immune characteristics and immunotherapy should be noted; compared with c-Myc,
HDACS3 might be a better target for SCLC immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/cancers14030457/s1, Figure S1: Expression levels of c-Myc in the
transfected H2227 and H446 cells. Figure S2: c-Myc was a negative regulator of NKG2DL in H446
cells. Figure S3: The inhibition of c-Myc in SCLC-N cells enhanced the killing ability of NK-92MI
cells in the co-culture system. Figure S4: Effect of Entinostat on proliferation and metastasis of H2227
and H446 cells. Figure S5: c-Myc modulated HDAC3 to deacetylate histone H3K9ac at NKG2DL
promoter in H446 cells. Figure S6: Correlation between MYC and NKG2DL expression levels in SCLC
cells. Table S1: Primers of specific genes used for qRT-PCR. Table S2: Primers used for ChIP-qPCR.
Table S3: The expression levels of MYC, MICA, MICB, ULBP1-3 mRNA in 18 SCLC-N cell lines (data
form CCLE). File S1: Original Western blots figures.
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