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ABSTRACT Exposure to environmental chemicals during windows of develop-
ment is a potentially contributing factor in gut microbiota dysbiosis and linked
to chronic diseases and developmental disorders. We used a community-level
model of microbiota metabolism to investigate the effects of diethylhexyl phtha-
late (DEHP), a ubiquitous plasticizer implicated in neurodevelopmental disorders,
on the composition and metabolite outputs of gut microbiota in young mice.
Administration of DEHP by oral gavage increased the abundance of Lachnoclos-
tridium, while decreasing Clostridium sensu stricto. Addition of DEHP to in vitro-
cultured cecal microbiota increased the abundance of Paenibacillus and Lachno-
clostridium. Untargeted metabolomics showed that DEHP broadly altered the
metabolite profile in the culture. Notably, DEHP enhanced the production of
p-cresol while inhibiting butyrate synthesis. Metabolic model-guided correlation
analysis indicated that the likely sources of p-cresol are Clostridium species. Mon-
oculture of Lachnoclostridium bolteae confirmed that it is capable of producing
p-hydroxyphenylacetic acid, the immediate precursor of p-cresol, and that the
species’ growth is enhanced upon DEHP exposure. Taken together, these find-
ings suggest a model where DEHP increases production of p-cresol, a bacterial
metabolite linked with neurodevelopmental disorders, by expanding the abun-
dance of species that synthesize the metabolite’s precursor.

IMPORTANCE Several previous studies have pointed to environmental chemical ex-
posure during windows of development as a contributing factor in neurodevelop-
mental disorders and correlated these disorders with microbiota dysbiosis; however,
little is known about how the chemicals specifically alter the microbiota to interfere
with development. The findings reported in this paper unambiguously establish that
a pollutant linked with neurodevelopmental disorders can directly modify the micro-
biota to promote the production of a potentially toxic metabolite (p-cresol) that has
also been correlated with neurodevelopmental disorders. Furthermore, we used a
novel modeling strategy to identify the responsible enzymes and bacterial sources
of this metabolite. To the best of our knowledge, the present study is the first to
characterize the functional consequence of phthalate exposure on a developed mi-
crobiota. Our results suggest that specific bacterial pathways could be developed as
diagnostic and therapeutic targets against health risks posed by ingestion of envi-
ronmental chemicals.
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The mammalian gastrointestinal (GI) tract harbors microbial communities that im-
pact a wide array of physiological functions, including digestion, immune system

development, and defense against pathogens. Alterations in the microbiota composi-
tion leading to functional imbalance, or dysbiosis, have been linked to various chronic
diseases and disorders, including inflammatory bowel disease (1), colorectal cancer (2),
fatty liver disease (3), diabetes (4), and neurodevelopmental disorders (5). Factors
known to cause dysbiosis include diet, infection, and use of antibiotics. In recent years,
environmental chemicals have emerged as another factor contributing to alterations in
the microbiota.

Exposure to biologically active synthetic chemicals present in household and indus-
trial products, particularly during critical windows of development, has been shown to
result in microbiota dysbiosis and correlate with various disorders of the immune and
nervous systems (6). An environmental chemical that is pervasive in the environment
due to its widespread use as a plasticizer is diethylhexyl phthalate (DEHP) (7). In
vertebrate animals, DEHP impacts reproduction and development (8). A recent
study found increased serum DEHP concentrations in children diagnosed with
autism spectrum disorder (ASD) (9). Additionally, fecal samples from children
diagnosed with ASD have elevated concentrations of bacterial metabolites such as
p-cresol (10), pointing to a potential link between the health effects of DEHP
exposure and the intestinal microbiota.

This link is supported by multiple studies with other environmental chemicals
correlating microbiota dysbiosis with adverse effects of exposure. A study in mice
showed that exposure to benzo[a]pyrene resulted in pronounced alterations of the
intestinal microbiota, including a decrease in the abundance of Akkermansia mucini-
phila, and an increase in the levels of inflammatory indicators (11). Another recent study
found that bisphenol A (BPA) exposure exacerbated the effects of chemically induced
colitis and that these effects were accompanied by altered fecal levels of tryptophan-
derived metabolites (12).

The importance of bacterially produced metabolites in dysbiosis-related disorders
was highlighted by Hsiao et al., who showed that the behavioral abnormalities ob-
served in a maternal immune activation (MIA) model of anxiety-like behavior in mice
correlated with changes in the abundance of intestinal bacteria and the concentration
of bacterial metabolites in serum (13). This study also showed that the behavioral
abnormalities in the MIA model could be improved by controlling the level of a specific
tyrosine metabolite, 4-ethylphenyl sulfate. Altered levels of microbiota-associated me-
tabolites such as indoxyl sulfate and p-hydroxyphenyl lactate have also been detected
in blood and urine of children diagnosed with ASD (14, 15), suggesting that the link
between bacterial metabolites and neurodevelopmental disorders could be relevant in
humans. On the other hand, it is unclear whether the aforementioned alterations in
bacterial metabolite profiles directly result from environmental chemical exposure.
While several studies have investigated the effects of DEHP exposure on host repro-
ductive, nervous, and metabolic tissues (16–18), little is known about the impact of this
ubiquitous chemical on intestinal microbiota composition and function.

A majority of studies have used early-life exposure models to study the effects of
environmental chemicals on the intestinal microbiota. Observations from these studies
suggest that changes to the intestinal microbiota can persist beyond the pre- or
perinatal exposure period (19, 20). For example, perinatal exposure of rabbits to BPA in
utero and during the first week of nursing led to a decrease in short-chain fatty acid
(SCFA)-producing bacteria at 6 weeks of age (21). Another study found that continuous
exposure to diethyl phthalate, methylparaben, and triclosan beginning at birth induced
significant changes to the gut microbiota of adolescent rats (22). To date, few studies
have looked at the effect of environmental chemical exposure on a developed micro-
biota.

While in vivo studies on the microbiota offer physiologically relevant insights, they
can often be difficult to interpret due to confounding influences from the host (23).
Apart from directly altering microbiota composition, environmental chemicals can also
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indirectly cause microbiota dysbiosis, for example, by bringing about intestinal inflam-
mation through activation of host receptors (24). Moreover, receptor activation can
occur through an intestinal or liver biotransformation product rather than the chemical
itself (25). To elucidate the mechanistic role of dysbiosis resulting from environmental
chemical exposure in a particular disease or disorder, it is important to delineate the
effects of environmental chemical exposure on the intestinal microbiota from those on
the host.

In this work, we used in vivo exposure in mice and an in vitro culture model to
investigate the effect of DEHP on the intestinal microbiota composition and its me-
tabolite output. Our results suggest that environmental chemical exposure can directly
modify the intestinal microbiota to increase production of a potentially neurotoxic
microbial metabolite linked with behavioral abnormalities.

RESULTS
Gut microbiota composition is altered in vivo in a time-dependent manner. We

investigated the effect of DEHP exposure on the gut microbiota by administering the
chemical to 6- to 8-week-old female C57BL/6 mice via oral gavage and analyzing the
changes in the fecal microbial community at day 7 and day 14 postexposure using 16S
rRNA sequencing. Principal-component analysis (PCA) of operational taxonomic unit
(OTU) counts showed samples grouping together by time point but not by DEHP
treatment (Fig. 1A), suggesting that changes in OTU profile driven by the host’s age
may dominate over DEHP-driven changes. This trend agreed with classification results
from partial least-squares discriminant analysis (PLS-DA), which achieved stronger
separation between OTU profiles when samples were classified based on time point
than chemical treatment (see Fig. S1 in the supplemental material). The results from
PLS-DA also indicated that the effect of DEHP on the OTU profiles was greater on day
7 than day 14. Consistent with this observation, samples from DEHP-treated mice

FIG 1 Metagenomic (16S rRNA) analysis of fecal microbiota from DEHP-exposed mice. (A) PCA on OTU
counts. The percentages represent the percent variances explained by each axis. Alpha-diversity (B) and
LefSe analysis (C) of fecal microbiota OTU counts. *, P � 0.05 by two-tailed t test.
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showed a higher alpha diversity (Chao1 index) than control mice on day 7 but not on
day 14 (Fig. 1B).

Comparisons of OTU counts at the genus level identified only a small number of
significant differences at both time points (Fig. 1C). Linear discriminant analysis of the
effect size (LefSe) indicated that Akkermansia, Odoribacter, and Clostridium sensu stricto
decreased in the DEHP samples collected on day 7. Of these, only Clostridium sensu
stricto was also decreased in the day-14 samples. An unclassified genus belonging to
the order Mollicutes RF9 was increased in abundance in the DEHP samples on day 7, and
Lachnoclostridium was increased on day 14. These differences were also significant by
a two-tailed t test.

Fecal metabolite profile is more strongly influenced by host-dependent factors
than DEHP treatment. To determine whether the phthalate exposure also altered the
profile of intestinal metabolites, we analyzed the fecal material using untargeted liquid
chromatography-mass spectrometry (LC-MS) metabolomics. We first confirmed that the
orally administered DEHP was available to the microbiota by identifying the presence
of mono(2-ethylhexyl)phthalate (MEHP), a product of enzyme-catalyzed DEHP degra-
dation (26), in the metabolite data. As expected, MEHP was detected in fecal samples
from DEHP-treated mice but not in control mice (Fig. 2A). Similar to the OTU profiles,
results of PCA on the LC-MS features indicated that DEHP had a lesser effect on the fecal
metabolite profile than the host’s age (Fig. 2B). This result was consistent with two-
tailed t tests performed on individual data features, i.e., metabolites, which revealed
very few statistically significant differences (none that could be assigned a putative
identity) between time-matched samples from control and DEHP-treated mice on days
0, 7, and 14 (less than 1.6%, 2.3%, and 8.0% of total detected features, respectively). We
detected a larger number of features that were significantly elevated or reduced in the
day-14 fecal samples relative to that in day-0 and -7 samples (10.9% and 23.7%,
respectively). These trends suggested that the global profile of fecal metabolites is
more strongly influenced by host factors such as aging. To more directly assess the
effects of DEHP on the microbiota in isolation from host influences, we performed the
DEHP exposure experiment using an anaerobic batch culture model of murine cecal
microbiota.

Anaerobic cecal batch culture captures in vivo microbiota diversity. We as-
sessed whether the cecal content culture could represent the biochemical diversity of
murine cecal microbiota by characterizing the OTU profile of control cultures in gut
microbiota medium (GMM) (27) without DEHP. Using QIIME with the SILVA database
(28) as the reference, we identified approximately 2,000 distinct OTUs that are present
on both days 1 and 7 of the culture. Nearly all of the OTUs (99.4%) belonged to four
bacterial phyla: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Fig. 3A).
The number of families and genera represented in the culture were 65 and 119,

FIG 2 Metabolite analysis of fecal microbiota from DEHP-exposed mice. (A) LC-MS identification of MEHP in fecal
material collected at days 7 and 14 from animals fed a low (�) or high (��) dose of DEHP. The level of MEHP in
control samples (�) was below the limit of detection. (B) Scatter plot of the first two PC scores from PCA of the
metabolite data.
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respectively. A comparison of OTUs detected on day 7 of cultured cecal contents with
cecal contents harvested from 8-week-old female C57BL/6 mice showed 100% similarity
in relative abundance at the phylum level and greater than 70% similarity at the genus
and species levels (data not shown). From day 1 to 7, there were significant shifts in the
relative abundances of the OTUs. At the genus level, Lactobacillus and Parabacteroides
showed the maximum decrease and increase, respectively, in terms of OTU counts,
whereas Fluviicola and Enterococcus showed the greatest decrease and increase, re-
spectively, in terms of fold change (Fig. 3B).

Cecal culture produces a diverse array of secondary and amino acid metabo-
lites. We next characterized the major metabolic products and substrates of the cecal
cultures using untargeted LC-MS experiments. Principal-component analysis (PCA)
performed on the untargeted LC-MS features showed clear separation between day-1
and -7 samples from the inoculated GMM cultures (Fig. 4A). In contrast, day 1 and 7
samples from culture tubes containing GMM without cells grouped closely together.
Hierarchical clustering of the LC-MS data features revealed five distinct patterns
(Fig. 4B). The first group of features represented metabolites that were rapidly con-
sumed and significantly depleted by day 1. A second larger group was consumed more
slowly, with significant depletion occurring only by day 7. The third group comprised
rapidly produced metabolites that were significantly elevated by day 1. The fourth
group of metabolites was produced more slowly and was significantly elevated by day
7 but not day 1. The fifth group was significantly elevated by day 1 but reduced by day
7 (Fig. 4C).

Putative metabolite identities were assigned to the LC-MS data features based on
accurate mass and product ion spectra (tandem mass spectrometry [MS/MS] data).
Overall, 118 and 156 of the features in the positive- and negative-mode ionization data,
respectively, were assigned a putative KEGG compound identifier. The merged list of
annotated, i.e., putatively identified, metabolites from both ionization modes com-
prised 204 unique compounds (see Table S1). The overlap in metabolites identified by
positive- and negative-mode experiments was very small (27/231), indicating that using
two different LC-MS methods significantly broadened coverage.

We utilized the Search Pathway tool of KEGG Mapper to associate each putatively
identified metabolite with one or more functional categories. Based on this mapping,
the largest KEGG function categories were biosynthesis of secondary metabolites (54
mapped metabolites), microbial metabolism in diverse environments (29), and biosyn-
thesis of antibiotics (30). Additional pathways captured by the data included fermen-
tative reactions known to occur in the intestine, such as L-carnitine metabolism to
gamma-butyrobetaine and trimethylamine. When the different amino acid metabolism
subcategories were pooled, more than one-third (79/204) of the metabolites belonged
to this more general category. Interestingly, we detected the production of the
neurotransmitter serotonin, despite the absence of any host cells in the cultures. Other

FIG 3 Metagenomic analysis of in vitro cecal luminal contents culture. (A) Phylum-level classification of unique OTUs in
DEHP-treated cultures. (B) Relative abundance of bacterial genera on days 1 and 7 in control (GMM) and DEHP-treated
cultures.
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aromatic amino acid (AAA) products, including the tryptophan metabolites indole
(Fig. 4D), indole-3-propionic acid, and indole-3-pyruvic acid, were also detected.
Phenylalanine-derived metabolites detected in the cultures included phenylacetic acid,
phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid and the tyrosine-derived
metabolites detected included p-cresol and p-hydroxyphenylacetic acid.

Metabolic function in cecal cultures is distributed heterogeneously across
taxonomic groups. We next analyzed the genomes of bacterial groups detected in the
culture to characterize the enzymatic reactions responsible for the metabolic products.
Cross-referencing the list of identified OTUs against KEGG and UniProt, we obtained a
model that included at least one annotated genome for 94 of 119 genera detected in
the cultures, accounting for greater than 96% of the bacterial counts (Fig. 5A).

We evaluated the coverage of metabolic functions represented in the model by
comparing the orthologs of the model against the orthologs predicted by Tax4Fun (31)
using 16S sequence data, reference sequences in the SILVA database, and annotated
genomes cataloged in KEGG as inputs. Based on KEGG orthology (KO) numbers, 83% of
the gene functions predicted by Tax4Fun overlapped with the estimates from our
model. When weighted by the relative abundance of the OTUs, we found a strong
correlation between ortholog counts from Tax4Fun and our model (data not shown).
Despite the similarity in functional coverage with our model, the Tax4Fun prediction
included many additional organisms, most of which (more than 80%) did not match the
OTUs classified by the SILVA analysis in the cecal culture. Thus, our model parsimoni-
ously covered the biochemical diversity of the cecal culture without overpredicting the
underlying taxonomic diversity.

The molecular functions represented by KO numbers were used to associate the
bacterial species in our model with enzymatic reactions and their corresponding
metabolites. The reactions distributed highly unevenly across the different genera

FIG 4 Metabolite profiles from in vitro cultured cecal luminal contents. (A) Scatter plot of the first two scores from PCA
representing microbial metabolites produced on day 1 and day 7. (B) Heat map of detected ion peaks with different
patterns of substrate utilization and product formation. (C) Percentage distribution of detected features classified as
products, substrates, or intermediates based on their time profiles. (D) Profiles of tryptophan and indole in the cecal
luminal content cultures. Filled and open markers represent inoculated cultures and tubes incubated without luminal
contents, respectively. Triangles and circles represent day-1 and -7 time points, respectively. The colors correspond to the
classifications in the heat map and pie chart. *, P � 0.05 compared to inoculated culture at day 1 (two-tailed t test).
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(Fig. 5B). Of the more than 4,000 reactions, only 4 (involved in DNA replication) mapped
to every genus. Approximately 9% (349/4034) of the reactions mapped to a single
genus, indicating that certain metabolic functions (e.g., carotenoid biosynthesis, steroid
hormone biosynthesis, methane metabolism, glycosphingolipid biosynthesis, and ben-
zoate degradation) required the participation of particular genera. Similar to the trend
for reactions in the model, the metabolites also distributed heterogeneously across the
different organisms. Amino acids (e.g., phenylalanine and tryptophan), nucleosides/
nucleotides (e.g., uridine and, uracil), and vitamins (e.g., riboflavin) associated with
nearly ubiquitous reactions found in more than 90% of the genera, whereas certain
fermentation products (e.g., benzaldehyde and indole-3-acetate) associated with rare
reactions found in less than 50% of the genera.

Correlation analysis finds significant associations between metabolite levels
and relative abundance of organisms in the culture. The annotations of compounds
putatively identified from untargeted LC-MS analysis were confirmed (or rejected) by
matching their retention time (RT) and/or MS/MS spectra to high-purity chemical
standards, yielding a list of 57 confidently identified or confirmed metabolites (see
Table S2). To identify significant associations between individual OTUs and metabolites,
we calculated Pearson correlation coefficients (PCCs) between the peak area of each
confidently identified or confirmed metabolite and the relative abundance of each
highly abundant genus (�0.05% of total OTU counts) detected on both days 1 and 7.
After correcting for false-discovery rate (FDR), we found 46 significant correlations. We

FIG 5 Model of metabolic reactions in in vitro culture of cecal luminal contents. (A) Fraction of
genus-level OTU counts represented by the metabolic model. (B) Hierarchical clustering of genera and
metabolites in the model. (C) Correlation network showing significant Pearson correlations (absolute
PCC � 0.76, P � 0.05) between genera (circles) and metabolites (squares). Fold change from days 1 to 7
is indicated by red (decrease) and green (increase) colors. Solid lines between nodes indicate that the
genus has at least one species capable of metabolizing the connected metabolite (per database
annotation of the genome), while dotted lines indicate a purely empirical correlation.
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mapped these correlations to the metabolic model described above to highlight
different interactions between organisms and metabolites based on whether or not an
organism possessed the enzyme to directly act on the correlated metabolite. The
resulting correlation network is shown as connected nodes in a bipartite graph (Fig. 5C).
Excluding common amino acids and GMM components, the strongest correlations were
Lactobacillus-lactate (PCC � 0.98), Butyricicoccus-serotonin (PCC � 0.93) Enterococcus–
3-(3-hydroxyphenyl) propionic acid (PCC � 0.92), Clostridium-indoxyl (PCC � 0.91), and
Alistipes–N1-acetylspermidine (PCC � 0.88) (Fig. 5C).

DEHP induces changes in microbiota composition in vitro. We next examined
the effects of DEHP on bacterial abundance in the cecal culture. At the genus level,
DEHP increased the abundance of Alistipes, Paenibacillus, and Lachnoclostridium on day
1, while decreasing the abundance of Fluviicola and Symbiobacterium. On day 7, we
detected an increase in Tissierella (Fig. 6A). At the OTU level, DEHP increased Alistipes
putredinis, Lachnoclostridium bolteae, and Lachnoclostridium saccharolyticum on day 1.
On day 7, we detected an increase in Tissierella praeacuta, and decreases in Bacillus
velezensis and Lactobacillus brevis. Overall, DEHP exerted a greater effect on microbiota
composition on day 1 than on day 7, in terms of both the number of altered OTUs and
the changes in relative abundances of these OTUs.

DEHP broadly alters metabolite profile of cecal microbiota. Addition of DEHP
significantly altered the profiles of metabolites in the cultures (Fig. 4A). At 10 and
100 �M, DEHP altered 16.8% and 20% of the LC-MS features, respectively, detected on
day 7 in the positive ionization mode experiment. The negative-mode data showed
even greater effects, with 46.7% and 47.2% of the detected features altered at 10 and
100 �M, respectively. Only a subset of these features were assigned chemical identities
due to lack of matching entries in reference databases. Similarly to the in vivo exposure,
we detected a dose-dependent accumulation of MEHP (see Fig. S2), confirming that the
cecal culture is also capable of degrading DEHP under anaerobic conditions. Figure 4C
shows representative profiles of confirmed metabolic products that were increased
(cresol) and decreased (butyric acid) by DEHP treatment. p-Cresol was identified by
matching both m/z and RT. We observed a shift in RT for samples compared to that for
pure standards, possibly due to matrix effects of the samples. To account for this shift,
we used local linear regression (see Fig. S3). To determine if the increase in p-cresol

FIG 6 Significant microbial and metabolite changes in in vitro-cultured cecal luminal contents with DEHP. (A) LefSe
analysis of genus-level microbiota changes induced by DEHP. *, P � 0.05 by two-tailed t test. (B) Scatter plot of first
two PC scores from PCA of metabolite features detected in the cecal cultures (positive-mode IDA data). (C)
Dose-dependent changes in p-cresol and butyric acid with DEHP on day 7. *, P � 0.05 compared to day 7 culture
without DEHP addition (two-tailed t test).
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could be due to an organism that expanded in the culture upon DEHP exposure, we
performed a monoculture of L. bolteae (see supplementary methods in Text S1), which
increased in abundance upon DEHP exposure both in vivo and in vitro. The model-
guided correlation analysis linked this organism with p-hydroxyphenylacetic acid, a
direct precursor of p-cresol. Targeted LC-MS analysis of L. bolteae culture supernatant
confirmed that the organism is capable of producing the p-cresol precursor. Moreover,
L. bolteae in monoculture grew to greater optical density (OD) in medium supple-
mented with 100 �M DEHP than in control medium without DEHP (see Fig. S4),
consistent with the findings from in vivo and cecal culture experiments.

An octadecenoic acid and an unknown octadecadienoic acid-specific isomer
were decreased in the DEHP-treated cultures on day 7, while a metabolite puta-
tively identified as isatin or indole-5,6-quinone was increased. An additional feature
detected in positive-mode ionization at m/z 138.0886 had a dose-dependent
increase in response to DEHP and was putatively identified as tyramine, 1-methyl-
nicotinamide, or 2-hydroxyphenethylamine. It was not possible to assign a unique
identity to this feature, because the product ion spectrum indicated that the
corresponding ion chromatogram peak could represent more than one compound.

DISCUSSION

Studies have implicated dysbiosis of the gut microbiota in developmental disorders
associated with exposure to environmental toxicants (22, 32). In this work, we focus on
the effects of DEHP, a pervasive environmental chemical and endocrine disruptor
associated with neurodevelopmental disorders such as ASD (9). Previous in vivo studies
(32, 33) used early-life exposure models to investigate the microbiota’s role in devel-
opmental health and disease. Fewer studies have investigated the effect of environ-
mental chemical exposure on a developed microbial community in mammals. In the
present study, we mimicked human exposure during adolescence by continuously
exposing mice to DEHP from ages 6 to 8 weeks. Additionally, we used an anaerobic
batch culture model to investigate the effects of DEHP on the microbiota community
structure and metabolites.

Continuous DEHP exposure modestly increased the alpha-diversity of the fecal
microbiota after 7 days, an effect that dissipated by day 14. While it is often assumed
that a diverse gut microbiome is beneficial for the host, this is not necessarily the case,
as gut health is also impacted by the microbial enterotype. After 14 days, mice exposed
to DEHP showed an increased abundance of Lachnoclostridium and an unclassified
genus of Clostridiales Family XIII. While the effect of DEHP on gut microbiota of young
mice has not been previously reported, studies in humans have associated overrepre-
sentation of Lachnoclostridium species with neurodevelopmental disorders such as ASD
(34, 35). This suggests that the enterotype resulting from pollutant exposure could play
a role in dysbiosis-associated neurodevelopmental disorders.

We detected minimal changes in metabolite profile of fecal material from mice
exposed to DEHP for 7 or 14 days. This could be due to several factors. First, host-driven
changes, e.g., due to development and age, could mask subtler effects of phthalate
exposure. Previous studies have shown significant age-related changes in murine
microbiome over a comparable (14-day) time period (36). In mice, the onset of puberty
occurs at approximately 6 weeks of age. For young mice at 6 to 7 weeks of age, 2 weeks
are equivalent to 3.8 to 5.4 human years of development (30). Second, microbial
metabolites can be taken up and transformed by the host, which limits the extent to
which fecal metabolite analysis can capture the profile of microbiota metabolites in the
intestine. Transformation and elimination by the host also likely attenuate the impact
of any potentially harmful metabolic products generated by the microbiota in vivo.
Moreover, fecal metabolites comprise not only bacterial products but also dietary
residues and endogenous metabolites produced by the host. To address these issues,
we investigated the effect of DEHP exposure on gut microbiota community structure
and biochemical function using an in vitro model.

In vitro models of the intestinal microbiota vary in their complexity, depending on
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the intestinal location being mimicked and the degree of biophysical detail being
incorporated (37). In the present study, we used a relatively simple anaerobic batch
culture model, as the focus was on capturing biochemical function. This model reca-
pitulated up to 70% of the microbiota found in murine cecum at the genus level,
including strict anaerobes. Importantly, the culture supported the production of me-
tabolites typically associated with the fermentation of sugar and amino acid residues by
intestinal bacteria. As the culture system lacks host cells, all of the accumulating
products are unequivocally sourced from the detected bacteria. Among the detected
products are potentially toxic compounds derived from AAAs, e.g., phenylethylamine
(38) and phenylacetic acid (39). We also detected metabolites that are normally present
at low levels in the intestines of healthy individuals but are elevated in developmental
disorders. For example, 3-phenylpropionic acid and 3-(3-hydroxyphenyl)propionic acid
are precursors of 3-(3-hydroxyphenyl)-3 hydroxypropionic acid (HPHPA), a compound
elevated in the urine of children diagnosed with ASD (40). Another useful feature of the
culture model is that the correlations identified between different metabolites as well
as between metabolites and organisms can reveal the sources of particular metabolic
products. For example, lactic acid accumulated in the culture by day 1 and was rapidly
consumed by day 7, which correlated with a significant depletion in Lactobacillus, a
known lactic acid producer. The depletion in lactic acid was significantly correlated with
butyric acid production, consistent with previous reports on bacterial conversion of
lactic acid to butyric acid in vitro (41). Taken together, these findings suggest that the
anaerobic batch culture broadly captures representative metabolic functions of the
murine gut microbiota while facilitating identification of bacterial metabolites and their
source organisms. On the other hand, the in vitro model clearly cannot capture the
impact of host contributions to the intestinal metabolite milieu, including transforma-
tion, absorption, and elimination.

We further analyzed the organism-metabolite correlations using a metabolic model
to associate the correlations with enzymatic pathways encoded in the genomes of
detected OTUs. Several of these associations confirm previously reported findings. For
example, our analysis links Bacillus with riboflavin, consistent with previous reports on
the synthesis of this vitamin by intestinal Bacillus species (42). Likewise, members of the
genus Alistipes possess the enzyme putrescine N-acetyltransferase (EC 2.3.1.57), which
converts putrescine into N-acetylputrescine (43). A third example is the production of
p-cresol, which previous reports have attributed to Clostridium species (44). Our analysis
links Clostridium to p-hydroxyphenylacetic acid, which is converted to p-cresol via
p-hydroxyphenylacetate decarboxylase (45).

Not all of the significant correlations mapped to an enzyme in the metabolic model.
One limitation of the model is that genome annotations in KEGG and UniProt are
incomplete. For example, the annotations for Parabacteroides in the databases did not
include an enzyme for butyric acid synthesis, but a recent study found buk (butyrate
kinase) and ptb (phosphotransbutyrylase) in the genomes of intestinal Parabacteroides
species (46). In this regard, correlations that do not map to a cataloged enzyme could
facilitate the discovery of previously unknown metabolic functions of intestinal bacte-
ria. Another example is a compound we putatively identified as either indoxyl or
oxindole, which strongly correlated with the expansion of Clostridium. Currently known
metabolic reactions that produce indoxyl or oxindole are catalyzed by monooxygen-
ases requiring oxygen (47). As evidenced by the growth of obligate anaerobes, molec-
ular oxygen is absent in the cultures, suggesting that there could be alternative
mechanisms of incorporating hydroxyl groups into metabolites. Indeed, oxindole has
been reported to be a product of anaerobic indole degradation (29, 48).

Gut microbes have an extensive capacity to break down xenobiotics, including
environmental chemicals, which can modulate their toxicity and bioavailability in the
host (49). As was the case in vivo (Fig. 2), we detected a dose-dependent accumulation
of MEHP in the cecal content culture (see Fig. S2 in the supplemental material),
indicating that organisms expressing the required esterase are also present in vitro. To
confirm that MEHP was indeed the primary metabolic product, we performed addi-
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tional targeted experiments to measure other potential degradation products of DEHP
(50): 2-ethylhexanol, phthalic acid, mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP),
mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP), mono(2-carboxymethylhexyl) phtha-
late (2cx-MMHP), 2-1(oxoethyl)-hexyl phthalate, 2-ethyl-4-oxy-hexyl phthalate, 2-carboxy-
hexyl phthalate, 2-ethyl-3-carboxy-propylphthalate, and 2-ethyl-4-carboxy-butylphtha-
late. We did not detect any of these compounds in the cecal cultures (data not shown).
While lack of detection does not prove the absence of these metabolites, the limit of
detection of our assay places an upper bound on the concentrations of these other
products at 10 nM.

Compared to that with in vivo exposure, we detected fewer changes in the micro-
biota composition upon DEHP addition to the culture medium. This is possibly due to
the rapid degradation of DEHP, which was continuously administered to the mice but
added as a bolus at the start of the culture. Nevertheless, we observed features
common to both in vivo and in vitro exposures. Similar to that in the in vivo experiment,
we detected an increase in Lachnoclostridium, although this increase was transient in
the cultures. Additionally, we detected a transient increase in Alistipes, which has also
been reported for subjects diagnosed with ASD and related GI conditions (51).

Treatment with DEHP significantly altered the profile of metabolic products accu-
mulating in the culture. Notably, DEHP increased the accumulation of p-cresol, a
putative biomarker of ASD (52), while decreasing the levels of butyric acid, a bacterial
metabolite benefiting intestinal immune homeostasis and offering neuroprotective
effects (53). The likely source of p-cresol is tyrosine metabolism by Clostridium species
(54), although the specific strains responsible are not known. Correlation analysis on
cecal cultures found a positive association between the genus Clostridium and
p-hydroxyphenylacetic acid, the immediate precursor of p-cresol. We also determined
that addition of DEHP to the culture medium increased the growth of L. bolteae
(formerly classified as Clostridium bolteae) in both cecal culture and monoculture. Using
targeted experiments, we confirmed that L. bolteae is indeed capable of producing
p-hydroxyphenylacetic acid (Fig. S4). However, we did not detect p-cresol in monocul-
tures of L. bolteae. This organism lacks hydroxyphenylacetate decarboxylase (Hpd), the
enzyme that catalyzes the conversion of p-hydroxyphenylacetic to p-cresol. This sug-
gests that other species are responsible for Hpd activity in the cecal culture. In a recent
study, Saito et al. (55) screened more than 150 gut bacteria and found that approxi-
mately one-third of the strains can produce p-cresol. The highest producers are C.
difficile, Romboutsia lituseburensis, Olsenella uli, and Blautia hydrogenotrophica; the latter
three species all possess enzymes homologous to Hpd. In our study, we detected both
Olsenella and Blautia species in the mixed culture, although neither genus showed
significant expansion upon DEHP treatment. Taken together, these findings suggest a
model where DEHP increases p-cresol production by expanding species that synthesize
the immediate precursor (see Fig. S5). This also highlights the limitations of using
monocultures (as we did with L. bolteae) to study the effect of an environmental
chemical on the metabolic functions of the gut microbiota. Physiologically important
biological responses may occur from cometabolism involving multiple species, even if
the direct effect of a chemical targets one or a few species.

In addition to the above-discussed metabolites, the untargeted analysis detected
nearly 2,000 compounds whose amounts in the culture were significantly altered by
DEHP in a dose-dependent fashion. This number likely overestimates the impact of
DEHP on the intestinal metabolite profile, as the relatively simple batch culture model
used in the present study lacks absorption, transformation, and elimination mecha-
nisms active in the body. Only a small fraction (79/1,937) of these compounds could be
assigned a putative identity, as many of the detected features’ MS/MS spectra could not
be matched to available databases for annotation. This annotation is a necessary step
toward subsequent confirmation using chemical standards. The total annotation rate
(204/5408) achieved in the present study is comparable to those in previous metabo-
lomics studies on the gut microbiota, which report annotation rates ranging from 2%
(56) to 5% (57). The annotation method used in this study, which we described in a
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previous publication (58), takes into account multiple pieces of evidence when assign-
ing a putative identity to a given LC-MS feature, including observations regarding
metabolites that connect to the putatively identified metabolites by way of enzymatic
reactions expected in the system under investigation. We have shown that this method
substantially reduces the false-discovery rate compared to that with other commonly
used annotation tools. On the other hand, this conservative approach left a large
number of features as unannotated “dark matter.” Metabolite annotation and identifi-
cation clearly remain bottlenecks in untargeted metabolomics, and further efforts are
warranted to expand coverage of metabolites from commensal gut bacteria in spectral
libraries.

The findings of the present study provide evidence that significant alterations could
occur even in developed microbiota in response to environmental chemical exposure
and that these alterations include overproduction of selected bacterial metabolites.
Several of these metabolites have been found at elevated levels in urine or plasma of
subjects diagnosed with neurodevelopmental disorders, in particular, ASD. Taken
together with recent reports linking phthalate exposure and ASD, our findings suggest
the intriguing possibility that the chemical could selectively modify the intestinal
microbiota to promote the production of potentially toxic metabolites such as p-cresol.
Whether metabolites such as p-cresol causally contribute to neurodevelopmental
disorders or merely indicate dysbiosis associated with these disorders remains to be
elucidated. Further work is warranted to determine whether earlier (e.g., immediately
after birth) and longer term DEHP exposure would lead to more severe dysbiosis and
affect behavioral outcomes.

MATERIALS AND METHODS
Materials. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise

specified. DEHP and MEHP were purchased from AccuStandard (New Haven, CT).
DEHP exposure in mice. Female C57BL/6J mice aged 4 to 5 weeks were purchased from Jackson

Laboratories (Bar Harbor, ME) and maintained on an ad libitum chow diet (8604 Teklad Rodent diet;
Envigo, Madison, WI). Mice were acclimatized to the animal facility for 1 week. At the start of the
experiment, mice were randomly divided into two groups (DEHP and control; n � 10 each group). Mice
belonging to the same treatment group were housed together (5 mice/cage). Mice were given either
vehicle (corn oil) or a low or high dose of DEHP (1 or 10 mg/kg body weight/day) via oral gavage. Mice
were gavaged with DEHP every other day. Fecal pellets were collected from each mouse immediately
before the first gavage (day 0) and on days 7 and 14, flash frozen in liquid nitrogen, and stored at �80°C.
On day 14, animals were euthanized via asphyxiation with CO2. Animals were handled in accordance with
the Texas A&M University Health Sciences Center Institutional Animal Care and Use Committee guide-
lines under an approved animal use protocol (AUP IACUC 2017-0145).

In vitro culture of cecal luminal contents. Whole ceca from female C57BL/6J mice (6 to 8 weeks of
age) were harvested and transported to an anaerobic chamber (Coy Lab, Grass Lake, MI) in an anaerobic
transport medium (Anaerobe Systems, Morgan Hill, CA). Luminal contents were isolated from the ceca
inside the chamber and then suspended in a slurry in 1 ml of prereduced phosphate-buffered saline (PBS)
containing 0.1% cysteine by vortexing the suspension for 2 min. Gut microbiota medium (GMM) was
prepared as described previously (27). Each batch of cecal luminal content slurry from a mouse was
inoculated in a separate glass test tube containing 10 ml of GMM or GMM supplemented with a low or
high dose of DEHP (10 or 100 �M). The inoculated tubes were incubated at 37°C for up to 7 days under
anaerobic conditions. Tubes containing GMM but without inoculation and incubated under the same
conditions were used as negative controls. Culture (or medium) samples were collected on days 1 and
7 postinoculation by removing test tubes from the incubator and centrifuging them at 13,000 � g for
10 min at 4°C. The cell pellet and supernatant were stored at �80°C for further analysis.

Extraction of metabolites. The fecal pellets and in vitro cecal luminal culture samples were
homogenized using lysing matrix E beads (MO BIO, Carlsbad, CA) on a bead beater (VWR, Radnor, PA)
with equal volumes of cold methanol and one-half volume of chloroform. The samples were homoge-
nized for 1 min on the bead beater, cooled on ice for 1 min, and homogenized again for another 2 min.
The samples were then centrifuged at 10,000 � g at 4°C for 10 min. The supernatant was filtered through
a 70-�m sterile nylon cell strainer into a clean sample tube and mixed with 0.6 ml of ice-cold water using
a vortex mixer. This mixture was centrifuged again at 10,000 � g for 5 min to obtain phase separation.
The upper and lower phases were separately collected using a syringe while taking care not to disturb
the interface. The upper phase was dried to a pellet using a Vacufuge (Eppendorf, Hauppauge, NY) and
stored at �80°C until further analysis. Prior to LC-MS analysis, the dried samples were reconstituted in
50 �l of methanol/water (1:1 [vol/vol]).

Untargeted metabolomics. The extracted samples were analyzed for global metabolite profiles
using information-dependent acquisition (IDA) experiments performed on a triple-quadrupole time-of-
flight instrument (5600�; AB Sciex) coupled to a binary pump high-performance liquid chromatography
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(HPLC) system (1260 Infinity; Agilent). Each sample was analyzed twice, using two different combinations
of LC methods and ionization modes to obtain broad coverage of metabolites having various polarities
and isoelectric points (see supplementary methods in Text S1). Raw data were processed in MarkerView
(v. 1.2; AB Sciex) to determine the ion peaks. The peaks were aligned based on m/z and retention time
(RT) (10 ppm and 0.5 min tolerance, respectively) and then filtered based on intensity (100 cps
threshold) to eliminate low-quality peaks. An additional filter was applied using MarkerView to retain
only monoisotopic ions, i.e., represent a series of isotopologues by their corresponding monoiso-
topic m/z. The retained ions were organized into a feature table, with each feature specified by m/z
and RT. In the case where a precursor ion detected by the time of flight (TOF) survey scan triggered
an MS/MS scan, the corresponding MS/MS spectrum was extracted from the product ion scan data
and added to the feature table. Each feature was searched against spectral libraries in METLIN (59),
HMDB (60), and NIST (61). The MS/MS spectrum of each feature was also analyzed using in silico
fragmentation tools MetFrag (62) and CFM-ID (63). These analyses identified several annotations for
many of the features. To systematically determine the most likely identities for these features in the
context of murine cecal microbiota metabolism, we applied an automated annotation procedure
(BioCAn) that combines the outputs from the database searches and fragmentation analyses with a
metabolic model (see below) for the biological system of interest (58). Briefly, BioCAn maps each
unique mass in the feature table onto a metabolic network representing the enzymatic reactions
possible in the system of interest and evaluates the likelihood a correct mapping between a
detected mass and a metabolite in the network has occurred based on how many other metabolites
in the neighborhood of the metabolite in question also map to a detected mass. The product ion
spectra of annotated features were further inspected manually and matched against standards in
METLIN, HMDB, and NIST to obtain a set of confidently identified metabolites. The annotations of
these metabolites were confirmed (or rejected) by matching their RT and/or MS/MS spectra to those
of pure standards run on the same instrument using the same method (see Fig. S6 and S7). Relative
amounts of metabolites were quantified using MultiQuant 2.1 (AB Sciex) by manually integrating the
corresponding peak areas in the extracted ion chromatograms (XICs).

Targeted analysis of MEHP. The fate of DEHP in the cecal culture was characterized by quantifying
the amount of its major metabolic product, MEHP. Targeted analysis of MEHP utilized a product ion scan
experiment as described previously (64).

16S rRNA sequencing analysis. Fecal and in vitro cecal luminal culture pellets were homogenized,
and microbial DNA was extracted from the homogenate using the standard protocol for the Power soil
DNA extraction kit (MO BIO). The V4 region of 16S rRNA was sequenced on a MiSeq Illumina platform
using protocols for paired-end sequencing from Kozhich et al. (65) at the Microbial Analysis, Resources,
and Services (MARS) core facility at the University of Connecticut. Sequence reads were quality filtered,
denoised, joined, chimera filtered, aligned, and classified using QIIME (66, 67). The SILVA database (28)
was used for alignment and classification (97% similarity) of the OTUs. The OTU counts were normalized
by subsampling to the lowest number of OTUs found in the sample.

Metabolic model. The OTU tables from QIIME analysis were used to build a metabolic model linking
bacterial groups detected in the cecal cultures to metabolites that can be produced by these groups. To
select species for inclusion in the model, we tabulated the most abundant OTUs detected in all samples
from both days 1 and 7 of GMM culture, with a 0.01% cutoff for relative abundance. The genera
associated with these OTUs were searched against the KEGG Organisms database to compile a list of
organisms that have a complete genome sequence and an assigned KEGG organism code (68). This list
was then manually curated to remove species unlikely to be present in murine cecum (e.g., soil-dwelling
bacteria and extremophiles) by searching a microbiome database (69) and carefully examining the
published literature. From this curated list, we generated a matrix linking an organism to reactions
encoded by its genome. First, the KEGG Orthology identifiers (K numbers) and Enzyme Commission (EC)
numbers associated with the organism codes were collected using the KEGG REST API. These K and EC
numbers were then linked to KEGG reaction identifiers (R numbers). The linkages between organism
codes and R numbers were arranged into an organism-reaction (ORKEGG) matrix, where each element (i,
j) denotes the presence (“1”) or absence (“0”) of a reaction i in organism j.

The organisms in ORKEGG accounted for 48 of the 119 most abundant genera in the cecal cultures.
The remaining 71 genera were searched against the UniProt database to determine if high-quality
genome sequences with functional annotations were available for any of the member strains. After
removing species that are unlikely to be present in the murine cecum, organisms with high-quality
functional annotations were added to an organism-enzyme matrix (OEUniProt), where each element (i, j)
denotes the presence (“1”) or absence (“0”) of an enzyme i in organism j. The amino acid sequences from
each of the remaining organisms lacking annotated genomes were downloaded from GenBank and
assigned K numbers using BlastKOALA (70). The resulting linkages between organisms and K numbers
were arranged into an organism-orthology matrix (OKUniProt). The K and EC numbers of these two
matrices were linked to R numbers to generate a second organism-reaction matrix (ORUniProt). The two
matrices ORKEGG and ORUniProt were combined to produce a final organism-reaction matrix (OR) for all
detected genera with member species that have high-quality genome sequences. The metabolites
associated with each organism were found by linking the reactions with their primary substrate-product
pairs as defined by KEGG’s RCLASS data.

Statistical analysis. OTUs observed only once across all samples were filtered prior to PCA and
PLS-DA in MATLAB (v. R2018a). Linear discriminant analysis of the effect size (LefSe) was used to
characterize differences in the OTU counts between samples (71). Effects were considered statistically
significant if they were assigned a q value of less than 0.05. A two-tailed t test with a cutoff P value of
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0.05 was used to test for statistical significance of differences in OTU counts and metabolite levels
between treatment groups. Pearson correlation coefficients (PCCs) were calculated between OTU counts
(relative abundance) and peak areas of metabolites. Statistical significance of the PCCs was determined
based on P values calculated using a two-tailed t test and corrected for false-discovery rate using the
Benjamini-Hochberg (B-H) method (72). Statistically significant correlations (B-H adjusted P value � 0.05)
between OTUs (at the level of genus) and metabolites were visualized in Cytoscape (v. 3.0).
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