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Abstract: Constipation is a common condition that occurs in many people worldwide. While mag-
nesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary
fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain
fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian
rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on
cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing
effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and
the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH
and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by
inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were
combined, significant changes in the microbiota composition were observed compared with inulin
alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12
than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during
inulin feeding, and the effect on acetic acid concentration is time-dependent.

Keywords: MgO; water-soluble dietary fiber; SCFA; intestinal flora; laxative; administration timing

1. Introduction

Constipation is a common condition that occurs in many people worldwide. Accord-
ing to an online survey conducted in Japan in 2014, 28.4% of men and women aged 20 to
79 years identified themselves as constipated [1]. A systematic survey of North America
reported that the estimated constipation prevalence ranged from 12% to 19% and increased
particularly among those aged 65 years and older [2]. Constipation not only reduces the
patient’s quality of life but also leads to a poor life prognosis. In addition, constipation is a
major financial burden [3].

Constipation is a cross-disciplinary disease that doctors in all departments recognize,
but treatment is not straightforward. In Japan, the first chronic constipation practice
guideline was published in 2017 [4]. The basic drug treatments suggested by the Guidelines
were to use non-stimulant laxatives. A stimulant laxative was required when the effects
of lifestyle-related guidance and non-stimulant laxatives were insufficient. Among non-
stimulant laxatives, low-priced magnesium oxide (MgO) is often used as a first-line drug
in Japan. However, since hypermagnesemia has been reported in patients with renal
dysfunction [5], the Guidelines revised in 2020 require electrolyte monitoring in patients
with renal failure, heart disease, electrolyte abnormalities, or those taking diuretics [6,7].
MgO is not only a laxative but also an antacid.
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Magnesium oxide is classified as a saline laxative in the osmotic laxative group. When
in the stomach, MgO reacts with gastric acid (HCl) to form magnesium chloride (MgCl2),
which reacts with intestinally secreted pancreatic fluid (NaHCO3) to form poorly absorbable
bicarbonates (magnesium bicarbonate: Mg(HCO3)2) and carbonates (magnesium carbonate:
MgCO3). When the intestinal salt concentration increases, the osmotic pressure pulls water
from the intestinal wall to the intestinal lumen in an attempt to maintain equal osmotic
pressure on both sides of the membrane. This increases the amount of water inside the
intestine and softens the stool.

The oral dosage of MgO as a laxative in Japan is 2 g per day for adults. It is admin-
istered three times a day, before or after meals, or once before bedtime. Although MgO
pharmacokinetic studies are limited, a study using rats showed that approximately 15%
of orally administered MgO is absorbed, and plasma magnesium concentration peaks
about three hours after administration. Approximately 85% of orally administered MgO is
excreted in the feces without being absorbed [8].

While there is a treatment for constipation with drugs, the Japanese guidelines for
chronic constipation in 2020 states that lifestyle-related improvement is the first step in
treatment, and the Ministry of Health, Labour, and Welfare recommends a daily dietary
fiber intake of approximately 20 g/day for adult males and approximately 17 g/day for
adult females [9]. The World Gastroenterology Organization guidelines also include a
gradual increase in dietary fiber as one of the first steps in treating constipation [10].

There are as many as 100 trillion bacteria including more than 1000 bacterial species in
the human intestine, which make up the gut microbiota [11]. The study by Qin J. et al. es-
tablishing a catalog of non-redundant human intestinal microbial genes from 124 European
individuals shows that each individual harbors at least 160 prevalent bacterial species and
about 536,000 prevalent genes. The study also indicates that about 38% of each individual’s
genes were shared with at least half of the individuals of the study cohort [12]. Internal
bacteria ferment dietary fiber to produce short-chain fatty acids (SCFAs), such as acetic
acid, propionic acid, and butyric acid [13]. Acetic acid, propionic acid, and butyric acid
account for 90–95% of SCFAs in the colon [14]. In the pathways for biosynthesis of SCFAs,
lactic acid is converted to propionic acid, and also to pyruvate that is further converted to
butyric acid, acetic acid and propionic acid [13,15,16].

There is a report that colonic pH and SCFA production after in vitro colonic fermen-
tation are inversely related [17]. SCFAs produced by bacterial fermentation of dietary
fiber create a more acidic environment in the colon. This environment is beneficial for the
developing bacteria, and the proliferation of colonic bacteria increases stool bulk [18]. In
other words, dietary fiber ingestion leads to an increase in intestinal SCFAs produced by
intestinal bacteria, leading to constipation relief. The water-soluble dietary fiber, inulin, is
known to increase SCFA levels in mice portal vein blood and cecal contents [19–21].

In addition, SCFAs not only regulate the intestinal environment and help relieve
constipation, but they also induce regulatory T-cell differentiation [22], activate SCFA
receptor, GPR43, to increase muscle and liver insulin sensitivity and to regulate energy
balance [23], and may be associated with obesity [24]. Like these findings, SCFAs also play
an important role in regulating other various biological functions.

In most organisms, there is a mechanism called a circadian clock that creates rhythmic
cycles of biological function. The circadian clock locus in mammals is in the suprachiasmatic
nucleus (SCN) of the hypothalamus and is called the central clock. Additionally, most
organs and tissues have circadian clocks, called peripheral clocks [25]. Light is the most
important stimulus for SCN. The peripheral clock is not only synchronized by the SCN, but
also regulated by diet, medication, stress, and exercise [26–30]. Circadian clock disruption
may lead to liver diseases, such as fatty liver and cirrhosis, as well as mood disorders,
obesity, diabetes, and cancer [31–33]. Intestinal microbial rhythmicity is regulated by the
circadian clock [34]. SCFAs produced by the gut flora modulate the peripheral clock phase
in mice [35].
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The study on effective medication timing in relation to the biological circadian rhythm
is called chronopharmacology. Likewise, the study on effective nutrient intake timing in
relation to the biological circadian rhythm is called chrononutrition. Previous studies have
shown the importance of chronopharmacology and chrononutrition [36–38].

As noted, although many patients have used dietary fiber in combination with MgO
to relieve constipation, no studies have examined the MgO effect on SCFA production from
dietary fiber or its effect on the microbiota. And, no studies have investigated the effective
MgO administration timing while ingesting dietary fiber.

This study aimed to investigate the MgO effects on SCFA and lactic acid concentrations
in the cecum content and on the fecal microbiota diversity when combined with the water-
soluble dietary fiber, inulin. We also examined the appropriate MgO administration timing.

2. Materials and Methods
2.1. Animals

Eight-week or nine-week-old male Institute of Cancer Research (ICR) mice (Tokyo
Laboratory Animals Science Co., Ltd., Tokyo, Japan) were used. For all experiments, the
mice were divided into groups of five or six mice and housed with population sizes of
three or less. The mice were maintained at a room temperature 22 ± 2 ◦C, with 60 ± 5%
relative humidity, using 100 to 150 lux light intensity, and on a 12-h light/12-h dark cycle
with lights-on at 08:00 and lights-off at 20:00. Lights-on time was defined as Zeitgeber time
0 (ZT0) and lights-off time as 12 (ZT12).

The procedures were conformed to the Japanese government laws and were approved
by the Committee for Animal Experimentation of the School of Science and Engineering at
Waseda University (Permission: 2018-A017, 2019-A058).

2.2. Experimental Procedure
2.2.1. Experimental Design

Groups of mice and the experimental schedule of each experiment are shown in
Figure 1.

In experiment one, we examined whether the combined use of inulin and MgO during
normal feeding influenced cecal pH, lactic acid concentration, and SCFA concentrations.
We prepared four kinds of diets: AIN-93M, AIN-93M containing 2.5% inulin, AIN-93M
containing 2.5% inulin plus 0.125% MgO, or AIN-93M containing 2.5% inulin plus 0.25%
MgO. AIN-93M is a maintenance purified diet for mice. In order to determine the appropri-
ate MgO concentration for the following experiments, two different concentrations of MgO
(0.125% and 0.25%) were used for the diet. Mice were under free-feeding and free-drinking
water conditions. Mice were housed under the noted conditions for 11 days and sampled
at ZT4. The cecal pH was measured and the cecal contents were collected.

In experiment two, we examined whether the combined use of inulin and MgO
during a high-fat diet (HFD) feeding influenced cecal pH, lactic acid concentration, SCFA
concentrations and microbiota. Magnesium oxide is a remedy for constipation. It is also
known that constipation deteriorates the intestinal environment. Since HFD disturbs the
intestinal environment [39], HFD was used in experiment two. A previous study in our
laboratory had confirmed that HFD deteriorates the intestinal environment [40]. Then, the
cecal pH, lactic acid concentration, and SCFA concentration in the cecum were measured,
and the microbiota was analyzed. In the mixed diet, the concentration for inulin and MgO
were 2.5% and 0.25%, respectively. To adjust the total dietary fiber amount in the chow, the
control group was fed 2.5% of cellulose, which is insoluble dietary fiber. All groups were
under free-feeding and free-drinking water conditions. The mice were housed under the
noted conditions for 11 days and then sampled at ZT4 to determine the cecal pH and to
collect the cecal contents and feces.
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Figure 1. Experimental design. (a) Groups and schedule of experiment 1. (b) Groups and schedule of experiment 2.
(c) Groups and schedule of experiment 3. White and black bars express a 12-h light/12-h dark cycle. ZT0 is lights-on
time and ZT12 is lights-off time. Triangle arrows in red indicate sampling time. Triangle arrows in purple indicate oral
administration time. Green, yellow or blue arrows indicate a period of ad libitum feeding. ZT: Zeitgeber time. MgO:
magnesium oxide. HFD: high-fat diet.

In experiment three, we investigated the effects of MgO administration timing on the
lactic acid and SCFA concentrations. Mice fed 2.5% inulin in the HFD was used as the
inulin group, and mice fed 2.5% cellulose in the HFD was used as the control group. In the
inulin plus MgO group, a HFD containing 2.5% inulin was fed, and MgO (250 mg/kg BW)
was orally administered at ZT0 or ZT12 for 11 days. Cecal contents and feces samples
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were collected on the last day four hours after MgO was administered. All mice were
under free-feeding and free-drinking water conditions. Mice were housed under the noted
conditions for 11 days and sampled at ZT4 or ZT16.

2.2.2. Measuring the Cecal pH

The cecal pH was measured by inserting the glass tipped pH meter electrode (Eutech
Instruments, Vernon Hills, IL, USA) directly into the cecum immediately after collection.

2.2.3. Measuring the SCFA and Lactic Acid Levels in the Cecum

Cecal SCFA and lactic acid concentrations were measured using gas chromatography
with a flame ionization detector (Shimadzu Co., Kyoto, Japan) as described in a previous
report [41]. First, 50 mg of the cecal contents were measured in a 1.5 mL tube, and 600 µL
of a diethyl ether and ethanol mixture at a ratio of 2:1 was added. Then, 50 µL of sulfuric
acid was added and vortexed. The mixture was centrifuged at 14,000× g for 30 s at room
temperature. The supernatant was injected into the capillary column (InertCap Pure-
WAX 30 m × 0.25 mm, df = 0.5 µm; GL Sciences, Tokyo, Japan). The initial temperature
was 80 ◦C and the final temperature was 200 ◦C. Helium was used as the carrier gas.
After supernatant removal, the cecal contents were thoroughly dried and weighed. Cecal
SCFA concentrations were calculated as µmol/mg of dry cecal weight. This procedure of
quantitative SCFA and lactic acid analysis was established in our papers [37,38,40].

2.2.4. Fecal DNA Extraction

Fecal DNA was extracted according to a previous report [42]. First, 200 mg of mouse
feces and 20 mL of phosphate-buffered saline (PBS) were added to 50 mL Falcon tubes
and sufficiently suspended with a spatula and vortexing. The suspension was filtered
through a 100 µm nylon mesh filter (Corning Inc., New York, NY, USA). Then, 10 mL
of fresh PBS was added to each 50 mL Falcon tube. The tubes were washed thoroughly,
and the solutions were also filtered. The obtained filtrates were centrifuged at 9000× g
for 20 min at 4 ◦C and the supernatant was removed. The pellets were resuspended in
1.5 mL of 10 mM Tris-HCl (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) and 10 mM
EDTA buffer, and centrifuged at 10,000× g for 5 min at 4 ◦C. The supernatant was removed
and the pellet was resuspended in 800 µL of 10 mM Tris-HCl and 10 mM EDTA buffer.
Next, 100 µL of lysozyme (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) solution
(150 mg lysozyme in 1 mL of 10 mM Tris-HCl, and 10 mM EDTA) was added, mixed by
inversion, and incubated at 37 ◦C for 1 h. Following, 20 µL of acromopeptidase (FUJIFILM
Wako Pure Chemical Co., Osaka, Japan) solution (100 units/µL) was added, mixed by
inversion, and incubated at 37 ◦C for 30 min. Then, 50 µL of the proteinase K solution
(Promega Co., Madison, WI, USA) and 20% SDS solution were added, mixed by inversion,
and incubated at 55 ◦C for 1 h. An equal volume of phenol/chloroform/isoamyl alcohol
(PCI) (Invitrogen, Carlsbad, CA, USA) solution was added and mixed sufficiently until the
solution became white. The suspension was centrifuged at 6000× g for 10 min at room
temperature. The supernatant was transferred to a new 2 mL tube. The PCI solution and
the subsequent steps were repeated twice. Then, 100 µL of a 3 M sodium acetate solution
and 900 µL of isopropanol (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) were added
to the supernatant. The suspension was centrifuged at 6000× g for 10 min at 20 ◦C and the
supernatant was removed. Then, 1 mL of cold 70% ethanol was added to the DNA pellets,
and the suspension was centrifuged at 15,000× g for 5 min to remove the supernatant.
Then, 500 µL of cold 70% ethanol was added, and the suspension was centrifuged at
15,000× g for 5 min to remove the supernatant. The pellets were air-dried until it became
translucent. To the pellet, 99 µL of TE buffer (10 mM Tris-HCl, and 1 mM EDTA) and 1 µL
of RNase (10 µg/mL) (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) were added. The
suspension was kept warm at 37 ◦C overnight. Equal amounts of 20% PEG solution (Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan) were added to the suspension and were allowed
to stand on ice for 10 min. The supernatant was removed by centrifugation at 10,000× g



Nutrients 2021, 13, 152 6 of 20

for 10 min at 4 ◦C. The DNA was rinsed using 500 µL of cold 70% ethanol, centrifuged at
15,000× g for 5 min, and the supernatant was removed. The pellet was peeled off the tube
by tapping, 500 µL of cold 70% ethanol was added, and the suspension was centrifuged at
15,000× g for 5 min to remove the supernatant. The final DNA was air-dried, resuspended
in 40 µL of TE buffer, and stored at −20 ◦C.

2.2.5. 16S rDNA Sequencing

Gut flora 16S rDNA was treated according to the Illumina Miseq System protocol,
16S Metagenomic Sequencing Library Preparation. The V3-V4 variable region of the 16S
rDNA gene was amplified by the polymerase chain reaction (PCR) using the primers
described below:

Forward Primer = 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG
GNGGCWGCAG-3′

Reverse Primer = 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH
VGGGTATCTAATCC-3′

The PCR amplification was performed with 2.5 µL of microbial DNA (5 ng/µL),
5 µL of Forward Primer (1 µmol/L), 5 µL of Reverse Primer (1 µmol/L), and 12.5 µL of
2× KAPA HiFi HotStart Ready Mix (Kapa Biosystems Inc., Wilmington, MA, USA). The
PCR reaction conditions were as follows: After being kept at 95 ◦C for 3 min, a cycle of
95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s was repeated for 25 cycles. A final extension
was performed at 72 ◦C for 5 min. The PCR products were purified using AM PureXP
beads (Beckman Coulter Inc., Sacramento, CA, USA). Index PCR was performed by adding
5 µL of purified amplicon PCR product to 5 µL of Nextera XT Index Primer 1 (Illumina
Inc., Hayward, CA, USA), 5 µL of Nextera XT Index Primer 2 (Illumina Inc., Hayward,
CA, USA), 25 µL of 2× KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Wilmington,
MA, USA), and 10 µL of PCR-grade water. The reaction conditions for the index PCR
were as follows: After keeping at 95 ◦C for 3 min, a cycle of 95 ◦C for 30 s, 55 ◦C for 30 s,
and 72 ◦C for 30 s was repeated for 8 cycles. A final extension was performed at 72 ◦C
for 5 min. Index PCR products were purified using AMPure XP beads (Beckman Coulter
Inc., Brea, CA, USA). The purified DNA quality was confirmed using an Agilent 2100
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA) and DNA1000 kit. Finally,
the DNA library concentration was adjusted to 4 nmol/L. The DNA library was sequenced
on the Illumina MiSeq 2 × 300 bp platform using the MiSeq Reagent Kit v3 (Illumina Inc.,
San Diego, CA, USA). This sequence was performed according to the manufacturer’s
instructions.

2.2.6. Analysis of 16S rDNA Gene Sequence

The 16S rDNA extracted from feces was analyzed by the quantitative insights to
microbiological ecology (QIIME) pipeline, version 1.9.1 [43]. Reads after quality checks
were classified by UCLUST as operational taxonomic units of 97% similarity [44]. These
reads were compared with the Greengenes database Reference Sequence (August 2013
version). A total of 383,440 reads were obtained from 16 samples, with an average of
23,965 ± 591.2728 reads per sample. QIIME analyzed these reads and calculated β-diversity
and the taxonomy from phylum to species levels. β-Diversity was shown in the principal
coordinate analysis (PCoA). The PCoA was calculated using unweighted UniFrac distances.
A Simpson Index was calculated from the taxonomic composition summary and the α-
diversity results were presented.

2.2.7. Statistical Analysis

All data except for β-diversity are shown as mean ± standard error and analyzed by
GraphPad Prism (version 8.4.3, GraphPad Software Inc., San Diego, CA, USA). First, the
presence or absence of normality was determined by the Kolmogorov-Smirnov test. Next,
the equivariance was determined by Bartlett’s test. When these analyses showed normality
and equivariance, a one-way analysis of variance (ANOVA) tests using Tukey post hoc
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analysis was performed. Kruskal-Wallis test using Dunn’s post hoc test was performed
if there was no normality or unequal variance. The p-values shown were adjusted for
multiple comparison. β-Diversity was assessed by permutational multivariate analysis of
variance (PERMANOVA), and PERMANOVA was analyzed using QIIME.

3. Results
3.1. Effects of Inulin and MgO Combination on Normal Intestinal Environments
3.1.1. The Combined Inulin and MgO Effects on Cecal pH

There were no significant differences in cecal pH among the four groups, but changes
in pH were observed when mice were subjected to inulin and MgO intake. Specifically,
inulin feeding lowered the cecal pH. However, the combined inulin and MgO treatment
resulted in increased cecal pH compared with the inulin group. Cecal pH comparison of
the inulin plus 0.125% MgO group and the inulin plus 0.25% MgO group showed that the
cecal pH was slightly higher in the 0.25% MgO-added group (Figure 2a). These results
suggest that MgO may increase cecal pH in a dose-dependent manner.

3.1.2. The Combined Inulin and MgO Effects on Cecal SCFAs

Inulin intake significantly increased lactic acid concentration in the cecal contents.
Interestingly, the inulin plus 0.125% MgO group had decreased lactic acid concentration,
and lactic acid concentration further significantly decreased in the inulin plus 0.25% MgO
group compared with the inulin group. The lactic acid concentration was lower in the
inulin plus 0.25% MgO group than in the 0.125% MgO-added group, but no significant
difference was observed (Figure 2b).

Although no significant difference was observed, inulin increased acetic acid concen-
tration. Compared with the control group, the acetic acid concentration was significantly
higher in the inulin plus 0.125% MgO group. On the other hand, the inulin plus 0.25% MgO
group has lower acetic acid concentration than the 0.125% MgO-added group (Figure 2c).
This suggests that MgO may reduce acetic acid concentration in a dose-dependent manner
when used in combination with inulin.

The propionic acid concentration was significantly higher in the inulin group, the
inulin plus 0.125% MgO group, and the inulin plus 0.25% MgO group when compared
with the control group (Figure 2d).

A significantly higher concentration of butyric acid was detected in the inulin group
and the inulin plus 0.125% MgO group compared with the control group. No significant dif-
ference was observed between the control and inulin plus 0.25% MgO groups (p = 0.1705).
Although no significant difference was observed, the 0.25% MgO-added group showed
lower butyric acid concentration compared with the 0.125% MgO-added group (Figure 2e).

The lactic acid and total SCFA concentration sum was significantly higher in the inulin
group and the inulin plus 0.125% MgO group compared with the control group. Although
not significantly different, the lactic acid and total SCFA concentration sum was lower in
the inulin plus 0.125% MgO group compared with the inulin group, and was lower in the
inulin plus 0.25% MgO group compared with the 0.125% MgO-added group (Figure 2f).

3.2. The Combined Inulin and MgO Effects on the Intestinal Environment and Microbiota during
HFD Feeding

Magnesium oxide may be used in conditions where the intestinal environment has
deteriorated. In experiment two, the combined inulin and MgO effects on the intestinal
environment were investigated using a HFD, which is known to disturb the intestinal
environment in mice [38,40]. Since experiment one suggested dose-dependent MgO effects
in a normal diet, MgO was mixed in the diet at a concentration of 0.25% for experiment
two (Figure 1b).
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Figure 2. The combined inulin and MgO effects on cecal pH and SCFAs in mice on a normal diet. (a) Cecal pH. (b) Lactic
acid concentration of the cecal content. (c) Acetic acid concentration of the cecal content. (d) Propionic acid concentration of
the cecal content. (e) Butyric acid concentration of the cecal content. (f) Lactic acid concentration + total SCFA concentration
of the cecal contents (Total SCFA concentration is the total sum of the acetic acid concentration, propionic acid concentration,
and butyric acid concentration). AIN93-M was used as the diet, and inulin was mixed with the diet at a ratio of 2.5% in
the inulin group and the MgO combination group. Magnesium oxide was given in the diet at a ratio of 0.125% or 0.25%.
Concentrations of lactic acid and each SCFA were calculated per dry weight of the cecal contents. All data are expressed as
mean ± standard error (Each group n = 5–6). * p < 0.05 and ** p < 0.01, evaluated using the one-way ANOVA with Tukey’s
post hoc test. † p < 0.05, †† p < 0.01, evaluated using the Kruskal-Wallis test with Dunn’s post hoc test. MgO: magnesium
oxide. SCFA: short-chain fatty acid.
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3.2.1. The Combined Inulin and MgO Effects on Cecal pH during HFD Feeding

The cecal pH was significantly reduced in the inulin group compared with the control
group. However, the cecal pH increased significantly in the inulin plus MgO group
compared with the inulin group (Figure 3a). These results suggest that MgO increases the
cecal pH that was decreased by inulin.

3.2.2. The Combined Inulin and MgO Effects on Cecum SCFAs during HFD Feeding

The lactic acid concentration was significantly increased by inulin. Although the
difference was not significant (p = 0.3697), the combined use with MgO reduced the
lactic acid concentration (Figure 3b). Compared with the control group, the inulin group
showed a higher acetic acid concentration. However, the inulin plus MgO group showed a
significantly lower acetic acid concentration compared with the control group and inulin
group (Figure 3c). The propionic acid concentration increased significantly with inulin
intake, whereas it significantly decreased with the combined with MgO compared with
the inulin group (Figure 3d). The butyric acid concentration also increased with inulin
intake and significantly decreased with combined use of MgO compared with the inulin
group (Figure 3e). The lactic acid and total SCFA concentration sum was significantly
increased in the inulin group. The sum was significantly decreased with combined use
of MgO compared with the inulin and control groups (Figure 3f). These results suggest
that inulin increases lactic acid, acetic acid, propionic acid, and butyric acid concentrations,
while the combined use of MgO reduces the inulin-induced increased concentrations.

3.2.3. The Combined Inulin and MgO Effects on the Microbiota during HFD Feeding

Microbiota β-diversity analysis showed significant differences in microbiota composi-
tion among the three groups (Figure 4a). Permutational multivariate analysis of variance
was performed using two of the three groups to determine the significantly different group.
First, a comparison between the control group and the inulin group showed that inulin
feeding significantly altered the composition of the microbiota (Figure 4b). In addition, a
significant microbiota composition change was observed between the inulin and the inulin
plus MgO group (Figure 4c). There was also a significant microbiota composition change
between the control group and the inulin plus MgO group (Figure 4d). These results
indicated that inulin alone and inulin plus MgO significantly altered the microbiota com-
position. Also, the microbiota change associated with the combination of inulin and MgO
differed from the control group microbiota. Furthermore, we presented the microbiota
taxonomic summary and expressed α-diversity by Simpson index and Chao1 (Figure 5).
There was no significant difference in Simpson index or Chao1 between the inulin and the
inulin plus MgO groups. (Figure 5b,c).

We examined whether there was a change in each bacterium at the genus level
(Figure 6). The relative abundance of Coprococcus, Lactococcus, Parabacteroides, and Strep-
tococcus was significantly reduced in the inulin group compared with the control group.
The relative abundance of these bacteria reduced by inulin was increased with the com-
bined MgO use, but the elevation was not significantly different. Additionally, the relative
abundance of Ruminococcus, Odoribacter, Oscillospira, and Ruminococcus was significantly
reduced in the inulin plus MgO group compared with the control group. The relative
abundance of Turicibacter was significantly elevated in the inulin group compared with the
control group. However, the MgO combination group severely decreased the Turicibacter
relative abundance level. The relative abundance of Butyricimonas significantly decreased
in the inulin group and MgO combination group compared with the control group. The
relative abundance of Lactobacillus was elevated in inulin group. The Lactobacillus rela-
tive abundance in the inulin-MgO combination group was decreased compared with the
inulin group.
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concentration of the cecal content. (c) Acetic acid concentration of the cecal content. (d) Propionic acid concentration of the
cecal content. (e) Butyric acid concentration of the cecal content. (f) Lactic acid concentration + total SCFA concentration of
the cecal contents (Total SCFA concentration is the total sum of the acetic acid concentration, propionic acid concentration,
and butyric acid concentration). Inulin was mixed with the HFD at a ratio of 2.5% in the inulin group and the MgO
combination group. Magnesium oxide was given in the diet at a ratio of 0.25%. Concentrations of lactic acid and each SCFA
were calculated per dry weight of the cecal contents. All data are expressed as mean ± standard error (Each group n = 5–6).
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, evaluated using the one-way ANOVA with Tukey’s post hoc test. † p < 0.05,
†† p < 0.01, evaluated using the Kruskal-Wallis test with Dunn’s post hoc test. MgO: magnesium oxide. SCFA: short-chain
fatty acid. HFD: high-fat diet.
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the genus level. (b) Alpha-diversity measured by Simpson’s Index. (c) Alpha-diversity measured by Chao1. Inulin was
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with Tukey’s post hoc test. MgO: magnesium oxide. HFD: high-fat diet.
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with the HFD at a ratio of 2.5% in the inulin group and the MgO combination group. Magnesium oxide was given in the
diet at a ratio of 0.25%. All data are expressed as mean ± standard error (Each group n = 5–6). * p < 0.05, ** p < 0.01. Data
were evaluated using the Kruskal-Wallis test with Dunn’s post hoc test. MgO: magnesium oxide. HFD: high-fat diet.



Nutrients 2021, 13, 152 14 of 20

3.3. The Relationship between the MgO Effect on the Intestinal Environment and Administration Timing

Experiments one and two have shown that MgO alters the intestinal environment and
microbiota during inulin feeding. In experiment three, we investigated whether there was
a relationship between the MgO administration time and its effects. Magnesium oxide was
orally administered at ZT0, the beginning of the inactive phase, or at ZT12, the beginning
of the active phase, and sampling was carried out four hours after each oral administration
(Figure 1c).

In the group sampled at ZT4, the cecal pH in the inulin group decreased but not
significantly. In the group sampled at ZT16, inulin significantly reduced the cecal pH.
Magnesium oxide significantly increased cecal pH at both sampling times (Figure 7a).
Regardless of the MgO administration time, the lactic acid concentration increased in
the inulin group compared with the control group and decreased when combined with
MgO (Figure 7b,c). The acetic acid concentration was significantly reduced by MgO in
the ZT4 sampling group. On the other hand, in the ZT16 sampling group, no significant
difference was observed among all groups (Figure 7d,e). The propionic acid concentration
was significantly increased by inulin in the ZT4 and ZT16 sampling groups. Although
not a significant difference, MgO showed a decrease in the propionic acid concentration
increased by inulin at both sampling times (Figure 7f,g). In both the ZT4 and ZT16 sampling
groups, MgO significantly reduced the butyric acid concentration that was increased by
inulin (Figure 7h,i). Magnesium oxide significantly decreased the sum of the lactic acid
and SCFA concentrations that were increased by inulin in the ZT4 sampling group. In the
ZT16 sampling group, MgO tended to decrease the sum concentration increased by inulin,
but no statistically significant difference was observed (Figure 7j,k). These results suggest
that MgO administration at ZT0 had a stronger effect on the acetic acid concentration than
MgO administration at ZT12.
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concentration of the cecal contents at ZT4. (c) Lactic acid concentration of the cecal contents at ZT16. (d) Acetic acid
concentration of the cecal contents at ZT4. (e) Acetic acid concentration of the cecal contents at ZT16. (f) Propionic acid
concentration of the cecal contents at ZT4. (g) Propionic acid concentration of the cecal contents at ZT16. (h) Butyric
acid concentration of the cecal contents at ZT4. (i) Butyric acid concentration of the cecal contents at ZT16. (j) Lactic acid
concentration and total SCFA concentrations of the cecal contents at ZT4. (k) Lactic acid concentration and total SCFA
concentrations of the cecal contents at ZT16. Total SCFA concentration is the total of acetic acid concentration, propionic
acid concentration, and butyric acid concentration. Inulin was mixed with the HFD at a ratio of 2.5% in the inulin group
and the MgO combination group. Magnesium oxide at 250 mg/kg was orally administered to the inulin + MgO group.
The MgO administration time was ZT0 or ZT12. Concentrations of lactic acid and each SCFA were calculated per dry
weight of the cecal contents. All data are expressed as mean ± standard error (Each group n = 5–6). * p < 0.05, ** p < 0.01,
and **** p < 0.0001, evaluated using the one-way ANOVA with Tukey’s post hoc test. † p < 0.05, evaluated using the
Kruskal-Wallis test with Dunn’s post hoc test. MgO: magnesium oxide. SCFA: short-chain fatty acid.

4. Discussion
4.1. Combined Inulin and MgO Effect on the SCFA Concentrations in the Cecum

The combined inulin and MgO effect on the SCFA concentrations in the cecum was ex-
amined. It was shown that MgO reduced inulin-induced increased lactic acid and SCFA con-
centrations regardless of the diet-type or MgO administration method (Figures 2, 3 and 7).
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Short-chain fatty acids not only regulate the intestinal environment but are involved in
systemic physiological functions [22,23] and also act as anti-inflammatory substances. In
the alcoholic liver disease model mice fed with inulin, SCFAs improved inflammation [45].
Giving drinking water that contains acetic acid to mice before or during the inflammatory
arthritis induction reduced paw swelling [46]. It has also been reported that allergic airway
inflammation is suppressed in mice fed propionic acid [47]. Butyric acid regulates intestinal
inflammation by activating histone deacetylase inhibition, enhancing Foxp3 gene promoter
acetylation, and promoting Treg-cell differentiation [22]. Finally, lactic acid from Lacto-
bacillus johnsonii plays a protective role in small bowel injury induced by indomethacin, a
non-steroidal anti-inflammatory drug [48].

SCFAs contribute to maintaining systemic immune homeostasis, and therefore SCFA
reduction may induce or exacerbate the above-mentioned diseases. In this study, MgO
ingestion reduced cecal SCFA levels that were increased by inulin. This suggests that MgO
may suppress the anti-inflammatory SCFA effects and induce or exacerbate inflammatory
diseases. It would be interesting to confirm whether MgO exacerbates the inflammation
using a pathological model of each inflammatory disease.

4.2. Changes in Cecal pH and Intestinal Flora Composition

In experiment two using mice fed with a HFD, the cecal pH decreased significantly
due to inulin feeding. It was increased significantly when combined with MgO (Figure 3a).
Furthermore, the intestinal flora composition was significantly changed in the inulin plus
MgO group compared with the inulin group (Figure 4c).

Both rabeprazole and vonoprazan are known to act on proton pumps to suppress
gastric acid secretion, but their mechanisms of action are different. Additionally, both
of these agents significantly alter bacterial flora composition in mice small intestine and
colon [49]. This result suggests that the intestinal flora composition changes as the stomach
acidity affects the intestinal pH. In this study as well, cecal pH increased and intestinal
flora composition changed. MgO is also used as an antacid, so these data may indicate that
MgO administration increased the gastric pH and intestinal pH, and changed the intestinal
flora composition accordingly. In experiment two, the inulin-induced increased SCFA and
lactic acid concentrations were decreased when combined with MgO (Figure 3b–f). One of
the causes of these phenomena may be the intestinal flora composition changes due to the
increased intestinal pH.

Magnesium oxide is converted to bicarbonate in the intestine and increases intestinal
osmotic pressure, attracting water to the intestinal cavity, and softening the intestinal
contents. Polyethylene glycol, an osmotic laxative, alters the gut flora over the long
term [50]. This may indicate that intestinal osmotic pressure changes may also be involved
in intestinal flora changes.

4.3. Microbiota α-Diversity

In this study, we compared the α-diversity of the control group, inulin group, and
inulin plus MgO group, but no significant difference was found between the inulin and
inulin plus MgO groups (Figure 5b,c). A previous study reported that α-diversity was
significantly lowered in proton pump inhibitor (PPI) users [51]. Sun Min Lee reported
that long-term PPI administration significantly reduced the intestinal flora α-diversity in
2-year-old rats, while no significant α-diversity reduction was seen in 74-week-old rats [52].
In other words, changes in α-diversity due to PPI administration occurred only in older
rats. In our study, MgO did not change the intestinal flora α-diversity (Figure 5b,c). In our
study, 8–9-week-old mice were used, and the results are consistent with the results of a
previous study.

Magnesium oxide is used as a laxative not only for chronic constipation but also for
constipation that occurs as a side effect due to cancer palliative treatment. Since many
patients with cancer or constipation are elderly, further study in aged mice to examine
the MgO effect on intestinal flora will be required. Examining the relationship between
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the MgO effect on the intestinal flora and mouse age will lead to age-appropriate clinical
treatment regimes.

4.4. Combined Inulin and MgO Effect on Intestinal Bacteria at the Genus Level

A previous study has reported that the administration of a PPI increases the Parabac-
teroides and Streptococcus abundance ratio and decreases the Ruminococcus abundance ratio
in human feces [51]. In another study, short-term PPI administration to patients with
gastroesophageal reflux disease increased the Streptococcus abundance ratio and decreased
the Ruminococcus abundance ratio in feces [53]. In experiment two, it was shown that the
Parabacteroides and Streptococcus abundance ratio increased, and the Ruminococcus abun-
dance ratio decreased in the MgO combination group compared with the inulin group
(Figure 6). These results were similar to the bacterial abundance ratio fluctuation during PPI
administration. Since MgO has an antiacid effect, the bacterial abundance ratio fluctuation
may be similar to the fluctuations during PPI administration.

On the other hand, the results were different from PPI administration regarding the
Lactobacillus abundance ratio in feces. In experiment two, the Lactobacillus abundance
ratio in the MgO combination group decreased compared with the inulin group (Figure 6).
However, the Lactobacillus abundance ratio in feces increased with PPI administration in
the previous studies [51,54]. In another paper, gastric acid secretion inhibitors, rabeprazole
and vonoprazan, significantly increased the Lactobacillus abundance ratio in the colon,
while neither 20 mg rabeprazole nor 20 mg vonoprazan increased Lactobacillus in the small
intestine [49]. These results indicate that the effect of gastric pH changes on the intestinal
flora depends on the regions along the gastrointestinal tract. Small intestine, which is close
to the stomach, may be more affected by the decrease in gastric pH than the colon.

In our study, fecal intestinal flora was examined and a decrease in the Lactobacillus
abundance ratio was confirmed. Our results are consistent with the results of a previous
study observed in the small intestine when rabeprazole or vonoprazan was adminis-
tered [49]. These results suggest that MgO may strongly or over a long time increase
the intestinal pH through its antacid action in the stomach, and affect the intestinal flora
more strongly than PPI administration. In experiments one to three, the cecal lactic acid
concentration increased by inulin decreased when inulin was combined with MgO. This
may be because MgO reduced the Lactobacillus abundance ratio, a lactic acid-producing
bacterium.

4.5. MgO Administration Timing Effects on Cecal pH and Cecal SCFAs

Circadian clock disruption may lead to liver diseases, such as fatty liver and cirrho-
sis, as well as mood disorders, obesity, diabetes, and cancer [30–32]. SCFA and L-lactic
acid administration at ZT5 advances the circadian clock phase in mice kidney, liver, and
submandibular glands [34]. In our study, inulin intake increased SCFA and lactic acid
concentrations in the cecum, but the combined use with MgO decreased them. This result
suggests that MgO may counteract the beneficial SCFA effects increased by inulin feeding.
On the other hand, a previous study reported no phase change by SCFA and L-lactic acid
administered at ZT0, ZT12, and ZT17 [34]. The SCFA effects on the circadian clock may
be time-dependent. In the future, it will be necessary to pursue the appropriate timing of
the combined dietary fiber and MgO administration, considering the SCFA effects on the
circadian clock.

Since the onset of efficacy of some drugs is closely related to the circadian rhythm,
it is very important to verify the appropriate administration timing for effective drug
treatment [35].

In experiment three of this study, two different time points for MgO administration,
ZT0, and ZT12, were used. We examined whether the combined inulin and MgO effect
on cecal SCFA concentrations was time-dependent. Acetic acid in the cecum was signifi-
cantly reduced when MgO was administered at ZT0, whereas no significant decrease was
observed when MgO was administered at ZT12 (Figure 7d,e). This result indicated that the
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MgO effect on cecal acetic acid concentration was more prominent at ZT0 than at ZT12. This
suggests that MgO administration at ZT12 affects cecal SCFA concentrations less than at
ZT0. Since ZT0 is the start time of the inactive phase and ZT12 is the start time of the active
phase, the administration at ZT12 is comparable to human administration when waking up.
When used as a laxative by adults, the MgO dosage and administration procedure in Japan
is to be orally given at 2 g/day in three times a day, before or after meals, or once before
bedtime. Considering the effects on intestinal SCFAs, MgO administration when waking
up for the day may be more appropriate. SCFAs are involved in systemic physiological
functions, such as immune homeostasis maintenance, metabolism, and circadian clock
synchronization [21–23,34,45–47]. Therefore, it is important to evaluate the administration
timing considering the effect on SCFAs.

In the current experiments, we used HFD as a deterioration of the intestinal environ-
ment. However, in future experiments, we should confirm these results under impaired
microbiota using constipation mouse model created by a drug such as loperamide.

5. Conclusions

In summary, this study showed that MgO increased cecal pH, as well as decreased
cecal SCFA and lactic acid levels during inulin feeding. MgO significantly changed the
intestinal flora composition. Furthermore, the MgO effect on the cecal acetic acid concen-
tration was less when administered at ZT12 compared with ZT0. This is the first study to
show that the combination of inulin and MgO affects cecal SCFAs, cecal lactic acid and
intestinal flora. In addition, we are the first to show the MgO appropriate administration
timing related to the effect on SCFAs in the cecum. It has been reported that intestinal flora
disorders are associated with various diseases. Therefore, drug administration effects on
the intestinal flora should be considered for systemic health management. In addition,
since SCFAs are involved in systemic physiological functions and circadian rhythm, the
drug administration timing should be considered for its effects on SCFAs.
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