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Abstract: We review developments in fluorine chemistry contributing to the more precise use of
fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is
used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including
the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution.
We also review methods for preparing RNA and DNA substituted with FPs for biophysical and
mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has
resulted from both computational and experimental studies, and we summarize recent results.
Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite
5-fluoro-2′-deoxyuridine-5′-O-monophosphate (FdUMP), recent studies have implicated new roles for
RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2
homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not
previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as
mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which
5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may
enable the more precise use of FPs for cancer treatment in the era of personalized medicine.

Keywords: fluoropyrimidine; thymidylate synthase; DNA topoisomerase 1; DNA repair;
pseudouridine; ribothymidine

1. Introduction

Medicinal applications of fluorinated drugs continue to expand rapidly, in part because of
new developments in fluorine chemistry that extend the range of compounds that can readily be
prepared with fluorine substitution, and because of the increased understanding of how biological and
biochemical processes are uniquely perturbed by fluorine substitution. The effects of fluorine on the
biological activities of drug-like molecules result, in part, from fluorine’s high electronegativity but
low propensity to engage in hydrogen bond formation. What is also important is the strength of the
C–F bond and the relatively small size of fluorine relative to other potential substituents. For example,
the strength of the C–F bond is critical to FdUMP inhibiting thymidylate synthase (TS), as dUMP
analogs that include halogens with weaker C–X bonds undergo dehalogenation by TS, while FdUMP
remains stably bound inhibiting further enzymatic activity.

A key concept in the use of fluorinated analogs of native metabolites is lethal synthesis [1]. Lethal
synthesis involves biological transformation of a relatively non-toxic metabolite into a more toxic
form. For example, fluoroacetate, which is relatively non-toxic, is converted to fluorocitrate, which
inhibits two enzymes of the Krebs cycle (aconitase and succinic dehydrogenase), and is highly toxic to
mammalian cells. Capitalizing on the increased uptake of uracil by some malignant cells, Heidelberger
developed fluorinated pyrimidines (FPs) [2], and showed that 5-fluorouracil (5-FU) is metabolized
to compounds that are highly cytotoxic to a variety of cells including cancer cells [3]. While most
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enzymatic reactions that use uracil or uridine derivatives as substrates proceed with similar kinetics
with the fluoro analog as for the native substrate [4,5], notable exceptions were identified. In particular,
thymidylate synthase (TS) was inhibited by the 5-FU metabolite, FdUMP [6]. TS inhibition causes
cancer cells reliant on the de novo thymidylate pathway to undergo thymineless death [7].

Advances in fluorine chemistry enabled the synthesis of 5-FU on an industrial scale [8], which
contributed to the widespread adoption of FP drugs for the treatment of colorectal cancer (CRC).
5-FU is currently used to treat >2 million cancer patients worldwide each year [9]. Furthermore, TS
inhibition is one of the best-validated and most successful strategies ever used for cancer treatment [10].
Concomitant with the increased availability of 5-FU and FP drugs were increased investigations
into mechanisms beyond TS inhibition [11] that are important for the anti-cancer activities of FP
drugs, which include the poisoning of DNA topoisomerase 1 (Top1; [12,13]). Furthermore, while the
importance of RNA-mediated processes for 5-FU’s systemic toxicities was established decades ago,
the discovery of specific RNA-mediated processes perturbed by RNA remains an active area of research.
In this regard, potential new roles for RNA modifying enzymes perturbed by 5-FU [14], including
tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridine synthase (Pus), are under
investigation (Figure 1).
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Figure 1. Overview of 5-FU metabolites and enzymatic targets of potential interest for personalized
medicine applications. 5-FU is metabolized to dihydrouracil (DHU) by dihydropyrimidine
dehydrogenase (DPD). Inter-patient variability in DPD activity makes appropriate dosing of 5-FU
challenging. DNA-directed effects of 5-FU are due to FdUMP, which inhibits thymidylate synthase
(TS) and FdUTP that is misincorporated into DNA leading to the poisoning of DNA Topoisomerase
1 (Top1). FUTP becomes misincorporated into RNA and inhibits Urd-modifying enzymes including
TRMT2A and pseudouridine (Ψ) synthase (Pus). A more complete depiction of the 5-FU metabolism
appears in [15].

A major challenge today is how to customize drug use to the genetic profile of individualized
patients, i.e., implement personalized medicine [16]. The enzymes that are of particular significance
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for 5-FU activity that display particularly large inter-patient variability include dihydropyrimidine
dehydrogenase (DPD; encoded by the DPYD gene; [17]) and TS (encoded by TYMS; [18]). The chemistry
of FPs has evolved to address this variability. Patients who are deficient in 5-FU catabolism due to
polymorphisms in DPYD are exceedingly sensitive to 5-FU and at high risk for serious toxicities due
to treatment [19]. This has resulted in the development of DPD modulators [20], but also synthesis
of isotopically enriched 5-FU, to quantify catabolism in vivo. The importance of TS inhibition for FP
activity has resulted in chemical methods for synthesis of FP polymers that display both improved
anti-tumor activity and reduced systemic toxicities [21]. We review literature related to expanding the
chemistry of FPs for improved use in the era of personalized medicine.

2. Synthesis and Isotopic Labeling of 5-FU

The initial synthesis of 5-FU that was reported by Heidelberger and co-workers in 1957 [22]
was based on a modification to a ring closure approach developed for pioneering studies in pyrimidine
chemical synthesis. Briefly, this approach involved reacting isothiourea salts with α-fluoro-β-ketoester
enolates to generate the pyrimidine skeleton already substituted with fluorine. A disadvantage of the
ring closure route to 5-FU synthesis was the high toxicity of the ethyl fluoroacetate reagent. This resulted
in a search for alternative synthetic routes that were less likely to be hazardous to laboratory personnel.
Barton and co-workers were the first to develop a procedure for the electrophilic fluorination of
uracil and demonstrated specific monohalogenation at the 5 position using fluoroxytrifluoromethane
(CF3OF) [23]. Electrophilic fluorination is a process by which fluorine is delivered to an electron-rich
reactant, such as an alkene, aromatic ring, or carbanion, by a formal “positive-fluorine” reagent, such as
quaternary ammonium R3N+F A- salts, to form a carbon-fluorine covalent bond. Modified approaches
that used electrophilic substitution to prepare 5-FU were reported by others, and such approaches were
used for commercial-scale 5-FU production [8], which contributed to the widespread clinical adoption
of 5-FU in oncology. An important advance in using electrophilic substitution for 5-FU synthesis was
made by using SelectFluorTM (F-TEDA-BF4; 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo [2.2.2]octane
bis(tetrafluoroborate)–an N-fluoroammonium salt electrophilic fluorinating agent containing an N–F
bond. SelectFluorTM was developed to overcome limitations of other reagents used for electrophilic
fluorine substitution that were more difficult to handle [24], and SelectFluorTM was demonstrated to
provide a practical and direct route to 5-FU synthesis [25].

More recently, studies related to 5-FU synthesis have focused on incorporating stable or radioactive
isotopes for biological studies or to enable personalized therapy (Figure 2). For example, to enable
positron emission tomography (PET) imaging of 5-FU, a transmetalation reaction was developed in
which an arylboronic acid precursor of 5-FU was first converted to a Nickel(II) σ-aryl complex, which
was then reacted with [18F]fluoride to yield [18F]5-FU [26]. The availability of an improved synthetic
route to [18F]5-FU should enable future studies into the biodistribution of 5-FU and its metabolites
in humans [27] and laboratory animals [28]. This chemical approach should be applicable to 5-FU
analogs and could guide the use of new agents with improved biodistribution profiles and activities.

Isotopic enrichment of 5-FU, especially at C2, is important for following the degradation of
5-FU in vivo because 5-FU catabolism results in the loss of the C2 carbonyl as carbon dioxide (CO2).
Thus, [2-13C]- and [2-14C]-5-FU degradation kinetics in vivo can be followed by the release of 13CO2

or 14CO2 from 5-FU treated subjects. Such studies are of particular importance for the use of 5-FU
in the era of personalized medicine because a significant percentage of cancer patients are deficient
in 5-FU degradation due to polymorphisms in DPYD [30], the gene encoding dihydropyrimidine
dehydrogenase (DPD), which catalyzes the initial step in 5-FU degradation. As a result, patients with
DPD deficiencies experience serious toxicities that are occasionally lethal. C2 labeling of Ura was
accomplished starting from 13C urea by cyclization upon reacting labeled urea with propiolic acid.
The resulting [2-13C] Ura was then converted to [2-13C]5-FU using SelectfluorTM [29]. [2-13C]5-FU
can be used to detect patients with deficiencies in 5-FU metabolism by detecting 13CO2 by mass
spectrometry analysis of exhaled air (i.e., “breath test”). Such a chemically-oriented assay may be a
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more general approach to detecting the sensitive patient population since multiple genes may affect
5-FU metabolism [31], making genetic screening complex, expensive, and vulnerable to false negatives
regarding 5-FU toxicity. In contrast, chemical approaches using DPD-inhibitory compounds, such as
eniluracil, and 5-chloro-2,4-dihydroxypyridine (CDHP) to modulate 5-FU activity and toxicity have
in general been disappointing [32]. DPD inhibitors have also been used in combination with orally
bioavailable 5-FU analogs such as capecitabine [33] or tegafur [34] to provide a pharmacokinetic profile
similar to continuous intra-venous (CIV) infusion of 5-FU. In general, this approach has not proven
advantageous to CIV 5-FU, although it may be more convenient to implement.Molecules 2020, 25, x FOR PEER REVIEW 4 of 14 
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Figure 2. Strategies for the synthesis of labeled 5-FU for personalized medicine studies. (A) Cyclization
approach starting from [13C] urea and propiolic acid. Treatment with polyphosphoric acid (PPA),
and then sodium aqueous yields [2-13C] uracil. Electrophilic fluorination with Selectfluor yields
13C-labeled 5-FU for metabolism studies (adapted from [29]). (B) Transmetalation approach for
introducing 18F Fluoride. The Nickel σ-aryl complex of protected uracil was generated from the
corresponding boronic acid precursor and reacted with [18F] fluoride and oxidant to yield 18F-labeled
5-FU for positron emission tomography (PET) imaging studies (adapted from [26]).

While 5-FU is the most widely used FP for cancer treatment, other FPs have been synthesized and
undergone biological evaluation. Synthesis of 6-fluorouracil was reported by Wempen and Fox [35],
but this compound had minimal biological activity and new approaches to its synthesis have not
been reported. The substantial difference in activity between the 5-Fluoro- and 6-Fluoro- Ura analogs
results from the selective stabilizing effects of the 5-fluoro substituent to the Michael addition adduct
in enzymatic reactions for which Ura is a substrate (summarized in Section 3: TS inhibition and
DNA-directed effects of FPs). While not as potent a TS inhibitor as the 5-FU metabolite FdUMP,
5-(trifluoromethyl)-2′-deoxyridine 5′-monophosphate, which is a metabolite of trifluorothymine,
forms a moderately stable covalent complex with TS [36]. Trifluorothymine was synthesized by
Heidelberger and co-workers starting from trifluoroacetone, which was converted to the cyanohydrin,
and used in a cyclization reaction with urea to generate the trifluoromethyl-substituted pyrimidine [37].
A more recent synthesis used catalytic trifluormethylation of uracil with CF3I in the presence of Fe(II)
compounds [38]. This approach was applicable to both uridine and 2′-deoxyuridine making a separate
glycosylation step unnecessary for preparation of trifluorthymidine (trifluridine) [38]. The direct
preparation of trifluridine from 2′-deoxyuridine with trifluoromethyl sulfinate was also described [39]
(CN104761602A; issued 2017). Trifluridine was recently approved for use in metastatic colorectal cancer
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by the U.S. Food and Drug Administration (FDA) as part of Lonsurf, which also includes Tiperacil,
a thymidine phosphorylase (TP) inhibitor [40].

3. TS Inhibition and DNA-Directed Effects of FPs

Considerable evidence indicates TS inhibition and perturbation of DNA-mediated processes is
primarily responsible for the anti-cancer activity of FPs [10,41]. The 5-FU metabolite FdUMP is a
potent TS inhibitor [42]. The role of fluorine in TS inhibition by FdUMP is to stabilize the enolate
formed upon Michael addition at C6 by a reactive Cys (C195 in human TS; Figure 3) [11]. For the
normal substrate, dUMP, the formation of the Michael adduct stimulates binding of N5, N10-methylene
tetrahydrofolate co-factor, which occurs with the formation of an N5 iminium ion. Bond formation
proceeds by nucleophilic attack from C5 of dUMP enolate on the iminium ion; however, with fluorine
stabilization, nucleophilic attack does not proceed, and a new C–C bond is not formed. While iodo- and
bromo-analogs of FdUMP undergo dehalogenation of the enolate upon binding TS, the strength of the
C–F bond results in the formation of a stable adduct. The ternary complex (TS/FdUMP/folate) may be
detected by Western blot and is an indicator of TS inhibition [43]. Efforts to maximize the clinical efficacy
of 5-FU focus on biochemical modulation by co-treatment with the folate analog Leucovorin [44], which
promotes TS ternary complex formation despite the relatively low plasma folate levels of humans [45].
Continuous intra-venous infusion of 5-FU [46] is also used to maximize exposure to malignant cells
while they are in S-phase when high TS levels occur. Therapeutic drug monitoring (TDM) is being
implemented to optimize 5-FU plasma levels and account for high inter-patient variability in drug
metabolism [47].
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Figure 3. Depiction of the Michael adduct derived from Cys195 of human TS attack at C6 of (A)
dUMP and (B) FdUMP upon interacting with the N5 iminium ion derived from N5,N10-methylene
tetrahydrofolate. In (A) nucleophilic attack by C5 of the enolate results in C–C bond formation, while in
(B) fluorine polarizes the C–F bond inhibiting C–C bond formation, and due to the strength of the C–F
bond, dehalogenation does not occur and the adduct remains stably bound to TS.

TS inhibition is central to the anti-tumor activity of FPs [10], and colorectal (CRC) tumors that
respond to 5-FU were found to express low levels of TS and two other enzymes that affect 5-FU
metabolism: DPD and thymidine phosphorylase (TP) [48]. Elevated intra-tumoral DPD limits levels of
all anabolic 5-FU metabolites, while the TP-TK pathway [49] can either promote FdUMP formation
from 5-FU or promote degradation of FdUMP that is formed via a multi-step process that requires
orotic acid phosphoribosyl transferase (OPRTase), ribonucleotide reductase (RR), and other enzymes
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(e.g., OPRTase-RR pathway). The observed clinical dependence of 5-FU on low TP in mCRC [48]
indicates that FdUMP production occurs predominantly via the OPRTase-RR pathway, and that in
CRC cells, elevated TP primarily reduces FdUMP levels resulting in decreased TS inhibition.

Thus, FP analogs that are converted directly to FdUMP may be particularly effective anti-tumor
agents by maximizing levels of the TS inhibitory metabolite FdUMP and circumventing pathways that
increase the degradation of FP metabolites by DPD and/or TP. For example, a FdU phosphoramidate
pro-drug of FdUMP was synthesized to enable direct intracellular formation of FdUMP [50].
Furthermore, the Gmeiner laboratory has developed FP polymers (e.g., F10 and CF10 [15]), and these
can be directly converted to FdUMP [51] and retain strong activity towards cells that express elevated TS
and are resistant to 5-FU [52]. The anti-tumor activity of FP polymers has been demonstrated in multiple
pre-clinical models including acute leukemia [53,54], GBM [55], prostate cancer [56], and colorectal
cancer [57]. The 2nd generation FP polymer CF10 includes additional chemical modifications to improve
stability [15], and it has been selected for further study as a novel nanoscale material with strong potential
for cancer treatment by the Nanotechnology Characterization Laboratory (https://ncl.cancer.gov/).

Topoisomerases are essential enzymes that regulate DNA topology during DNA replication
and transcription [58]. While these enzymes are established targets for anti-cancer drugs, including
camptothecin (CPT) and doxorubicin, there is increasing evidence that the DNA-directed activities of
FPs occur by poisoning topoisomerase function, particularly of DNA Top1 [13]. Unlike the mechanism
by which FPs inhibit TS, FdU inhibits Top1 by becoming incorporated into genomic DNA and
interfering in the re-ligation step of Top1 catalysis [12]. Thus, Top1 efficiently cleaves DNA proximal
to sites of FdU substitution, but the covalent Top1 cleavage complex (Top1cc) becomes trapped and
does not undergo re-ligation [12,53]. Furthermore, the repair of FdU-dependent Top1cc displays a
different dependence on Tdp1 and PARP1 [59], relative to CPT [60]. These findings indicate that FPs
may cause replication stress by trapping Top1cc to block replication fork progression [61], and also
by depleting cellular thymidylate [61]. Polymeric FPs such as F10 [62] and CF10 [15] that are more
directly converted to FdUMP and FdUTP than 5-FU display improved anti-tumor activity and reduced
systemic toxicities through dual targeting of TS and Top1 [12,53]. This approach shows promise for the
treatment of malignancies with mutational profiles that limit the efficacy of conventional FPs, such as
p53 mutations [63], and so may be important for a personalized medicine approach to treatment
since many anti-cancer drugs, including 5-FU, are relatively less effective towards p53 mutant cancer
cells [64].

Finally, it should be noted that a component of the DNA-directed effects of FPs may be due
to 5-FU mutagenicity, as recent studies with organoids demonstrate that 5-FU is mutagenic [65].
Increased mutagenicity has implications for use in cancer treatment [66], including immunotherapy
applications, which are affected by overall tumor mutational burden [67]. The mechanism by which
5-FU is mutagenic is not known; however, the characteristic mutational signature of 5-FU involves
T > G substitutions in a “CTT” context, which is unexpected based on 5-FU forming base pairs primarily
with A and also with G [68]. The mutational profile is consistent with 5-FU inducing mutations by
causing oxidative stress with 8-oxo-dG forming base pairs with A [69] ultimately resulting in a G > T
transversion. Furthermore, FdU substitution in DNA perturbs both base-excision repair (BER) [9,70]
and mismatch repair (MMR) processes [70]. Specifically, FdU alters the dynamics of the base pair
opening in duplex DNA, which could affect how uracil excision repair enzymes recognize and excise
5-FU from DNA [9,71,72]. The MMR complex MutSα also differentially binds base pair mismatches
that include FdU, which can affect the balance between repair signaling and induction of apoptosis [73].

4. Inhibition of RNA Modification Enzymes and RNA-Mediated Effects of FPs

5-FU causes serious systemic toxicities in some patients including both gastrointestinal (GI) and
hematopoietic effects. Clinically, high-grade 5-FU toxicities are treated with Urd triacetate [74], which
is consistent with an RNA-directed mechanism for 5-FU’s most serious systemic toxicities. Specifically,
5-FU was shown to induce p53-dependent apoptosis in intestinal cells [75]. The mechanism by which

https://ncl.cancer.gov/
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5-FU perturbs RNA-mediated processes remains under active investigation. In essentially all cells, 5-FU
is readily converted to the corresponding ribonucleotide triphosphate (FUTP) and incorporated into
diverse species of RNA, including tRNA, which undergoes multiple post-transcriptional modifications
that may be affected by 5-FU substitution. In particular, ribothymidine (rT) and pseudouridine (Ψ)
are Urd modifications that are found in the “TΨC” loop common to all tRNAs. Furthermore, Ψ is
a highly conserved modification at other sites in tRNA and in multiple RNA species. Substitution
of 5-nitrouridine in tRNA was shown to trap tRNA-Ura methyl transferase (RUMT; [76]) by the
formation of a reversible covalent complex in which Cys324 of RUMT forms a Michael adduct with
NO2Ura54 in tRNA [77]. The role of TRMT2A, the mammalian tRNA methyltransferase 2 homolog
A protein, for mammalian cell function remains unclear; however, a recent study demonstrated that
TRMT2A-deficient cells displayed increased growth consistent with a role for TRMT2A in cell cycle
regulation [78]. Furthermore, other studies implicated TRM2A in DNA DSB repair in yeast [79].
These findings indicate that 5-FU could affect cell cycle and DNA repair processes in mammalian cells
through the inhibition of TRMT2A [80].

Pseudouridine is sometimes referred to as a “5th nucleotide” because it is such a common RNA
modification [81]. In addition to the conserved modification of tRNA in the TΨC loop of all tRNA and
at conserved sites in specific tRNA, Ψ is also present in mRNA, rRNA, and snRNA. The biological
function of pseudouridylation remains under investigation, but it is known that Ψ base pairs with all
four major bases have greater stability than Urd [82]. Ψ formation results from isomerization of uridine
with cleavage of the N-glycosidic bond and formation of a C-glycosidic bond to C5. The mechanism of
pseuoduridine synthases (Pus) is distinct from tRNA methyl transferases and involves nucleophilic
attack by an aspartate rather than a cysteine, possibly at C1′ rather than C6 [81,83]. There appears to
be variability in the mechanism among different pseudouridine synthases, and 5-FU substitution in
substrate RNA potently inhibits some, but not all of these enzymes [14].

5. Synthesis of 5-FU Substituted RNA and DNA for Biophysical Studies

The biological activities of 5-FU that are responsible for both its anti-tumor activity and systemic
toxicities remain only partly characterized. To study the effects of FUrd and FdU substations on
RNA and DNA in a sequence-specific manner required synthesis of the corresponding nucleoside
phosphoramidites and their incorporation into oligonucleotides using automated DNA or RNA
synthesis. The Gmeiner lab reported the synthesis of FUrd phosphoramidite [84] by adapting the
protection strategy used for Urd in automated RNA synthesis (Figure 4). Briefly, this involved protecting
5′-OH with 4,4′-dimethoxytrityl chloride and 2′OH with tert-butyldimethylsilyl chloride. The 3′-OH
was then converted to the reactive phosphoramidite using cyanoethyl N,N’-diisopropylphosphonamidic
chloride. The resulting FUrd derivative was then site-specifically incorporated into RNA sequences
using automated synthesis with only moderate adjustments to coupling cycles relative to the native
nucleoside. The FP nucleobase required no special protection chemistry. A similar approach was
adopted for FdU, except without the 2′-OH protection step [21].

The effects of 5-FU substitution on DNA and RNA stability are a net result of multiple forces that
are differentially affected by the strong electronegativity of 5-FU. The pKA for the imino hydrogen
of 5-FU is in the physiological range [85,86]. Thus, 5-FU base pairs are anticipated to be more
dynamic and potentially contribute less to nucleic acid stability than native base pairs. Furthermore,
in its neutral form, the keto-enol tautomer distribution of 5-FU [87] differs from Ura due to fluorine
electronegativity [88,89], which may affect base pair geometry, and indirectly affects base stacking,
which is a predominate force in duplex stability [90]. The net effects of FUrd substitution in RNA and
FdU substitution in DNA were found to depend on both the site of substitution and how many sites
were substituted. In DNA, single FdU substitution moderately destabilized the duplex or had no effect.
In RNA, single FUrd substitution moderately stabilized the duplex [91]. Two FdU substitutions in
DNA moderately destabilized the duplex, but in RNA had no significant effect. NMR studies showed
FdU substitution affected the base roll angle causing FdU-substituted duplexes to be bent compared
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to non-substituted duplexes [92]. In an RNA duplex derived from U4 snRNA, a G-FUrd base pair
adopted Wobble geometry, reduced stacking for G-FUrd, and contributed to a slight decrease in duplex
stability [68]. Overall, the effects of 5-FU substitution on RNA structure and stability were found
to be moderate. Thus, 5-FU is also used as a probe to monitor RNA structure and dynamics using
19F NMR [93,94]. An enzymatic synthesis of FUTP was developed by Williamson and co-workers to
facilitate RNA labeling for NMR studies [95].
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Figure 4. Scheme summarizing the synthesis of protected FUrd and FdU phosphoramidites for
incorporation into RNA and DNA oligonucleotides. The initial step for each is the protection of 5′-OH
with dimethoxytrityl chloride in dry pyridine. For RNA, protection of the 2′-OH is performed using
tert-butyldimethylsilyl chloride in dry pyridine with imidazole which occurs without regiospecificity
requiring purification of the 2′OH protected species. The 3′-OH was then reacted with cyanoethyl
N,N-diisopropylphosphonamidic chloride in dry THF using diisopropylethylamine and a catalytic
amount of dimethylaminopyridine. The resulting phosphoramidites were used in automated DNA
and RNA synthesis using standard procedures.

The inclusion of fluorinated pyrimidines into DNA affects not only base pairing and stacking,
but also effects ion binding and occupancy of the major and minor grooves of the DNA duplex.
The Gmeiner lab demonstrated that Zn2+ binds duplex DNA containing consecutive FdU-dA base
pairs in the major groove. Zn2+ is bound in a distorted trigonal bipyramidal geometry with O4 and
F5 on consecutive FdU as axial ligands and three water molecules as equatorial ligands [96,97]. Zn2+

complexation inhibited ethidium bromide intercalation and stabilized the duplex by ~15 ◦C. In contrast,
Mg2+ did not inhibit EtBr intercalation and displayed a lesser effect on duplex stability. While affecting
electrostatics in the major groove of duplex DNA, FdU substitution minimally perturbed minor groove
structure. Netropsin binds tightly to the minor groove of FdU-substituted DNA at A-T sites and
binding was not disrupted by Zn2+ in the major groove. Interestingly, while fluorine substitution
indirectly affects base pair formation in FdU-substituted DNA and alters the electrostatics in the
major groove, the minimal propensity of fluorine to engage in hydrogen bond formation permitted
2,4-dinitrotoluene to serve as an isosteric thymidine analog to study the importance of hydrogen bond
formation in polymerase specificity [98].

6. Conclusions

FPs continue to be the most widely used drugs for CRC treatment and are highly relevant
for cancer treatment in the era of personalized medicine [99]. The chemistry and biochemistry of
FPs continues to evolve, and their inclusion in DNA and RNA enables novel chemistry though the
perturbation of base pairing, base stacking, and the ionic environment [96,97]. Our understanding
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of the enzymatic processes perturbed by FPs that are responsible for the biological effects of FPs,
including both anti-tumor activity and systemic toxicities, also continues to evolve. The importance
of TS inhibition for the anti-tumor activity of FPs was established decades ago [6,11] and has stood
the test of time in clinical practice [10]. Other enzymatic processes are perturbed by 5-FU, including
ribomethyltransferase [76] and pseudouridylate synthase [83], and these may affect RNA function.
However, the relevance of targeting these enzymes for cancer treatment remains unproven, although
new insights into alternative functions for these enzymes [78] may enable their rational targeting.
More recently, Top1 was shown to be perturbed by FdU substitution [13]. Furthermore, FP-induced
Top1cc displays an altered dependence on Tdp1- and PARP1-mediated repair [60] and are accentuated
by TS inhibition indicating distinct properties from established Top1 poisons. Thus, there is increasing
potential to design FPs to activate specific processes that contribute to anti-tumor activity while
minimizing processes that contribute to systemic toxicities. FPs display strong potential for continuing
prominent use in the era of personalized medicine and could provide a benefit in immunotherapy
applications [66].
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