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Abstract

Providing sufficient testing capacities and accurate results in a time-efficient way are essen-

tial to prevent the spread and lower the curve of a health crisis, such as the COVID-19 pan-

demic. In line with recent research investigating how simulation-based models and tools

could contribute to mitigating the impact of COVID-19, a discrete event simulation model is

developed to design optimal saliva-based COVID-19 testing stations performing sensitive,

non-invasive, and rapid-result RT-qPCR tests processing. This model aims to determine the

adequate number of machines and operators required, as well as their allocation at different

workstations, according to the resources available and the rate of samples to be tested per

day. The model has been built and experienced using actual data and processes imple-

mented on-campus at the University of Illinois at Urbana-Champaign, where an average of

around 10,000 samples needed to be processed on a daily basis, representing at the end of

August 2020 more than 2% of all the COVID-19 tests performed per day in the USA. It

helped identify specific bottlenecks and associated areas of improvement in the process to

save human resources and time. Practically, the overall approach, including the proposed

modular discrete event simulation model, can easily be reused or modified to fit other con-

texts where local COVID-19 testing stations have to be implemented or optimized. It could

notably support on-site managers and decision-makers in dimensioning testing stations by

allocating the appropriate type and quantity of resources.

Introduction

Context and motivations

In accordance with the Centers for Disease Control and Prevention (CDC), proactive testing

for COVID-19 infection is a key factor in determining where and how the SARS-CoV-2 virus

is spreading within a population. The early identification of infected people leads to more

rapid treatment and isolation for them, as well as for those who were exposed to them [1–3].

This type of monitoring is essential to reduce the spread of the disease (CDC, 2020). Fast and

innovative solutions are indeed necessary to mitigate the consequences of the COVID-19 crisis

[4]. In this line, since August 2020, the University of Illinois at Urbana-Champaign (UIUC) is
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providing free COVID-19 diagnostic walk-in testing stations on campus. UIUC has actually

implemented a time-efficient saliva-based COVID-19 test under an approved FDA Emergency

Use Authorization [5].

This innovative saliva-based, specific nucleic acid (i.e., PCR), and rapid-result RT-qPCR

COVID-19 testing process has been developed by the “COVID-19 SHIELD: Target, Test, Tell”

team of UIUC [6]. According to the SHIELD team, direct saliva testing can address bottlenecks

of time, cost, and supplies, enabling fast and frequent testings on a large scale. The participa-

tion throughout the semester by all students, faculty, and staff members is vital for collecting

data to support the ongoing monitoring and tracking of the pandemic[7]. While the saliva-

based process for COVID-19 testing, enables high-throughput, rapid, and scalable testing of a

large population [8], the optimal design and dimensioning of the laboratory processing the

samples are key to ensuring fast feedback to the people being tested.

On the one hand, UIUC has one of the most innovative on-campus COVID-19 testing pro-

grams in the United States of America (USA), offering up to 17 sites across campus [9]. On the

other hand, it is of utmost importance to design an adequate on-site laboratory infrastructure

and process–i.e., with the appropriate number of operators, machines, and adequate allocation

of these resources–to test the samples in a time-efficient manner, as illustrated in Fig 1. The

laboratory processing the saliva samples has achieved the regulatory compliance necessary to

perform high-complexity testing under federal Clinical Laboratory Improvement Amend-

ments guidelines. By the first day of classes (for the academic year 2020–2021), the goal was

not only to administer more than 10,000 tests per day, but also to test all the samples collected

and provide results within 24 hours. Such comprehensive testings allow for quick quarantine,

public health contact tracing, and rapid delivery of any necessary medical care [10].

To put that in a national context, this number of 10,000 tests per day represented in August

2020 around two percent of all COVID-19 tests performed in the USA daily [10, 11]. The

UIUC mass testing program and its associated platform have been touted as a model system,

and have attracted the interest of many institutions [12]. On this basis, the overarching objec-

tive of this study is to figure out the optimal allocation of resources (i.e., operators, machines,

and their allocation) to test and process a significant amount of samples locally on campus, by

developing a simulation model that can be replicated and deployed in other contexts.

Related work

The flexibility and adaptability of mobile health stations make them as commendable solutions

to respond to pandemics, such as the COVID-19 crisis [13]. While they represent an untapped

resource for healthcare systems, such mobile stations are still not widely implemented. An

extensive literature review, through the evaluation of more than 50 articles, on the strengths

Fig 1. COVID-19 testing workflow at the University of Illinois at Urbana-Champaign (UIUC).

https://doi.org/10.1371/journal.pone.0253869.g001
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and weaknesses of mobile health stations in the United States, has been conducted recently

[14]. A growing body of evidence shows that mobile health stations are particularly successful

in delivering services directly at the curbside of communities in need. Yet, further work is nec-

essary to augment the availability of mobile health care delivery [15]. Furthermore, in the con-

text of the COVID-19 pandemic, with an increasing number of persons to be tested and

“where limited intensive care resources can be overwhelmed by a large number of cases requir-

ing admission in a short space of time” [16], managing healthcare demand and capacity is

even more challenging. In this line, mobile testing stations appear to be a suitable solution to

face the increasing demand for on-site COVID-19 testing services for workers and students.

For instance, a design and engineering company has started designing mobile COVID-19 test-

ing laboratories in conjunction with a laboratory equipment supplier to perform quick testings

on large corporate and academic campuses [17]. The “mobile biosafety labs” developed can be

deployed rapidly to locations that require COVID-19 testing for active or suspected cases of

COVID-19. Their newly developed mobile lab can accommodate up to nine staff members,

and two diagnostic machines (the first one for sample collection, the other one for testing)

capable of testing 80 samples at a time, with a potential output of over 1,100 tests per day. In

the present case, to reach the objective of 10,000 samples tested per day, ten mobile labs would

be required, with 90 staff members and 20 machines, which represents a resource-intensive

solution.

With this background, it becomes thus of utmost importance to take advantage of the capa-

bilities offered by modeling and simulation tools to optimize the design and implementation

of local and ad hoc COVID-19 testing stations. In this line, the following paragraphs focus on

the applications of computer simulation to improve the performance of health services during

the COVID-19 crisis. Lamé and Simmons (2020) discussed how simulation could be used in

research works aiming at improving the quality, safety, and efficiency of healthcare systems

[18]. In this line, Lamé and Dixon-Woods (2020) emphasized the substantial potential of simu-

lation in healthcare systems, stating that “simulation can offer researchers access to events that

can otherwise not be directly observed, and in a safe and controlled environment” and that “it

is a flexible and pluripotent technique that can be used in multiple study designs in healthcare

improvement research” [19]. Simulation notably allows many “what if?” scenarios to be tested

in an efficient way for decision-making [20]. For instance, simulation-based failure mode anal-

ysis can be useful to identify the risks related to the readiness of the healthcare workers and

emergency departments for the COVID-19 [21].

The use of realistic system models can actually help manage and mitigate a systemic crisis

such as the COVID-19 pandemic [4]. Recently, researchers have discussed the role of systemic

models to support better and agile management of the COVID-19 crisis, and suggested a struc-

ture for a COVID-19 decision-aid system based on three hierarchical layers [4]: (i) a top-level

strategic level to master the crisis at a global level in a consistent fashion, (ii) an intermediate

operational layer for operational decisions, based on the information captured from (iii) the tac-

tical layer on a more local geographic scope. Typical examples of information and decisions at a

tactical layer include the monitoring of equipment, beds, and ventilators used by COVID-19

patients in a given location. In a complementary way, Currie et al. (2020) recently started to

investigate how simulation models can help reduce the impact of COVID-19 [22], as simulation

models can be deployed for a variety of purposes, such as in the design of systems [23]. Currie

et al. (2020) notably identified challenges resulting from the COVID-19 pandemic and dis-

cussed how simulation models could support decision-makers in making the most informed

decisions [22]. The authors provided a mapping of the leading modeling techniques–namely

system dynamics (SD), agent-based modeling (ABM), discrete event simulation (DES), and

hybrid–on four scales (global, country or regional, organizational, individual), for three
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emergency management phases (preparedness, response, recovery), and eleven COVID-related

decisions, namely: quarantine, social distancing, end of lockdown, delivery of testing, targeting

vaccination, hospital capacity, staffing, resource management, admission and discharge thresh-

olds, other patients, health and wellbeing [22]. According to their mapping, for the delivery of

testing (scope of the present paper), all three modeling techniques could be relevant. More spe-

cifically, for the modeling, simulation, and improvement of the COVID-19 testing process here,

we argue that DES appears to be the most commendable approach to use.

In fact, DES is a method for simulating the behavior and performance of a real-life process,

facility, or system [18]. In comparison with the principal features of SD and ABS models [24],

DES models focus on processes that involve the use of a queue. By simulating the operation of

a real-world system or process over time, DES models provide decision-makers with an evi-

dence-based tool to develop and test operational solutions before implementation [25, 26].

DES models are also convenient to deploy at an operational and tactical level [27]. In addition,

DES modeling includes three advantages that are commendable in the present case: (i) easy for

the user to understand with the help of animations and graphics (available in the freely accessi-

ble AnyLogic PLE software package used in this study); (ii) flexibility to determine the behav-

ior of entities; and (iii) modeling phase straightforward once the problem is clearly defined [4].

DES modeling is actually increasingly deployed in healthcare for improvement of services [27,

28], as an “effective decision-making tool for the optimal allocation of scarce health care

resources to improve patient flow, while minimizing health care delivery costs and increasing

patient satisfaction” [29]. Through a systematic literature review on the application of DES in

healthcare [30], including more than 200 original research articles, it has been found that the

applications of DES can be divided into four major classes: health and care systems operation,

disease progression modeling, screening modeling, and health behavior modeling. For

instance, DES can be deployed to determine the effectiveness of increasing the number of

post-surgical inpatient beds on the proportion of patients admitted to a healthcare center [31].

Lamé et al. (2016) also applied DES to identify the sources of patient waiting times in an outpa-

tient oncology clinic and to define relevant corrective actions [32]. By using DES to evaluate

different scenarios, they quantitatively demonstrated that advanced preparation has the stron-

gest potential for improving patient waiting times [32]. In addition, Rusnock et al. (2017) used

DES to quantitatively model the mental workload of healthcare staff in an inpatient unit at a

medical center [33]. The model was deployed to find the optimal idle time, average workload,

and overload time of healthcare staff under different patient loads.

More recently, a stochastic DES model–freely available–has been developed to represent

the critical dynamics of the intensive care admissions process for COVID-19 patients [16].It

has been applied in large hospital in England for which the effect of several possible interven-

tions were simulated. Particularly, model inputs were aligned with the action levers available

to the planners, including duration of time at maximum capacity in order to inform workforce

requirements. Almagor and Picascia (2020) evaluated the effectiveness of a COVID-19 contact

tracing application using an agent-based model [34]. Fiore et al. (2021) deployed multi-agent

simulations to estimate the daily testing capacity required to find and isolate a number of

infected agents sufficient to break the transmission chain of COVID-19 infections [1]. Ghaffar-

zadegan (2021) developed a simulation model for what-if analyses to further monitor and miti-

gate the spread of COVID-19 in universities [35, 36]. In the present study, the objective is to

build and deploy a new DES model to design optimal (in terms of time and resources)

COVID-19 testing stations locally. The present research demonstrates how a high volume of

saliva samples for COVID-19 testing can be achieved in a time-efficient way with proper pro-

cess optimization under resource constraints and optimal allocation of testing machines and

operators.
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Materials and methods

The need for quick and reliable COVID-19 testing has become crucial as students return to

campus and employees to their workplace [37]. Both time and space are in limited supply for

most of these places, which means building a novel and large structure for COVID-19 testing

is not a convenient or practical solution [17]. While there was no pre-existing model available

to process a significant number of COVID-19 tests on-campus on a daily basis, an initial pro-

cess flow (table-based) has been proposed by the SHIELD team. The goal was to be capable of

collecting and testing more than 10,000 samples in a given day, within a time window from 10

to 12 hours. In this paper, modeling and simulation tools are investigated and applied to verify

and modify the process flow, and potentially draw newer and more effective process maps.

Based on the model built and simulated for the University of Illinois detailed in this paper, a

complementary objective of the present research work is to provide further insights and rec-

ommendations for decision-makers when designing and dimensioning testing stations in

other contexts. In this line, the discrete event simulation (DES) model developed here can be

replicated or scaled up for saliva testing station optimization in various situations, such as for

testing in remote communities or concentrated cities.

To improve the scientific soundness and reproducibility of the DES model developed, the

20-item checklists aiming at “Strengthening The Reporting of Empirical Simulation Studies”

(STRESS) [38] has been used, as reported in Table 1. The stepwise process for saliva sample

testing is first mapped through a visual flowchart for better understanding, and a time-based

Gantt chart is used to help visualize hotspots and potential areas of improvement, as illustrated

in Fig 2. A DES model is then developed to run different scenarios (in terms of process config-

uration and resources allocation) to find the optimal testing process configuration to reach the

Table 1. Application of the STRESS checklist [38] to the present DES model.

Category Checklist item Present simulation model

Objectives Purpose of the model Designing better COVID-19 testing stations

Model outputs Number of vials being processed on a daily basis

Experimentation aims Testing different configuration (in terms of operators and machines number and allocation)

Logic Base model overview

diagram

Gantt diagram of the testing process (S1 Appendix)

Base model logic Flowchart of the COVID-19 testing process (Fig 3)

Scenario logic Based on the hotspots (bottlenecks) identified

Algorithms Not applicable (N/A)

Components Number and allocation of operators and machines

Data Data sources The SHIELD team of the University of Illinois

Input parameters Time distribution and resources allocation (Table 2)

Pre-processing N/A

Assumptions Provided with the initial data by the experts from the SHIELD team (see values in Fig 3)

Experimentation Initialisation Initial configuration provided by the SHIELD team. See the initial transient regime for the first batch in Fig 7, before

reaching the steady-state regime.

Run-length Two consecutive processing days (10 to 12 working hours per day)

Estimation approach Multiple replications (and box plots) for each scenario

Implementation Software AnyLogic PLE

Random sampling Triangular distribution function in AnyLogic (Monte Carlo simulation)

Model execution AnyLogic simulation engine FIFO (first in, first out)

System specification Intel Core i7-8550U, 1.80Ghz, 8.0GB RAM (Windows 10 Enterprise environment 64-bit)

Code access Computer model Supplementary digital file (DES_model.alp)

https://doi.org/10.1371/journal.pone.0253869.t001
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testing objective while minimizing the resources (operators and machines) deployed. To build

and run the DES model, the software AnyLogic has been used as it is widely acknowledged for

DES modeling [24, 39]. For instance, AnyLogic recently illustrated how such simulation-based

models could help provide insight and decision support when applied to challenges like the

COVID-19 outbreak [40]. In the present case, the AnyLogic Process Modeling Library, avail-

able in the free PLE version of AnyLogic, has been a helpful resource to model the real-world

testing process in terms of agents (here, vials of saliva samples to be tested), processes

(sequences of operations typically involving queues, delays, resources utilization), and

resources (operators and machines), to optimize an existing mobile COVID-19 testing station

and evaluate the impact of different configurations and resources allocations through simula-

tions. In fact, the DES model is here a relevant stochastic tool for estimating probability distri-

butions of potential outcomes by allowing for random variation in inputs over time [22]. DES

models are typically deployed to model systems operation (e.g., a testing procedure) over time,

where entities flow through several queues and activities. They are generally suitable for deter-

mining the impact of resource availability–operators and machines in the present case–on

waiting times and the number of entities waiting in the queues or going through the system–

vials to be tested here.

The present complete manuscript complements the initial study, and its associated two-

page COVID-19 brief report, made by the present authors [41] to ensure rapid dissemination

among the community in this context of the COVID-19 pandemic. In fact, after a synthetic lit-

erature survey providing background elements and inspiration sources, all the steps of the

present research approach are now thoroughly detailed and illustrated to be clearly under-

standable, even by non-experts in modeling and simulation tools. Importantly, the DES model

is made available (see S1 File) for researchers, managers, or decision-makers who want to

reuse or adapt it in other contexts. Finally, the verification and validation of the DES model is

a key point that is now further addressed in the discussion section, based on Sargent’s recom-

mendations [23], by comparing the outputs of the DES model with the data from the real situa-

tion on campus.

Results

Modeling phase

Description and visualization of the COVID-19 saliva-based testing process. The base-

line or background information for this research work was the table-based process flow, given

by the UIUC SHIELD team, including the innovative saliva-based process for large scale

SARS-CoV-2 testing developed by a group of researchers at UIUC [8]. This model, as illus-

trated in Fig 2, allowed an initial understanding of the testing process, including a description

of the different tasks to be performed, the resources required (operators and machines), and

the time duration of each task.

Fig 2. Overview of the modeling approach.

https://doi.org/10.1371/journal.pone.0253869.g002
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Following the stepwise modeling approach depicted in Fig 2, the next step consisted of

translating the table-based process flow into a Gantt diagram to better visualize the testing pro-

cess and identify the time-consuming tasks. As this step is not mandatory for building the DES

model, but could provide additional insights for decision-makers (e.g., a more visual under-

standing of the process on a timeline), two Gantt diagrams have been drawn and are available

in S1 Appendix: one Gantt diagram with all tasks performed in serial in the minimum configu-

ration (i.e., only one operator and one machine of each type available), and one Gantt diagram

with the first proposition of improvement (ten operators and two testing machines available)

allowing some tasks to be performed in parallel). The bottlenecks and key areas of improve-

ment are highlighted by a box surrounded by a black border, in S1 and S2 Figs in S1 Appendix.

On this basis, it has been possible to quickly identify appropriate ways to enhance the testing

process, such as the tasks that could be parallelized by increasing the number of operators

(e.g., between the tasks ID100 and ID140).

In parallel, the process flow for testing saliva samples has been mapped out using a logigram

representation, in Fig 3, as a useful basis to build the DES model (see sub-section 3.2). Note

that in Fig 3, the first logo–a vial–indicates the number of samples handled in each step; the

Fig 3. Workflow model of the COVID-19 testing process, used for developing the DES model.

https://doi.org/10.1371/journal.pone.0253869.g003
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second logo–a person–indicates the number of operators required to perform each task and

process the associated number of vials; the third logo–a clock–indicates the time needed by the

operator to perform and complete this task; and, the fourth logo–a gear–indicates whether or

not a machine is required for a given task, and if any, the working time of the machine to pro-

cess the associated number to vials for this task.

In the following sub-section, a discrete event simulation model is built and deployed to

optimize the four main steps of the process flow, represented in Fig 3, in terms of resource allo-

cation on-site. Note that the “offline” operations in Fig 3 refer to the operations that can be

prepared in advance. The “offline” operations are out of scope for the present study, as it is

assumed that a sufficient quantity of ready-to-be-used racks (including 96 and 384 well plates)

is available to receive and carry the vials that have to be tested.

Discrete event simulation (DES) model. Fig 4 provides a complete overview of the DES

model of the COVID-19 testing process for saliva samples deployed at UIUC, following the

four main phases described in the previous sub-section, namely: preparation, collection, pre--

testing, and testing. All key resources are modeled: a pool of operators and a pool of equip-

ment, as illustrated in Fig 4. These resources are allocated to specific tasks, as listed in Table 2.

Note that for some specific sequences of operations, the same operator is assigned (e.g.,

“assignOpPrep”) to perform the whole sequence before being released (e.g., “releaseOpPrep”)

Fig 4. Developed DES model, with pools of resources and parameters to optimize.

https://doi.org/10.1371/journal.pone.0253869.g004
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to handle a new (set of) vial(s). The time distribution of each task is given in Table 2, based on

information provided by the “COVID-19 SHIELD: Target, Test, Tell” team. Note that while a

constant time is used for equipment, a triangular distribution has been chosen, based on

experts’ knowledge, to model the variability of performance among the operators (with a dis-

tribution of +/- 20 percent around the mean value).

Simulation phase and interpretation of the results

The DES model, developed using AnyLogic and based on the conceptual model described in

the previous sub-section, has been run ten times for each of the different configurations in

order to find out the optimal one, i.e., minimizing the number of resources used while achiev-

ing the time objective of 10,000 samples being tested in one working day (time window of

10–12 hours). In the present model, one replication of the DES model corresponds to one

working day, to be coherent with the actual on-campus testing process, starting between 6 and

8 a.m. and finishing between 6 and 8 p.m. depending on the day and workload. The different

configurations have been tested following an experiment plan, for which an extract is provided

in the table at the bottom of Fig 5. Note that running each scenario more times does not

change the box plots’ features. This can be explained by the fact that the operator times

Table 2. Time distribution and resources allocation in the DES process.

Task Time distribution (seconds) Resources In DES model

Open bag and extract vial triangular(4,5,6) Operator OpPrep

Attach labels and scan vial triangular(24,30,36) Operator OpPrep

Place vial in rack triangular(8,10,12) Operator OpPrep

Transfer vial rack to tank triangular(24,30,36) Operator OpTran

Heat to 95˚C triangular(1800,1830,1860) Machine EqHeat

Transfer vial rack triangular(24,30,36) Operator OpTran

Open tube and pipett to PCR tube triangular(24,30,36) Operator OpTran

Load test tube rack into Biomek triangular(24,30,36) Operator OpColl

constant(30) Machine EqBio

Load 96 well plate into Biomek triangular(24,30,36) Operator OpColl

constant(30) Machine EqBio

Transfer to 96 well plate constant(10) Machine EqBio

Unload and store plate triangular(24,30,36) Operator OpColl

constant(30) Machine EqBio

Discard test tube triangular(96,120,144) Operator OpColl

Load 4 96 well plate triangular(24,30,36) Operator OpLoad

constant(30) Machine EqBio

Load 384 well plate triangular(12,15,18) Operator OpLoad

constant(30) Machine EqBio

Transfer to 384 well plate constant(1800) Machine EqBio

Transfer to Vortex triangular(24,30,36) Operator OpLoad

Vortex constant(180) Machine EqCent

Centrifuge constant(180) Machine EqCent

Transfer plate to QuantiStudio triangular(48,60,72) Operator OpTest

constant(60) Machine EqTest

Test-RT-qPCR constant(5400) Machine EqTest

Output results and prepare for next batch triangular(240,300,360) Operator OpTes

constant(120) Machine EqTest

https://doi.org/10.1371/journal.pone.0253869.t002
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(subjected to triangular distribution) are on average ten times lower than the machining times

(constant time) (see Table 2). As such, in the present case, running the scenarios ten times

allows being both time and cost-efficient, while generating sound simulation results.

After running a couple of simulations with realistic numbers for the set of parameters (i.e.,

varying the number of operators for each cluster of tasks, and the number of machines avail-

able), three key hotspots have been identified on the process flow, as highlighted through the

dotted frames in Fig 4. These hotspots correspond to bottlenecks, where an accumulation

(queue) of vials to be tested occurs, leading to slowing down the overall testing process flow.

The first bottleneck is noticed when the number of operators allocated to the preparation of

the vials is insufficient to deal with the number of vials collected for testing. The second one is

also related to the number of operators allocated to the task “opening and pipetting”, which

needs to be performed individually for each sample. The third one is due to the time required

(one hour and a half) to complete the “Test-RT-qPCR” task for a batch of 384 vials. As illus-

trated at the bottom of Fig 4, when running a DES simulation, the resources that are under-

used (idle units) or overused (high utilization percentage) can be readily detected.

Fig 5 presents the time distribution for testing 10,000 samples times under different scenar-

ios with ten replications for each scenario. To eliminate the three bottlenecks slowing down

the whole process flow, the scenarios are built along three dimensions: (i) the number of oper-

ators for vials preparation, (ii) the number of resources allocated to the transfer operation, and

(iii) the number of machines available to test a batch of 384 vials. Results in Fig 5 clearly show

that two measures have a significant impact on testing times: adding more operators for prepa-

ration to a certain extent, and having sufficient testing machines available, as further discussed

in the next paragraph. Another interesting insight is that, overall, there is a low variability

induced by the operators’ performances. Of course, the more operators and machines there

are, the more time-efficient the process will be. Yet, the resources have to be optimized not

only based on cost constraints but also to limit the number of operators working together at

the same workplace or station to further prevent the spread of the virus.

In the first simulation (Sim. #1) listed in Fig 5, the insufficient number of both operators for

preparation and testing machines creates two critical bottlenecks on the testing process flow,

leading to a mean time above 13.5 hours to test 10,000 samples. Adding an extra testing

machine (Sim. #2) allows reducing the meantime by one hour. For this configuration (to han-

dle 10,000 samples) a day, having more than four machines (Sim. #3) does not bring any

Fig 5. Evaluation of scenarios through simulation runs (in established and continuous regime).

https://doi.org/10.1371/journal.pone.0253869.g005
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improvement in terms of time efficiency. Augmenting the number of operators for prepara-

tion from 10 to 12 (Sim. #4) significantly decreases the queue, without completely solving this

bottleneck. Also, as more vials are being treated simultaneously at the beginning of the testing

process flow, this creates a queue for transfer operations (Sim. #4 to Sim. #6). In Sim. #7, no

more bottlenecks are detected, and in this configuration, 10,000 saliva samples can be tested

for COVID-19 in less than 10.5 hours, when operating in a continuous regime. Augmenting

further the number of resources available (Sim. #8 to Sim. #10) does not significantly decrease

the meantime.

In Fig 6, more details are given for the most promising configurations, i.e., the ones mini-

mizing the use of resources while having a mean time below 11 hours. The boxplot shows the

minimum, first quartile, median, third quartile, and maximum time after running ten simula-

tions for each of these configurations. While the middle line of the box represents the median,

dividing the time set into a bottom half and a top half, the “X” in the box represents the mean

value. In all, as illustrated through the optimal steady state of Fig 7, the optimal resource alloca-

tion to test 10,000 samples within the time window available has been found (see Sim. #7 of Fig

5 and Table 3). Note that the transient regime only happens when a new testing center (re-)

opens (e.g., after a break or holiday on campus). Other than that, it can be assumed that the

Fig 6. Detailed box and whisker chart for key configurations (Sim. #4 to Sim. #7).

https://doi.org/10.1371/journal.pone.0253869.g006

Fig 7. Testing time of vials batches in transient and continuous operation.

https://doi.org/10.1371/journal.pone.0253869.g007
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process can operate in a continuous regime, as the testing/processing center is operating on a

continuous basis (i.e., 7 days a week) on campus. For information, the left part of the plot in

Fig 7 indicates the additional time to consider when the process needs to be re-initialized or

started from scratch.

Discussion and implications

This study presented a DES model to help streamline operations at a large COVID-19 testing

station on a university campus in the US. It has been shown that testing centers could benefit

from the use of simulation models to increase the time-efficiency of their process while avoid-

ing any overutilization of resources. This is particularly crucial in the current COVID-19 con-

text, where millions of people are getting tested [42], and practitioners have to build new, or

adapt, existing testing centers while making rapid but well-dimensioned design decisions.

Through a DES model, it has been demonstrated that with a process flow designed and opti-

mized in terms of resource use and allocation, it is feasible to achieve the goal of collecting,

transporting, and testing 10,000 samples on-site per day with a reasonable quantity of

resources mobilized.

The verification, validity, and reproducibility of simulation models are of utmost impor-

tance to serve scientific, societal, and practical benefits, notably for the advancement and reuse

of operational knowledge [38]. Sargent (2013) provided and discussed practical approaches for

the verification and validation of simulation models [23]. A given simulation model can be

considered as valid when the model is an accurate representation of the real-world system, and

when its domain of applicability possesses a satisfactory range of accuracy consistent with the

intended application of the model [23]. Here, we are comparing the inputs and outputs of the

DES model with the actual process and the number of samples being processed on the field.

The model has been designed based on the inputs given by an expert from the “COVID-19

SHIELD: Target, Test, Tell”, who actually developed and implement the testing process on

campus at the University of Illinois at Urbana-Champaign.

The University of Illinois Urbana-Champaign has since released a data dashboard that dis-

plays daily information about the University’s on-campus COVID-19 testing program [43],

available at https://go.illinois.edu/COVIDTestingData. This dashboard displays the number of

tests performed on a given day as well as the positivity rate. As shown in Fig 8, an average of

10,118 daily tests has been monitored for the first two weeks of class on-campus (for the aca-

demic year 2020/2021), which is well-aligned with the purpose and objective of the DES model,

showing that the simulation output is close to the actual system output, in accordance with

Table 3. Optimal resources allocation, as a function of the number of samples to be tested.

Samples OpPrep OpTran OpColl OpLoad OpTest EqHeat EqBio EqCent EqTest

2000 3 2 1 1 2 1 1 1 2

4000 6 4 1 1 2 1 1 1 2

6000 9 7 1 1 3 1 2 1 3

8000 11 10 1 2 3 2 2 1 3

10000 13 12 1 2 4 2 3 1 4

12000 15 12 1 2 5 2 3 1 5

14000 19 13 2 3 6 2 3 1 6

16000 21 14 2 3 7 2 3 1 7

18000 23 16 2 3 7 3 3 1 7

20000 26 19 3 3 8 3 3 1 8

https://doi.org/10.1371/journal.pone.0253869.t003
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the event validity in [23]. On average, during the fall 2020 semester, UIUC conducted about

10,000 tests each weekday and about half that number during weekend days [44]. Also, in Fig 8,

the higher number of tests performed is noticed at the beginning and end of each week, while

it is on the weekend and on Wednesday that the lower number of persons being tested is

recorded. As UIUC requires their students, staff, and faculty members to be tested twice a week

to have access to on-campus facilities [7, 11], or at least once every four days, Monday/Thursday

and Tuesday/Friday are the two couples of days with the higher number of tests to be processed.

On this basis, a timely and relevant line for future research would be to forecast the number

of tests performed on a daily basis, in order to adapt the resources needed, e.g., to anticipate the

days when a higher demand in terms of resources is required to ensure sufficient capacities and

to provide testing results in a time-efficient manner (i.e., to reduce the time it takes to return

COVID-19 test results). Real-time data from the UIUC testing program is expected to detect

any emerging trends rapidly and to act quickly in response. While more data points are needed

to build a sound prediction model (the testing policy on-campus is still evolving, and the trend

cannot accurately be set until the new policy stabilizes), the DES model has been run to estimate

the optimal resource allocation according to the number of samples to be tested per day.

The DES model developed in this paper can be launched quickly for scenario exploration to

help adjust and refine the operations of a given testing program. In fact, it can be used to con-

duct what-if analyses. In practice, it can also be easily modified, for example, if some parts of

the process flow evolved or if a new machine (e.g., a heating machine having a lower working

time) can be implemented on the testing center. The optimal resources allocation (i.e., the

minimal number of operators and machines for each task) depending on the number of saliva

samples (from 2,000 to 20,000) to be tested in a single day (time window of 10 working hours

available to process the test in a continuous regime) is given in Table 3 for the current process

flow. As the statewide program, SHIELD Illinois, is currently working to increase current test-

ing capacity to serve institutions nationally and entities in Illinois that have expressed interest

in the new technology [45, 46], such results can be useful for decision-makers willing to imple-

ment a similar testing procedure in their respective contexts (e.g., an organization, a city) with

more or fewer samples to be processed each day. As reminded by Lyng et al. (2021), the opti-

mal use of COVID-19 tests will depend on different parameters such as the goals of testing, the

population, or setting [2]. Last but not least, by following and applying the six principles of

reporting simulation studies [38], the present DES model and its results can be reproduced,

the model can be reused to investigate further hypotheses in the same application area or to

Fig 8. Variability of the number of persons being tested on a daily basis (source: [43]).

https://doi.org/10.1371/journal.pone.0253869.g008
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test the generalizability of this COVID-19 testing process in other situations. A promising line

for future research would be to combine such simulation models with newly developed artifi-

cial intelligence techniques, e.g., automated machine learning [3], deep learning techniques

[47] to further predicting and mitigating the COVID-19, as well as to share and maintain these

data in a transparent and decentralized way using Blockchain technology [48].
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