
1Scientific Data |           (2022) 9:296  | https://doi.org/10.1038/s41597-022-01398-z

www.nature.com/scientificdata

Optimising the classification 
of feature-based attention 
in frequency-tagged 
electroencephalography data
Angela I. Renton   1,2 ✉, David R. Painter1,5 & Jason B. Mattingley   1,3,4,5

Brain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable 
real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a 
neural mechanism that prioritises the sensory processing of task-relevant stimulus features (feature-
based attention) or task-relevant spatial locations (spatial attention). Within the visual modality, 
attentional modulation of neural responses to different inputs is well indexed by steady-state visual 
evoked potentials (SSVEPs). These signals are reliably present in single-trial electroencephalography 
(EEG) data, are largely resilient to common EEG artifacts, and allow separation of neural responses 
to numerous concurrently presented visual stimuli. To date, efforts to use single-trial SSVEPs to 
classify visual attention for BCI control have largely focused on spatial attention rather than feature-
based attention. Here, we present a dataset that allows for the development and benchmarking of 
algorithms to classify feature-based attention using single-trial EEG data. The dataset includes EEG 
and behavioural responses from 30 healthy human participants who performed a feature-based motion 
discrimination task on frequency tagged visual stimuli.

Background & Summary
Recent advances in machine learning algorithms, computer processing power and neuroimaging hardware have 
driven significant progress in the field of brain-computer interfaces (BCI). BCI systems apply real-time decod-
ing algorithms to human neuroimaging data, with the goal of extracting reliable patterns of neural activity 
to operate external devices or provide neurofeedback training1–4. Visual selective attention, the brain’s ability 
to selectively allocate its limited processing resources to a behaviourally relevant subset of visual inputs, is a 
common target for BCI control5,6. By deliberately shifting attentional focus across visual elements in a display, 
human participants are able to enhance their neural response to some display elements while suppressing their 
response to others7,8. Many BCI applications already take advantage of this phenomenon, allowing users to shift 
their attentional focus across different spatial locations to communicate and control computer displays4,9,10. 
These shifts in spatial attention produce topographically distinct patterns of neural activity which are readily 
classifiable11–13. Unfortunately, detection of spatial attentional selection typically relies on observers’ continually 
foveating a fixation spot, either centrally or at the selected spatial location. This requirement prevents partici-
pants from visually exploring their environment, or even visually monitoring the controlled object14,15. Further, 
the approach of classifying spatial attention is likely to be inappropriate for patient groups with disordered gaze 
control, for whom BCIs are often designed16. A useful extension of this approach, therefore, would be to have 
participants prioritise display elements on the basis of selected visual features5,17 (e.g. luminance18, colour7, or 
motion-direction19) or visual objects20,21 to control a BCI. Despite the potential benefits of such approaches, 
feature-based and object-based attention have not been widely used for BCI control, in part because the unique 
patterns of neural activity associated with attending to specific visual features have proven more difficult to 
classify using non-invasive neuroimaging techniques22. To address this issue, we present a dataset to facilitate 
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the training of algorithms to discern the current focus of feature-based attention in real-time using electroen-
cephalography (EEG).

To track how attention is distributed across multiple concurrent visual stimuli, neuroscientists often use fre-
quency tagging methods6,8,23–25. Frequency tagging involves flickering visual stimuli at specific frequencies, thus 
eliciting time-locked frequency-specific responses from visual system neural populations, termed steady-state 
visual evoked potentials (SSVEPs)25,26. When attention is selectively allocated to a visual stimulus flickering at 
a specific frequency, the neural response to that stimulus is enhanced, which in turn evokes a larger amplitude 
SSVEP at the attended flicker frequency24. Simultaneously, the amplitudes of neural responses to ignored stimuli 
remain unchanged, or may even be suppressed7,27. SSVEPs can allow continuous tracking and quantification of 
the deployment of attention across multiple concurrent stimuli. Although SSVEPs have been widely adopted 
to control BCIs via spatial attention10,12,28, there has been much less work on BCI control using feature-based 
attention22,29. To date, there is no open dataset specifically designed to facilitate the development and training of 
machine learning algorithms to classify the target of feature-based attention using single-trial frequency-tagged 
EEG data. The development of such algorithms would have wide ranging applications, from basic visual neu-
roscience1,30,31, through to the development of neurofeedback training protocols for clinical and research appli-
cations29,32–34 and BCIs that allow participants to control display elements or robotic devices22,35–37 through 
attentional control.

To this end, we collected EEG and behavioural data from healthy adult participants as they monitored 
random-dot kinematograms (RDKs) made up of dynamically moving black and white dots. Participants were 
cued to identify target bursts of coherent motion in dots of one colour (the attended stimulus) while ignoring 
dots in the other colour (the distractor stimulus). Throughout each trial most of the dots in each of the coloured 
sets moved randomly, making the periods of coherent motion relatively difficult to discern. Such motion dis-
crimination tasks have been widely employed to study perceptual decision-making in both humans and other 
animal species38–40. We had participants engage their feature-based attention to monitor dots of one colour, 
while filtering out the irrelevant information from the remaining dots. We also introduced a condition in which 
dots of only one colour were presented, designed to simulate complete, deliberate attentional suppression of the 
distractor colour in the training data. We posited that training classifiers on this condition might mitigate over-
fitting effects by overemphasising amplitude differences in SSVEPs as the differentiating feature between classes. 
An important design consideration for the task used to generate this dataset was that it should always be possible 
to distinguish between “top-down” and “bottom-up” effects on SSVEPs41. Feature-based attention controlled 
BCIs depend upon the classification of top-down effects, generated when participants exert attentional control 
to select one feature over another. However, SSVEPs are also affected by stimulus driven factors such as the size, 
contrast, colour, speed, and retinotopic position of a flickering object26. As such, every effort was made to keep 
such stimulus factors constant across the flickering dots of each colour, such that SSVEP amplitudes could only 
be affected by top-down feature-based selection.

Methods
Participants.  Thirty-two healthy adult participants (16 males, age M = 23.43 years, SD = 5.44 years) volun-
teered for the experiment after providing written informed consent, and each was paid $20 for attendance. The 
study was approved by The University of Queensland Human Research Ethics Committee and was performed in 
accordance with the relevant guidelines and regulations. Participants provided informed written consent to have 
their de-identified data made open access to the scientific community. Data from two participants were excluded 
from the dataset due to technical difficulties that corrupted the EEG recordings.

Task overview.  The task was designed to generate a dataset on which to train machine learning classifiers 
to discriminate between attended and unattended features. Participants were tasked with monitoring a field of 
randomly moving, flickering dots in order to identify short bursts of coherent motion in a cued colour (black or 
white, Fig. 1a). To establish a ground truth for the target of feature-selective attention, coherent motion events 
were only presented in the cued colour. Supervised machine learning classification is fundamentally contingent 
upon accurate data labelling. While it may be impossible to know the true state of feature-selective attention 
corresponding with every sample of EEG data, this design choice meant that there would be no epochs during 
which attention had been captured to the non-target colour by a distractor motion event. The fields of black and 
white dots were entirely co-mingled in space, such that any shifts in gaze would equally affect SSVEPs at both 
frequencies. Note that we varied the luminance of these dots such that they appeared as either black or white 
against the intermediate grey background. Thus, the manipulation was strictly one of luminance (decrement or 
increment), but for simplicity of exposition we refer to these here as different colour categories (black or white). 
This design choice meant that the features could be discriminated by colour-blind individuals. It is also worth 
noting that the fields of black and white dots might be perceptually grouped into two visual objects, at least by 
some observers. As such, these data may be applicable to the machine learning classification of both feature-based 
and object-based attention20,42. A cue presented before each 15 s trial indicated whether participants should mon-
itor the black or the white dots on each trial (Fig. 1b). Bursts of coherent motion occurred when a subset of the 
dots moved in the same direction (up, down, left, or right) for 500 ms. During half the trials, black and white dots 
were presented concurrently (distractor present), and participants were cued to monitor for bursts of coherent 
motion in only one of the two colours. During the remaining trials, only the cued coloured dots were presented 
(distractor absent), simulating the complete, deliberate attentional suppression of the uncued colour (Fig. 1c). 
Dots in different colours flickered at different frequencies (6.0 Hz, 7.5 Hz; colour and frequency were counterbal-
anced), thus evoking SSVEPs. When only one colour was present, SSVEPs were only evoked at a single frequency 
counterbalanced across trials.
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Trial design.  Each trial lasted 17 s, and was composed of a 2 s cue followed by 15 s of dot motion (Fig. 1b). This 
relatively long trial period was chosen to allow for sliding window decoding of the current target of feature selec-
tive attention over prolonged periods of constant stimulation, a desirable feature for BCI control. Participants 
should be able to switch their feature-selective attention between two stable targets indefinitely, and previous 
work suggests that the effects of feature selective attention on SSVEP amplitudes remain discriminable for at 
least the duration of 15 s trials6. Each 15 s period of dot motion contained five 500 ms bursts of coherent motion 
(targets). Coherent motion onset times were randomly selected for each trial, with the constraint that they 
occurred more than 1 s after display onset, more than 1.5 s after the offset of the previous motion epoch, and 
more than 1.5 s before the end of the trial. Coherence for all motion targets was set to 50%. Thus, for each coher-
ent motion epoch, 50% of the dots moved either up, down, left, or right across the display, and the remaining 
50% of dots moved in random directions. The direction of coherent motion was counterbalanced such that each 
direction occurred an equal number of times for each distractor condition (present, absent) and each flicker 
frequency (black - 6.0 Hz, white - 7.5 Hz; black - 7.5 Hz, white - 6.0 Hz). Participants were asked to respond to 
motion targets as quickly and accurately as possible by pressing the arrow on the keyboard corresponding to the 
perceived motion direction ([↑], [↓], [←], [→]). To avoid inadvertently drawing participants’ attention to the 
uncued feature, coherent motion targets only occured in the cued colour.

Block design and counterbalancing.  The experiment consisted of 160 trials, organised into 8 blocks of 20 trials. 
Distractor (present, absent), cue colour (black, white) and flicker frequency (6.0 Hz, 7.5 Hz) were all fully coun-
terbalanced. Thus, the distractor was present on 50% of trials (both black and white dots presented), and absent 
on the remaining 50% of trials (either black dots or white dots presented alone). Within each of these trial types 
(distractor present, distractor absent), black and white dots were cued equally often. Dots of the cued colour 
flickered at 6.0 Hz and 7.5 Hz on an equal number of trials. On distractor present trials, the uncued colour flick-
ered at the remaining frequency (i.e. cued colour: 6.0 Hz, uncued colour: 7.5 Hz; cued colour: 7.5 Hz, uncued 
colour: 6.0 Hz).

Frequency tagging design.  Motion coherence for the motion targets was set to 50%, while the remaining 50% 
of dots moved in random directions. Critically, flicker was limited to those 50% of dots which were never used 
to form coherent motion. As such, motion events could not alter the frequency-tags, preventing any bottom-up 
signal from aiding classification of the cued colour. The randomly moving dots oscillated in a square wave 
flicker with a 50% duty cycle to induce frequency tags. Black flickering dots oscillated between RGB: 0 and 
RGB: 128, and white flickering dots oscillated between RGB: 128 and RGB: 255. The flicker frequencies (6.0 Hz, 
7.5 Hz) were chosen such that the SSVEPs and any harmonics would be outside the alpha range. Further, these 
flicker frequencies were likely to evoke high amplitude SSVEPs43 and had been demonstrated to be sensitive to 
feature-selective attention6,24,25.
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Fig. 1  Schematic of experimental task and structure of a typical trial. (a) Participants performed a dot motion 
discrimination task on a set of flickering dots while we recorded continuous EEG data. (b) Each 17 s trial 
consisted of a 2 s cue (‘BLACK’, ‘WHITE’) to indicate which colour participants should focus on, followed by a 
15 s period which contained 5 coherent motion targets. (c) Different coloured dot patches were presented either 
concurrently (distractor present) or individually (distractor absent). When the distractor was present, black and 
white dots, flickering at 6.0 & 7.5 Hz (colour and frequency were counterbalanced) appeared intermingled at the 
same spatial location, and participants attended only to motion in dots of one colour. When the distractor was 
absent, dots of only one colour (black or white), flickering at one frequency, were presented.
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Stimulus design.  Each moving dot subtended 0.27° × 0.27° of visual angle, and moved at a rate of 1.49° of 
visual angle/sec across the display, within a circular area with a radius of 5.20° of visual angle. Dots which 
moved beyond the boundary of this circular area immediately reappeared 180° from the point of disappearance, 
maintaining the same angular trajectory. There were 400 moving dots of each colour (black, white), and thus 
800 moving dots in total on distractor present trials, and 400 moving dots in total on distractor absent trials. 
The starting position of each dot was randomly selected on each trial, with the constraint that it was within the 
circular display area. The drawing order of all 800 dots was also randomised across trials, such that any dot was 
as likely to appear above the others as below. On each trial, the movement direction of each of the 800 dots was 
sampled from a uniform distribution spanning 0–360°. For each colour, 50% of these moving dots flickered to 
induce a frequency tag and maintained their randomly sampled trajectory throughout the trial. The remaining 
50% of dots did not flicker, and periodically moved coherently in one of four directions (0°, 90°, 180°, 270°). A 
red (RGB: 255, 0, 0) fixation cross which subtended 0.12° × 0.12° of visual angle was presented at the centre of 
the display, on top of all the moving dots. At the beginning of each trial, a cue in 60 pt. Arial font was presented 
in the centre of the screen, indicating whether participants should attend to the black (“BLACK”) or white 
(“WHITE”) dots. The colour of the cue text matched the cue condition. At the beginning of each block of trials, 
a screen announced which block would follow (e.g., “BLOCK 1”) in black 40 pt. Arial font. After the first block, 
this screen also announced the participant’s average behavioural accuracy and reaction time for the previous 
block of trials. After an enforced 10 s break, the words “Press [ENTER]” appeared to indicate that participants 
could proceed to the next block by a button press when ready. The experiment was presented on a uniform grey 
(RGB: 128, 128, 128) background.

Display computer specifications.  The display was presented at a viewing distance of 57 cm on a 24-inch ASUS 
VG248QE monitor with a refresh rate of 120 Hz and resolution of 1920 × 1080. Stimuli were presented using 
PsychToolbox-3 (Kleiner et al., 2007) running in MATLAB R2017a (64-bit) under Windows 10 (64-bit). The 
experiment was run on a Dell Precision Tower 5810 desktop computer containing an Intel Xeon E7-4809 v2 
CPU and NVIDIA QUADRO M4000 GPU.

EEG Recording and processing.  EEG recording.  EEG data were sampled at 1200 Hz using a g.USBamp 
amplifier (g.tec Medical Engineering, GmbH, Austria) from 5 active Ag/AgCl scalp electrodes arranged accord-
ing to the international standard 10–20 system for electrode placement in a nylon head cap (Oostenveld and 
Praamstra, 2001). The electrode positions, which were clustered symmetrically over occipital brain regions at the 
back of the head, were as follows: Iz, O1, O2, Oz, and POz. This minimalist electrode configuration was chosen 
for efficiency in applications involving large scale data collection. This occipitoparietal electrode configuration 
covers the area at which SSVEPs are most often maximal6,10,23. The ground electrode was positioned at FCz, and 
an active Ag/AgCl earclip electrode was used as the reference. EEG data were filtered in real time with a notch 
filter at 48–52 Hz and a 1–100 Hz bandpass filter.

Data Records
Distribution for use.  The data files for the feature-based attention classification dataset can be accessed 
through the Open Science Framework as well as via the University of Queensland eSpace data deposition service, 
and are stored in the BIDS-EEG format44 (version 1.0.2) (https://doi.org/10.17605/OSF.IO/C689U)45. The data 
repository contains data from 30 participants (7.8 GB), as summarised in Table 1.

Overall folder structure.  The data repository for the feature-based attention classification dataset contains 
four top-level folders (Fig. 2). Top-level folders include “FeatAttnClassification\ExperimentalTask\”, which con-
tains the MATLAB code used to run the experimental task, “FeatAttnClassification\Data\”, which contains all 
EEG and behavioural data, “FeatAttnClassification\AnalysisScripts\”, which contains the code used for techni-
cal validation (see below), and “FeatAttnClassification\Results\”, which contains the files output by the analy-
sis scripts. The data folder follows the BIDS specification for folder hierarchy44. Critical information regarding 
the experimental task parameters, display settings, EEG recording settings and triggers is contained in the file 
“FeatAttnClassification\Data\helperdata.mat”. These values are also described above in the Methods section.

Experimental task organization.  The main script used to run the experimental task is stored in 
“FeatAttnClassification\ExperimentalTask\main_RTAttnMethods.m”. This script relies on a number of func-
tions, which are stored in “FeatAttnClassification\ExperimentalTask\Functions\”. These functions include 
“SetupDotCoords.m”, which generates the screen coordinates for each dot in the experiment, “flipper.m”, which 
controls the screen flip and triggering, and “BlockScreen.m”, which calculates a running average of participants’ 
performance and presents this information during the break between each block. During the experiment, EEG 
data were recorded through the g.tec MATLAB API each time this experimental task script was run for a new 
participant. The MATLAB scripts for interfacing with this API to read and write the data are stored under 
“FeatAttnClassification\ExperimentalTask\g.tec recording files\”.

EEG Data organization.  EEG Data files.  The EEG data are organised according to the BIDS architecture 
within the “FeatAttnClassification\Data\” folder. Unprocessed raw data are stored for each participant in a.mat 
MATLAB data format within “FeatAttnClassification\Data\sourcedata\sub-*\eeg\” (Fig. 2). These.mat files were 
converted to the BIDS compatible Brain Vision format (.vhdr,.eeg,.vmrk) and stored for each participant within 
“FeatAttnClassification\Data\sub-*\eeg\” (Fig. 2). Raw data were recorded with an online digital high pass filter 
at 1 Hz and low pass filter at 100 Hz. Note that this online high-pass filtering procedure may result in small shifts 
in variance forward in time in the signal, and thus a degree of caution should be exercised in interpreting the 
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exact timing of decoding using these data46. No further pre-processing has been applied to the data. The EEG files 
provided for each participant are outlined in Table 2.

EEG Triggers.  Triggers marking the onset of pertinent trial events in the EEG data are stored for each partic-
ipant both in their raw form, in the “TRIG” channel saved to the “sub-*_task-FeatAttnDec_eeg.eeg” file, and in 
their processed form, in the “sub-*_task-FeatAttnDec_events.tsv” file. Triggers were sent to the amplifier via the 
parallel port, as integer values between 0 and 255 (8-bit range). These values were converted to voltages; thus, in 
their raw form, events are marked by increases in voltage amplitude of the “TRIG” channel from the 0 uV base-
line (range: 0-255 uV). The amplitude of this increase marks the value of the trigger, while the sample at which 
the increase occurs marks the event onset. The processed events file for each participant lists each of these events 
with the timestamp (in seconds) at which they occurred and the amplitude of the trigger.

Triggers were sent for each trial to mark the onsets of the cue, the trial, each motion event, and feedback 
presentation. For each of these events, the triggers were set to different values to represent the nature of the trial. 
The values of these triggers are stored in the file “Data\helperdata.mat”, within the data structure “HELPER.
TRIGGERS”. For both the cue onset (HELPER.TRIGGERS.cueonset) and trial onset (HELPER.TRIGGERS.
trialonset), these values were stored in a three-dimensional matrix (flicker frequency × colour × presentation 
type) in which the first dimension represented the flicker frequency of the cued dots on that trial (6.0 Hz or 
7.5 Hz), the second dimension represented the colour of the cued dots on that trial (black or white), and the 
third dimension represented the distractor condition for that trial (present or absent). Thus, for example, to find 
the timestamps of all trial onsets for trials in which the cued dots flickered at 6.0 Hz, the cued colour was black, 
and the distractor was absent, one would search for the trigger values stored in HELPER.TRIGGERS.cueon-
set(1,1,2). That is, the first value along the first dimension (flicker frequency; 6.0 Hz, 7.5 Hz), the first value along 
the second dimension (colour; black, white), and the second value along the third dimension (distractor; present, 

ID Age Gender Max Classification Acc (%) Best Classifier

sub-01 21 Male 61.62 LDA - Present

sub-02 42 Female 63.87 SVM - Present

sub-03 34 Male 82.63 LDA - Present

sub-04 34 Male 83.84 LDA - Present

sub-05 20 Male 57.65 LDA - Present

sub-06 21 Female — —

sub-07 23 Female 66.74 LDA - Present

sub-08 24 Male 57.75 LDA - Present

sub-09 21 Male 54.07 SVM - Absent

sub-10 21 Female 70.86 LDA - Present

sub-11 27 Male 90.89 LDA - Present

sub-12 18 Female 68.91 LDA - Present

sub-13 22 Female 57.18 KNN - Absent

sub-14 22 Female 69.07 LDA - Present

sub-15 19 Other 59.13 LDA - Present

sub-16 22 Female 59.25 LDA - Absent

sub-17 — Female 81.56 LDA - Present

sub-18 18 Male 59.03 SVM - Present

sub-19 20 Male — —

sub-20 20 Male 65.98 LDA - Present

sub-21 21 Male 60.85 LDA - Present

sub-22 19 Female 73.84 LDA - Present

sub-23 22 Female 72.26 LDA - Present

sub-24 23 Male 59.16 LDA - Present

sub-25 23 Male 62.27 LDA - Present

sub-26 23 Male 72.26 LDA - Present

sub-27 18 Female 65.05 LDA - Present

sub-28 23 Female 75.41 LDA - Present

sub-29 24 Male 69.21 LDA - Present

sub-30 22 Female 57.02 KNN - Present

sub-31 22 Male 64.27 LDA - Present

sub-32 34 Female 66.37 LDA - Present

Table 1.  Participant metadata. Note: the “Best Classifier” column indicates the classifier that was used to 
achieve the maximal classification accuracy for each participant, and whether data from the distractor “Present” 
or “Absent” condition were used to achieve this accuracy.
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absent). The organisation of the triggers marking motion epoch onsets (HELPER.TRIGGERS.motiononset) is 
similar, with the exception that a fourth dimension is added to the matrix, which marks the motion direction 
presented during that epoch (0°, 90°, 180°, 270°). The feedback trigger was always 222.

Behavioural data organisation.  Behavioural data are stored for each participant under 
“FeatAttnClassification\Data\sourcedata\sub-*\behave\sub-*_task-FeatAttnDec_behav.mat”. These files contain 
all the variables created when the experimental task was run for each participant. The four variables critical for 
any behavioural analysis are listed in Table 3.

Analysis file organisation.  The scripts used to run the analyses reported in the technical validation 
section below are stored in “FeatAttnClassification\AnalysisScripts\”. The subfolder “FeatAttnClassification\
AnalysisScripts\Functions” contains functions which are called across several of the analysis scripts. The function 
of each analysis script is described in Table 4.

Results file organisation.  The data files generated by the analysis scripts run on each individual participant 
are stored under “FeatAttnClassification\Results\\sub-*\”. The files generated for each participant are described 
in Table 5.

Technical Validation
We designed the current study to create a dataset that would allow the scientific community to design and 
benchmark different approaches to real-time feature-based attention classification. To validate the suitability 
of the dataset for this purpose, we compared the efficacy of six different algorithms for classifying the target of 
feature-based attention, using different combinations of training features. We compared training on distractor 
absent trials, in which only a single-coloured dot field was visible, with training on distractor present trials, in 

Data\

sub-01\

Sourcedata\

sub-01\

eeg\

eeg\
behave\

participants.json
participants.tsv
helperdata.m
helperdata.mat

ExperimentalTask\

AnalysisScripts\

Results\

readme.txt

Functions\

main_RTAttnMethods.m

Functions\
MainAnalysisScript.mlx

sub-01\

Fig. 2  Folder structure of the online data repository. This repository contains four sub-folders. The “Data” 
folder contains all data and metadata and is organised according to the BIDS-EEG format (version 1.0.2). The 
“ExperimentalTask” folder contains all code used to run the experimental task and record the associated data. 
The “AnalysisScripts” folder contains all the scripts used for technical validation of this dataset. Finally, the 
“Results” folder contains the data files output during technical validation, allowing group aggregate results to be 
calculated.

Filename Description

sub-*_task-FeatAttnDec_eeg.vhdr
Header file: This is a text file containing recording parameters and 
other metadata. This file is typically required for loading Brain Vision 
formatted data.

sub-*_task-FeatAttnDec_eeg.eeg Raw EEG data file: This is a binary file containing the EEG and trigger 
event data.

sub-*_task-FeatAttnDec_eeg.vmrk
Marker file: This is a text file which is sometimes required for 
loading Brain Vision formatted EEG data. These files usually contain 
information describing the trigger events that have been collected 
during the EEG data recording but are empty in this case.

sub-*_task-FeatAttnDec_eeg.json Metadata file: Specifies details of experimental task and EEG 
recording (e.g. sampling frequency, power line frequency, filters)

sub-*_task-FeatAttnDec_events.tsv Events file: Lists the timestamps and trigger codes for all events in the 
recording session.

sub-*_task-FeatAttnDec_channels.tsv
Channels file: Provides further information about the raw EEG data as 
well as information not present in the raw EEG data file such as filter 
settings and channel status (good/bad).

Table 2.  Description of the EEG data files provided for each participant. Note: The * character is used as a 
wildcard, as filenames include each participant’s unique identifier.
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which both coloured dot fields were visible concurrently. This allowed us to assess whether training on a simu-
lated template of complete attentional suppression of the unattended item might improve classification accuracy. 
Finally, we modelled how increasing the size of the sliding window impacts classification accuracy across these 
approaches. In order to share the technical validation of the dataset with maximal transparency, we have shared 
the scripts used to train and test our classifiers as MATLAB Live notebooks (an interactive format which ena-
bles code blocks to be intermingled with text, images, equations, and script outputs from print statements and 
plots). Note that the results described here are merely intended to demonstrate the suitability of this dataset for 

Variable Description

TRIAL_TABLE

TRIAL_TABLE is a MATLAB Table data type describing the attributes of each trial. Each row represents a 
trial in the experiment. The columns are as follows:
• BLOCK: The experimental block number (1–8).
• TRIAL: The trial number (1–160).
• ATTENTIONCOND: The presentation type of the dots (1 = distractor present, 2 = distractor absent).
• col_Attd_UnAttd: This is a 2D array. The first column represents the cued colour, and the second column 
represents the uncued colour (1 = black, 2 = white).
• Freq_colA_colB: This is a 2D array. The first column represents the flicker frequency of the black dots, and 
the second column represents the flicker frequency of the white dots (1 = 6.0 Hz, 2 = 7.5 Hz).
• movedir_attd_UnAttd: This is a 2D cell array. The first cell in each row represents movement directions for 
the cued dots. The second cell contains movement directions that were generated for the uncued dots but 
were not presented (a legacy parameter). Each cell contains 5 values sequentially representing the motion 
directions of the 5 motion targets for that trial.
• movedir_colA_colB: This is a 2D cell array. The first cell in each row represents movement directions 
generated for the black dots, the second cell represents movement directions generated for the white dots. 
Note that motion targets were only presented in the cued colour on each trial. Each cell contains 5 values 
sequentially representing the motion directions of the 5 motion targets for that trial.
• moveframe_AttdUnAttd: This is a 2D cell array. The first cell in each row represents movement onsets for 
the cued dots. The second cell in each row contains movement onsets that were generated for the uncued dots 
but were not presented. Each cell contains 5 values, sequentially representing the frame indices for the onsets 
of each of the 5 motion targets for that trial.
• moveframe_colA_colB: This contains two sub-columns. The first represents movement onsets generated for 
the black dots, the second represents movement onsets generated for the white dots. Note that motion targets 
were only presented in the cued colour on each trial. Each cell contains 5 values, sequentially representing the 
frame indices for the onsets of each of the 5 motion targets for that trial.

RESPONSE
RESPONSE is a 2D matrix (no. trials × no. frames) in which the columns represent individual trials and the 
rows represent the frames in those trials (screen refresh rate = 120 Hz, trial duration = 15 s). The values of this 
matrix represent the key press responses to the perceived motion direction during each frame of each trial 
(0 = no key pressed, 1 = 0°, 2 = 90°, 3 = 180°, 4 = 270°).

ACC
ACC (%) is a 2D matrix (no. trials × no. targets/trial) in which the columns represent individual trials and 
the rows represent motion targets within that trial. The values of this matrix represent the accuracy of the 
participants’ responses to these motion targets (0 = miss, 1 = correct response, 2 = incorrect response).

RT
RT (s) is a 2D matrix, (no. trials × no. targets/trial) in which the columns represent individual trials and 
the rows represent motion targets within that trial. The values of this matrix represent the reaction time 
for motion targets on which a correct response was made. Reaction times were taken from the onset of the 
coherent motion epoch to the onset of the participant’s key press.

Table 3.  Description of the data containers used to store the key behavioural information for each participant.

Filename Description

Main_Decodingt.mlx
Main_Decoding.pdf
Main_Decoding.html

Matlab live script containing the main implementation of the 
data loading, pre-processing, visualisations, and application of 
the machine learning classifiers. The Matlab live script has also 
been output to.pdf and.html formats for ease of viewing.

Main_Decoding.m The standard.m MATLAB script format of 
MainAnalysisScript.mlx

Aggregate_Decoding.m
This script collates the results produced by all other scripts to 
generate the group average results and comparisons across 
training types.

Aggregate_Behave.m This script performs behavioural analyses for each participant.

Aggregate_SSVEPs.m This script performs the analyses on the SSVEP amplitudes.

Table 4.  List of analysis scripts used for technical validation.

Filename Description

S*BehaveResults.mat
Behavioural results for the motion discrimination task, including 
mean accuracy (%) and reaction time (s) by distractor and colour 
cue, as well as performance for each individual motion epoch.

S*ACCURACY_*_Train*TestMultifreq.mat
Files containing the accuracy (%) for each classifier (z-score, 
logistic regression, linear discriminant analysis, support vector 
machine, multi-layer perceptron, k-nearest neighbours), when 
trained on distractor absent and distractor present data.

Table 5.  List of data files generated as the results of the analysis scripts for each individual participant.
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benchmarking feature-based attention classification algorithms. The findings presented do not represent the full 
range of approaches that could be applied to classify which visual features are attended in real-time, and there 
are as yet many unexplored avenues toward feature-based attention controlled BCIs. Our hope is that this data-
set will facilitate the discovery and development of these avenues.

Description of analyses.  Data sorting.  Before we began training and testing our classifiers, the raw data 
were processed and sorted. Each 15 s epoch of EEG data in a trial was extracted and labelled according to the 
distractor condition (present, absent) and colour-flicker frequency condition (black: 6.0 Hz and white: 7.5 Hz, 
black: 7.5 Hz and white: 6.0 Hz). For each combination of these conditions, we aimed to classify the cued colour 
(black, white). Note that this split was performed because we expected that SSVEP amplitudes would vary as a 
function of both the flicker frequency and colour of attended dots. While differences on the basis of colour may be 
more subtle for more equiluminant colour-pairs, differences in response should always be expected due to indi-
vidual differences in chromatic channels47,48. To compare classification accuracy across different sliding-window 
sizes, we extracted epochs of data from these trials using five different sliding window sizes (0.25 s, 0.50 s, 1.00 s, 
2.00 s, 4.00 s) sampled at 0.25 s intervals (Fig. 3a). Epochs in which the absolute value of the EEG amplitude in 
any channel was greater than 150 µV were excluded from training and testing, as these were likely to be motion 
artifacts49. Further, we defined a 1 s period spanning from the onset of each period of coherent motion to the 
point at which the event related activity locked to this onset had returned to baseline. Epochs for which more 
than 33% of the data fell within this period were also excluded from training and testing. This was done so that 
the classifiers could not rely on any bottom-up differences driven by the onsets of coherent motion, but rather 
had to detect differences in the SSVEPs driven by top-down engagement of feature-based attention41. Finally, we 
ensured that data were still equally distributed across conditions (attend black, attend white) after these epochs 
were removed by randomly removing additional epochs from the larger class until epoch numbers were balanced. 
For the remaining data, epochs less than 2 s in length were zero-padded out to 2 s to achieve a minimum of 0.5 Hz 
spectral resolution for all sliding window sizes. These epochs of EEG data were each submitted to a fast Fourier 
transform (FFT, Fig. 3b). The amplitude of the FFT at the tagged frequencies, their second harmonics, and each 
available frequency in the alpha range (6.0 Hz, 7.5 Hz, 12.0 Hz, 15.0 Hz, 8.0–12.0 Hz) were then extracted for every 
EEG channel and stored in a single feature vector.
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Fig. 3  Machine learning pipeline for classification of the attended feature in the motion-discrimination task. 
(a) Sliding window EEG data were extracted for each trial using five different sliding window sizes (0.25 s, 
0.50 s, 1.00 s, 2.00 s, 4.00 s) sampled at 0.25 s. (b) These epochs were zero-padded out to a minimum of 2 s to 
achieve 0.5 Hz spectral resolution across all window sizes and were submitted to FFTs. For each epoch, the 
FFT amplitude for each channel of EEG was extracted at the flicker frequencies (6.0 & 7.5 Hz), the frequencies 
in the alpha range (8–12 Hz), and the second harmonic of the flicker frequencies (i.e., 12.0 & 15.0 Hz). The 
FFT amplitudes across the relevant frequencies were used to classify the attended colour for each epoch using 
classification algorithms based on (c) a baseline normalised difference approach derived from first principles, 
(d) linear discriminant analysis (LDA), (e) logistic regression (LR), (f) support vector machine (SVM),  
(g) k-nearest neighbours (KNN), and (h) multi-layer perceptron.
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Training conditions.  We trained the machine learning classifiers under a number of different conditions to 
assess how these affected classification accuracy. Primarily, we compared how training on distractor present 
trials compared with training on distractor absent trials. We also assessed how classification accuracies changed 
with increasing epoch durations (0.25 s, 0.50 s, 2.00 s, 4.00 s). To assess how different combinations of features 
affected classification accuracy, we trained the classifiers initially using just the first harmonic frequencies (‘sim-
ple’). Next, we asked whether the second harmonic might contribute unique variance to aid classification by 
including both the first and second harmonic frequencies (‘simple + harmonic’)25. Third, given that endogenous 
alpha oscillations have been linked to sustained attentional processes, which may interact with feature-selective 
attention, we trained classifiers using both the first harmonic and alpha frequencies (‘simple + alpha’)50. Finally, 
we trained the classifiers using spectral power at both the first and second harmonic frequencies as well as alpha 
activity (‘simple + alpha + harmonic’).

Testing conditions.  The experiment was designed to determine how best to classify which of two visual features 
a participant is attending to, using short latency, single-trial EEG data. Our primary test condition was therefore 
classification on the distractor present trials. When training was performed on the distractor absent trials, clas-
sification accuracy for each participant was determined using a single iteration of training on distractor absent 
trials and testing on distractor present trials (as there was no overlap between these sets of trials). When training 
was performed on the distractor present trials, classification accuracy for each participant was determined using 
10-fold cross validation across trials (i.e. separation was performed on the basis of trial number, such that train- 
and test-data always represented independent trials)51.

Machine learning approaches.  Several approaches were used to discriminate which feature participants 
were attending to using short latency single-trial EEG data from a low density electrode array positioned over 
the posterior scalp. These included a z-score difference approach, linear discriminant analysis, logistic regression, 
support vector machine, multi-layer perceptron, and k-nearest neighbours.

Z-Score difference.  We first set out to determine baseline classification accuracy using an approach derived 
from first principles. It has been well established that SSVEP amplitude at any given frequency typically increases 
when the driving stimulus is attended, and decreases when the driving stimulus is actively suppressed by atten-
tion8,24. Nevertheless, the baseline amplitude of the SSVEP and the size of any attention-induced changes in 
SSVEP amplitude differ according to a number of factors such as individual participant fatigue or habitua-
tion, flicker frequency, stimulus properties, and gaze position. This means that the raw difference in single-trial 
SSVEP amplitudes for two different stimuli/frequencies is not, by itself, a perfect indication of whether one has 
been allocated more attentional resources than the other. To account for this, we normalised SSVEPs for each 
frequency (6.0 Hz, 7.5 Hz). This normalisation was performed independently for epochs in each combination of 
distractor condition (present, absent) and colour-flicker frequency condition (black: 6.0 Hz and white: 7.5 Hz, 
black: 7.5 Hz and white: 6.0 Hz). That is to say, we generated separate populations of SSVEP amplitudes for each 
participant representing the response at each flicker frequency given each unique display configuration. For 
each epoch, we z-scored the SSVEPs using the relevant populations (e.g., black: 6.0 Hz, white, 7.5 Hz, distractor 
present). The driving stimulus with the largest z-score for each epoch was classified as attended (Fig. 3c).

Linear discriminant analysis (LDA).  While the z-scoring approach was derived entirely from first-principles 
knowledge of SSVEPs, the simple implementation presented above does not take advantage of the high dimen-
sional data available (SSVEP amplitudes at multiple frequencies, available at multiple different electrodes). 
Linear discriminant analysis (LDA) involves determining the linear boundary in multi-dimensional space 
which best separates the distributions of features for two classes52. Having determined this boundary, we can 
ask whether each new sample falls closer to the mean of class 1 (attend black) or class 2 (attend white), along the 
linear boundary separating these two means in multidimensional space. This relatively simple approach builds 
naturally on the linear z-scoring difference rule, while taking advantage of the multi-dimensional data. Notably, 
an LDA approach has been applied as part of a successful SSVEP-based feature-based attention controlled BCI29, 
and is also a popular choice for BCI control in other contexts53–55, suggesting that this approach is likely to per-
form well for this use-case. We applied LDA to the feature vector containing the SSVEP amplitudes at each EEG 
channel and relevant frequency using the fitcdiscr function from the MATLAB statistics and machine learning 
toolbox (Fig. 3d).

Logistic regression (LR).  LDA-based classification is an attractive option for BCI control as the algorithm has a 
closed-form analytical solution, and is therefore able to achieve robust performance given relatively low training 
times. However, this method relies on normally distributed data with equal covariance across classes, consider-
ing the entire distribution of features. As such, these classifiers are susceptible to bias when the distribution of 
training data contains outliers or skew56. This may be particularly relevant to the case of classifying single-trial 
SSVEPs, which typically form a highly skewed distribution. Logistic regression (LR) algorithms represent an 
alternative linear classification option which circumvent this issue. Much like LDA, LR approaches to classifica-
tion involve identifying the linear boundary between features associated with each class. Indeed, the two algo-
rithms have the same functional form, but differ in their approach to coefficient estimation; where LDA relies 
on the assumptions of normality and homoscedasticity, the coefficients in the LR model are estimated using 
maximum likelihood estimation57. As such, LR models make no assumptions about the underlying distribu-
tions of predictor variables. However, it is worth noting that the features generated for this technical validation 
likely violate the logistic regression assumption of lack of multicollinearity amongst predictors, as SSVEPs were 
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calculated for neighbouring electrodes. This limitation could be overcome by the application of principal com-
ponents analysis (PCA), a common pre-processing step for machine learning applications58,59. This approach 
was not applied here to conserve consistency across methods, but is worthy of future investigation. We applied 
an LR approach to classification using the fitclinear function from the MATLAB statistics and machine learning 
toolbox (Fig. 3e). Optimisation was performed using stochastic gradient descent (SGD). To avoid overfitting, we 
applied L2 regularisation with Lamda = 1/n.

Support vector machine (SVM).  Support vector machine (SVM) algorithms represent another alternative linear 
classification option which has been shown to perform well with non-parametric EEG features60,61. As such, 
this algorithm represents a popular method for BCI control62–64. SVM algorithms optimise the linear margin 
between features of each class to identify the margin which results in the least possible overlap between classes. 
Rather than relying on the entire distribution of features, optimisation is performed using only those data points 
which lie closest to the class boundary (the so-called support vectors). An advantage of this method is that it can 
be extended to classify data with non-linear boundaries via the application of a kernel function that transforms 
feature-data into a higher dimensional space in which classes are linearly separable65. We applied this transfor-
mation using the popular radial basis function (RBF) kernel66–68. SVMs with RBF kernels were trained on the 
feature vectors using the fitcsvm function from the MATLAB statistics and machine learning toolbox (Fig. 3f). 
The RBF kernel scale was automatically selected for each fold using a heuristic subsampling procedure built into 
the MATLAB fitcsvm function.

Multi-layer perceptron (MLP).  The difference in EEG signals between attending to dots flickering at one fre-
quency as opposed to the other is likely to involve complex changes in the both the amplitude and topographical 
distribution of neural signals, and it is thus possible that the difference between classes will not be well char-
acterised by linear discrimination. Multi-layer perceptrons (MLP) are able to map out complex state spaces by 
weighting each individual input feature across hidden layers to best discriminate between the output classes69. 
We therefore generated fully connected MLPs, with two hidden layers containing 10 nodes in each hidden layer, 
using the MATLAB Statistics and Machine Learning Toolbox. The network was initialised using the patternnet 
function with the training function set to traingdx, which implements gradient descent with momentum and 
an adaptive learning rate70. When training machine learning classifiers, we are typically trying to find the lowest 
possible point on a “loss function”, which describes the relationship between each hyperparameter and the error 
we would expect from the model (this process is called optimisation). For neural networks, the loss function 
typically describes a vast multidimensional landscape with no algorithmic solution to the optimisation prob-
lem. SGD algorithms perform optimisation by calculating the gradient (or slope) of the loss function at each 
training step for the current hyperparameters. In a process known as backpropagation, these hyperparameters 
can then be adjusted in the direction that is projected to lead to a smaller loss on the next training run. The 
size of the change made to the hyperparameters in each training run is known as the learning rate. This pro-
cess can be pictured like a ball rolling down through a mountain range toward the lowest possible loss value. 
While this approach is effective and widely used71, our hypothetical rolling ball is often caught by craters in the 
mountain-side (i.e. local minima) making no further progress down the loss function. This can be overcome 
by adding momentum to our rolling ball (SGD), so that it can break out of these local minima. However, even 
with momentum, our algorithm might still get caught up in local minima if the learning rate (step size) is too 
small, whereas with too large a step size the algorithm might step entirely past all minima. This can be avoided 
by using an adaptive learning rate, such that the learning rate is set to be as large as possible while minimising 
the volatility of the changes in loss. Performance during training was evaluated using mean squared error72. 
MLPs were trained on the feature vector containing the SSVEP amplitudes at each EEG channel and relevant 
frequency (Fig. 3g).

K-Nearest neighbours (KNN).  Another classification approach which does not rely on linear boundaries 
between classes is K-nearest neighbour classification (KNN). This simple but powerful approach classifies each 
new sample by using a distance metric to find the class most common in the sample’s k-nearest neighbours in 
feature-space amongst the test set52. Using a 10-fold cross validation approach to hyperparameter optimization, 
we found that the optimal value for the number of neighbours (k) was 1. We applied KNN to the feature vector 
containing the SSVEP amplitudes at each EEG channel and relevant frequency using the fitcknn function from 
the MATLAB statistics and machine learning toolbox (Fig. 3d). Distance between data points was assessed using 
Euclidean distance.

Behavioural results.  Overall, participants were able to perform the task successfully. Predictably, the dis-
tractor present trials (accuracy M = 62.17%, SD = 16.46) proved more difficult than the distractor absent trials 
(accuracy M = 87.74%, SD = 14.07, t29 = 10.67, p < 0.001). This was also reflected in participants’ reaction times 
(RTs), which were faster for the distractor absent trials (RT M = 0.58 s, SD = 0.06) than for the distractor present 
trials (RT M = 0.64 s, SD = 0.08, t29 = −5.09, p < 0.001).

SSVEP Amplitudes.  During distractor present trials, SSVEPs were evident at both 6.0 Hz and 7.5 Hz, as 
expected (Fig. 4a). To assess the effects of the attentional cue on SSVEP amplitude for the distractor present con-
dition, we submitted SSVEP amplitude to a 2 × 2 × 2 repeated-measures ANOVA with SSVEP frequency (6.0 Hz, 
7.5 Hz), flicker frequency of cued dots (6.0 Hz, 7.5 Hz) and colour-flicker frequency condition (black: 6.0 Hz and 
white: 7.5 Hz, black: 7.5 Hz and white: 6.0 Hz) as factors. There was no significant three-way interaction, such that 
the effect of cued frequency on SSVEP amplitudes at each frequency did not differ across colour-flicker frequency 
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conditions (F(1, 232) = 0.03, p = 0.871, ηp
2 < 0.001, Fig. 4c). As expected, SSVEP amplitudes at each frequency 

differed according to the flicker frequency of the cued dots (F(1, 232) = 4.42, p = 0.037, ηp
2 < 0.019), such that 

SSVEP amplitudes at 6.0 Hz were significantly larger when 6.0 Hz was cued (M = 1.47, 95% C I[1.28, 1.65]) ver-
sus un-cued (M = 1.33, 95% CI [1.17, 1.50]; t29 = 11.88, p < 0.001), and SSVEP amplitudes at 7.5 Hz were larger 
when 7.5 Hz was cued (M = 1.05, 95% CI [0.93, 1.17]) versus un-cued (M = 0.93, 95% CI [0.81, 1.05]; t29 = 4.44, 
p < 0.001). This effect of cue on SSVEP amplitudes was relatively evenly distributed across the occipito-parietal 
electrode array (Fig. 4e)6.

During distractor absent trials, SSVEPs were only present at the cued frequency, as expected (Fig. 4b). To 
assess the effects of the attentional cue on SSVEP amplitude for the distractor absent condition, we submitted 
SSVEP amplitude to a 2 × 2 × 2 repeated-measures ANOVA with SSVEP frequency (6.0 Hz, 7.5 Hz), flicker fre-
quency of presented dots (6.0 Hz, 7.5 Hz) and colour-flicker frequency condition (black: 6.0 Hz/ white: 7.5 Hz, 
black: 7.5 Hz/ white: 6.0 Hz) as factors. As for the distractor present trials, this analysis revealed that there was 
no significant three-way interaction, such that the effect of presented frequency on SSVEP amplitudes at each 
frequency did not differ across colour-flicker frequency conditions (F(1, 232) = 1.59, p = 0.208, ηp

2 = 0.007, 
Fig. 4d). As expected, SSVEP amplitudes at each frequency differed according to the flicker frequency of the 
presented dots (F(1, 232) = 404.04, p < 0.001, ηp

2 = 0.635), such that SSVEP amplitudes at 6.0 Hz were signif-
icantly larger when 6.0 Hz was presented (M = 1.30, 95% CI [1.08, 1.51]) versus not presented (M = 0.13, 95% 
CI [0.11, 0.15]; t29 = 11.49, p < 0.001), and SSVEP amplitudes at 7.5 Hz were significantly larger when 7.5 Hz 
was presented (M = 0.90, 95% CI [0.77, 1.03]) versus not presented (M = 0.13, 95% CI [0.11, 0.15]; t29 = 11.88, 
p < 0.001). This effect of presentation on SSVEP amplitudes was relatively evenly distributed across the 
occipito-parietal electrode array (Fig. 4f)6.

Classification accuracy.  Our dataset was collected to determine which pre-processing steps, extracted fea-
tures and classification algorithms are best suited to discriminate between attended and unattended frequency 
tagged visual features. To this end, we sought to classify the single-trial EEG data using a number of different 
classification algorithms and training parameters to provide an initial benchmark for future work.

Flicker frequency.  The pairing of flicker frequency and colour was counterbalanced on a trial-by-trial basis, 
such that on half of the trials, black dots flickered at 6.0 Hz and white dots flickered at 7.5 Hz, and on the remain-
ing trials the pairing was reversed. Given there are large individual differences in SSVEP amplitudes across 
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Fig. 4  Feature-based attention effects on SSVEPs. (a,b) Grand average frequency spectra generated by 
submitting the average of all trials when participants were cued to attend dots flickering at 6.0 Hz and 7.5 Hz to 
an FFT, for (a) distractor present and (b) distractor absent trials. Black asterisks mark the SSVEPs at the first and 
second harmonics of the flicker frequencies. Black bars mark the frequencies at the alpha range. Note that while 
SSVEPs are evoked at the same frequency and phase across trials, endogenous alpha activity varies in phase 
across trials and is therefore not strongly visible in these trial average frequency spectra. (c,d) Raincloud plots of 
grand average SSVEPs at 6.0 Hz and 7.5 Hz when attention was cued toward each of these flicker frequencies, for 
(c) distractor present and (d) distractor absent trials74. SSVEPs are shown separately for the black: 6.0 Hz, white 
7.5 Hz, and black: 7.5 Hz, white: 6.0 Hz conditions. Each participant’s marginal means (SSVEP amplitude at each 
flicker frequency) have been subtracted from their cell means before plotting, to clearly show the direction of  
individual effects. (Note that all reported statistics were performed on the untransformed data.) (e, f) Raincloud 
plots of the SSVEP attention effect (SSVEPCued Dots - SSVEPUncued Dots) at each recorded electrode, for (e) distractor 
present and (f) distractor absent trials74. Raincloud plots show kernel density plots over the data (violin plots), 
individual data points for each participant (point cloud), and box plots indicating the quartiles of these data.
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frequencies26, classifiers were trained separately for these two conditions and classification accuracies were taken 
as the average result across the two flicker frequency conditions (Fig. 5b). Note that under either condition, 
participants were still equally likely to be cued to attend to either the black or white dots. Before assessing how 
the training parameters affected this average classification accuracy, we evaluated whether the specific pairing 
of flicker frequency and dot colour affected classification. Student’s t-tests revealed that there was no signifi-
cant difference in classification accuracy across the two flicker conditions, both for classifiers trained on trials 
whether the distractor was present (black 6.0 Hz, white 7.5 Hz: M = 53.22, 95% CI [51.95, 54.49]; black 7.5 Hz, 
white 6.0 Hz: M = 53.66, 95% CI [52.31, 55.03]; t29 = −1.15, p = 0.261) and absent (black 6.0 Hz, white 7.5 Hz: 
M = 52.31, 95% CI [51.14, 53.49]; black 7.5 Hz, white 6.0 Hz: M = 53.03, 95% CI [51.96, 54.10]; t29 = −1.84, 
p = 0.076).

Presentation type.  Flickering dots were presented either individually (distractor absent) or concurrently with 
distractors. Practical BCI and neurofeedback applications requiring real-time classification of feature-selective 
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Fig. 5  Classification accuracy for the attended feature (black dots, white dots) on the distractor present trials, 
calculated for each participant using trial-based 10-fold cross validation for different training parameters. (a) 
Raincloud plot of the average classification accuracy for classifiers trained using data from trials in which the 
distractor was present and absent74. (b) Raincloud plot of the average classification accuracy for classifiers 
trained using data from trials in each flicker frequency condition (black: 6.0 Hz and white: 7.5 Hz, black: 7.5 Hz 
and white: 6.0 Hz), for the distractor present and absent training data. Note that for the distractor absent trials, 
only the target frequency was presented. (c) Raincloud plot of the average classification accuracy for each 
classification algorithm, for the distractor present and absent training conditions. (d) Average classification 
accuracy for each classification algorithm trained on data from the distractor present and distractor absent 
conditions, for each of 5 sliding window sizes ranging from 0.25 s to 4.00 s. (e) Average classification accuracy 
for the LR, MLP, LDA, SVM, and KNN classification algorithms trained on each combination of training 
features (simple, simple + harmonic, simple + alpha, simple + alpha + harmonic), according to whether 
distractor present or absent training data were used.
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attention would be likely to involve at least two features/frequencies. However, we sought to determine whether 
training data free of noise from distractors might increase classification accuracy during selectivity. We there-
fore trained the classifiers on distractor present and absent data and tested these classifiers on the distractor 
present data (Fig. 5a). To assess how this and other training parameters affected the accuracy of classification 
of the attended feature, we submitted classification accuracy to a 2 × 5 × 6 repeated measures ANOVA with 
training data distractor condition (present, absent), sliding window size (0.25 s, 0.50 s, 1.0 s, 2.0 s, 4.0 s) and 
algorithm (Z-Score, LDA, LR, SVM, MLP, KNN) as factors. Overall, training on the distractor present condition 
(M = 54.07, SD = 3.61) resulted in significantly better classification accuracy than training on the distractor 
absent condition (M = 52.91, SD = 2.91, F(1, 1740) = 31.80, p < 0.001, ηp

2 = 0.018), suggesting that there was 
no benefit to training on distractor absent data. Further, the effects of sliding window size (F(4, 1740) = 16.59, 
p < 0.001, ηp

2 = 0.037) and algorithm (F(5, 1740) = 3.96, p = 0.001, ηp
2 = 0.011) also differed across the two dif-

ferent presentation types. As such, we evaluated the effects of these factors separately for the two different pres-
entation types.

Classification algorithm.  We applied a number of different classification algorithms (Z-Score, LDA, LR, SVM, 
MLP, KNN) to determine which colour of frequency-tagged dots participants were attending at any given 
moment (Fig. 5c). For classifiers trained on the distractor present condition, there was a significant main effect 
of the classification algorithm (F(5, 174) = 5.63, p < 0.001, ηp

2 = 0.139). We therefore evaluated the performance 
of each classifier in this condition using a Student’s t-test against the baseline z-score approach (Bonferroni 
corrected α = 0.01 [0.05/5]). In order of performance from best to worst, average classification accuracy across 
all sliding window sizes and training features was as follows: LDA (M = 60.58, 95% CI [57.93, 63.23]; t29 = 8.11, 
p < 0.001), SVM (M = 56.84, 95% CI [54.70, 58.98]; t29 = 4.92, p < 0.001), MLP (M = 56.23, 95% CI 54.08, 58.39]; 
t29 = 4.19, p < 0.001), KNN (M = 55.55, 95% CI 53.63, 57.46]; t29 = 3.65, p = 0.001), LR (M = 55.11, 95% CI 
[53.06, 57.16]; t29 = 3.07, p = 0.005), and z-score (M = 53.15, 95% CI [51.39, 54.91]).

SubID

Train: Distractor Present Train: Distractor Absent

Z-Score LDA LR SVM MLP KNN Z-Score LDA LR SVM MLP KNN

sub-01 51.55 61.62 57.59 61.24 56.23 56.16 53.38 55.72 55.22 58.20 56.12 56.54

sub-02 60.28 62.07 59.00 63.87 59.72 59.88 58.57 63.45 61.69 63.52 61.74 61.75

sub-03 62.75 82.63 71.93 77.36 78.67 75.41 62.26 65.35 62.95 60.45 65.10 61.97

sub-04 64.48 83.84 71.07 75.14 78.61 72.26 63.74 67.37 65.52 62.01 64.25 61.40

sub-05 54.06 57.65 52.06 54.32 54.42 56.06 54.05 52.70 56.75 56.88 54.32 57.54

sub-07 55.88 66.74 60.97 61.65 61.20 57.42 55.42 59.31 59.00 58.62 57.14 57.94

sub-08 41.83 57.75 54.13 52.75 51.96 54.51 44.45 50.25 46.23 47.44 50.91 47.73

sub-09 51.49 52.34 47.98 53.33 53.12 53.49 52.54 53.25 52.17 54.07 52.49 52.55

sub-10 61.24 70.86 62.21 65.33 67.41 64.47 62.34 63.04 62.89 61.27 63.85 63.06

sub-11 75.71 90.89 82.30 85.60 86.98 83.06 76.63 73.50 75.43 72.65 70.53 71.40

sub-12 50.58 68.91 55.26 63.41 62.22 57.28 53.20 55.88 52.59 51.03 54.00 50.18

sub-13 53.20 55.35 55.36 50.44 53.57 54.32 54.28 55.38 56.61 56.04 56.12 57.18

sub-14 53.59 69.07 59.39 61.64 65.52 59.92 50.54 55.06 51.63 55.81 56.48 52.66

sub-15 46.94 59.13 58.28 58.08 58.57 56.74 45.35 49.98 48.11 51.04 50.21 48.02

sub-16 48.92 56.72 50.52 56.27 55.67 52.75 47.66 59.25 52.15 53.56 56.70 52.21

sub-17 46.00 81.56 70.78 74.08 75.54 69.94 46.34 52.07 50.64 51.61 50.51 51.46

sub-18 56.91 58.19 54.62 59.03 56.40 57.06 53.83 54.57 52.51 54.26 55.49 54.38

sub-20 56.77 65.98 54.39 55.45 55.45 53.17 53.08 57.33 55.45 56.35 56.47 54.48

sub-21 51.53 60.85 55.93 56.06 55.25 50.01 52.76 52.45 53.56 51.72 51.54 51.96

sub-22 52.31 73.84 62.05 65.35 63.98 61.11 54.12 53.93 54.18 52.62 53.62 50.43

sub-23 51.58 72.26 61.61 69.68 69.20 66.97 51.70 65.39 59.63 60.90 60.89 58.03

sub-24 48.35 59.16 52.57 54.38 56.12 49.35 46.91 56.09 50.79 52.44 54.95 51.31

sub-25 52.27 62.27 56.14 56.33 59.75 58.47 52.68 56.28 54.09 53.61 55.86 54.89

sub-26 65.55 76.26 69.44 70.07 72.81 70.46 62.56 65.10 66.65 66.65 66.16 67.57

sub-27 49.78 66.05 57.78 59.53 61.73 60.02 49.38 52.96 54.90 56.39 56.36 56.75

sub-28 53.59 75.41 59.63 64.25 64.47 61.24 51.56 66.83 53.65 53.58 55.95 53.95

sub-29 62.37 69.21 65.14 68.56 63.71 64.71 63.14 64.21 63.59 62.67 59.81 63.15

sub-30 48.88 56.73 52.69 56.52 56.86 57.02 49.17 52.26 52.18 51.03 53.08 49.68

sub-31 56.01 64.27 57.83 54.87 55.53 53.80 56.55 58.65 57.78 58.18 58.01 59.21

sub-32 52.60 66.37 53.32 61.04 60.24 58.45 50.85 61.35 54.32 56.26 55.23 53.75

Mean 54.57 66.80 59.40 62.19 62.36 60.18 54.30 58.30 56.43 56.70 57.13 56.10

Table 6.  Maximum classification accuracy achieved for each participant for each classifier and presentation 
type (across sliding window sizes and frequency combinations).
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As described above, training the classification algorithms on data from the condition where the distractor 
was absent from the display resulted in significantly worse performance than training on the distractor present 
condition. Unlike for the distractor present condition, there was no significant main effect of algorithm for 
classifiers trained on distractor absent data (F(5, 174) = 1.25, p = 0.286, ηp

2 = 0.035; Fig. 5c). A Student’s t-test 
against chance (50%) demonstrated that on average (across all other conditions), training on distractor absent 
data did result in classification accuracies greater than chance (M = 54.15, 95% CI [52.56, 55.74]; t29 = 5.35, 
p < 0.001). However, given the low classification accuracy for this condition compared with distractor present, 
we would not recommend training on distractor absent data for the classification of feature-selective attention. 
The maximum classification accuracy (across sliding window sizes and frequency combinations) achieved for 
each participant and each training condition is displayed in Table 6.

Sliding window size.  Overall, there was a significant main effect of sliding window size for classification 
algorithms trained on both the distractor present (F(4, 145) = 20.76, p < 0.001, ηp

2 = 0.364) and distractor 
absent trials (F(4, 145) = 9.49, p < 0.001, ηp

2 = 0.207), such that larger sliding window sizes resulted in higher 
accuracy (Fig. 5d). Notably, this effect was larger for distractor present training. The greater accuracy with 
increasing sliding window size is unsurprising, as larger sliding windows by nature include more data, and the 
longer time-periods likely smooth out fluctuations in the strength of attentional selectivity and data quality. 
Interestingly, though, the increase is not linear, and can be well characterised by an inverse exponential function. 
Using MATLAB’s fittype and fit functions, which apply the method of least squares, we fitted an inverse expo-
nential function to the classification accuracy curve:

ACC a e(1 ) (1)s T i( )= − − −

Where ACC is classification accuracy, T is the number of training trials, a is the asymptote, s is the scaling factor 
and i is the x-axis intercept73. This model suggests that for distractor present trials, the average classification 
accuracy (across all algorithms) has an asymptote at 64.67% (95% CI [62.27, 67.72), and classification at 99% of 
this asymptote should be achievable with a 11.25 s sliding window size. By contrast, for distractor absent trials, 
the average classification accuracy (across all algorithms) has an asymptote at 55.87% (95% CI [53.76, 58.00), 
and classification at 99% of this asymptote was reached at the 3.5 s sliding window size. Thus, there are diminish-
ing returns on increasing the sliding window size, which is an important consideration when designing BCI or 
neurofeedback protocols. The protocols must weigh accuracy against sensitivity and control; while a 20 second 
sliding window is likely to yield a relatively accurate representation of the current target of attentional selectivity, 
this does not allow for a readout of short term fluctuations in attention and is likely to be too slow for practical 
BCI control.

Training frequency range.  The classification algorithms (with the exception of the baseline z-score approach) 
were trained on four different combinations of frequencies extracted from the Fast Fourier Transformed EEG 
signal (Fig. 5e). These included; ‘simple’: spectral power at the two flicker frequencies, ‘simple + harmonic’: 
spectral power at the first and second harmonics of the flicker frequencies, ‘simple + alpha’: spectral power at 
the flicker frequencies and from endogenous alpha oscillations, ‘simple + alpha + harmonic’: spectral power 
at all evaluated frequencies. Overall, the contributions of these different frequencies did not appear to make a 
meaningful difference to classification accuracy (Fig. 5e). A 2 × 5 repeated measures ANOVA with training data 
distractor condition (present, absent), and training features (simple, simple + harmonic, simple + alpha, sim-
ple + alpha + harmonic) as factors suggested that the effect of training features did not interact with the effect 
of distractor condition (F(3, 232) = 0.58, p = 0.626, ηp

2 = 0.007). Indeed, there was no significant main effect 
of training features (F(3, 232) = 7.78, p < 0.078, ηp

2 = 0.029. Nevertheless, an individual differences approach 
revealed that the LDA classifier trained on distractor present data, which performed highest overall, performed 
best for 15 participants (out of 30) using the simple flicker frequencies, for 14 participants using these fre-
quencies and their second harmonics, for 0 participants using these frequencies and the alpha frequencies, 
and for 1 participant using a combination of the flicker frequencies, their second harmonics, and the alpha 
frequencies. Using the classification accuracy for this classifier on the 4 s sliding window epochs, there was a 
significant difference between classification accuracy using the lowest performing frequencies for each partici-
pant (M = 60.25%, SD = 8.14, Range = 49.12–85.16%) as opposed to using the highest performing frequencies 
for each participant (M = 66.80%, SD = 9.52, Range = 52.34–90.89%; t29 = 10.45, p < 0.001). This suggests there 
might be some benefit to tailoring the classification features for each individual participant.

Usage Notes
The experimental task, which is written in MATLAB, requires the installation of Psychtoolbox-3 (http://psy-
chtoolbox.org/) to run. The EEG data are stored in the Brain Vision format. For MATLAB, we recommend 
using the Fieldtrip Toolbox (https://www.fieldtriptoolbox.org/) to load these data. See “FeatAttnClassification\
AnalysisScripts\Main_Decoding.mlx” and the “FeatAttnClassification\AnalysisScripts\Functions\get_eeg.m” func-
tion for specific examples of how to load these data into MATLAB. To load the EEG data into Python, we recom-
mend the MNE-python package (https://mne.tools/stable/index.html)/). Behavioural data for each participant 
are stored in.mat files. This native MATLAB format can be read into MATLAB using the load function. For 
Python, the behavioural files are saved in HDF5 format and can be read using the h5py package (https://pypi.
org/project/h5py/).

The analysis scripts were written in MATLAB using The Statistics and Machine Learning Toolbox. Then 
functions required to run these scripts are included in “AnalysisScripts\Functions”. For an overview of how EEG 
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data were processed and how the machine learning classification was performed, please see the MATLAB Live 
notebook “FeatAttnClassification\AnalysisScripts\Main_Decoding.mlx”. This is available in the MATLAB format 
“.mlx”, as well as “.pdf ” and “.html” formats.

Code availability
The full repository containing all data and code folders described above is available through the Open Science 
Framework (https://osf.io/c689u/)45. The analysis code and experimental task code are also available on Github 
(https://github.com/air2310/FeatAttnClassification).
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