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Risk gene identification has attracted much attention in the past two decades. Since most genes need to
be translated into proteins and cooperate with other proteins to form protein complexes to carry out cel-
lular functions, which significantly extends the functional diversity of individual proteins, revealing the
molecular mechanism of cancer from a comprehensive perspective needs to shift from identifying indi-
vidual risk genes toward identifying risk protein complexes. Here, we embed protein complexes into the
regularized learning framework and propose a protein complex-based, group Lasso-logistic model
(PCLassoLog) to discover risk protein complexes. Experiments on deep proteomic data of two cancer
types show that PCLassoLog yields superior predictive performance on independent datasets. More
importantly, PCLassoLog identifies risk protein complexes that not only contain individual risk proteins
but also incorporate close partners that synergize with them. Furthermore, selection probabilities are cal-
culated and two other protein complex-based models are proposed to complement PCLassoLog in iden-
tifying reliable risk protein complexes. Based on PCLassoLog, a pan-cancer analysis is performed to
identify risk protein complexes in 12 cancer types. Finally, PCLassoLog is used to discover risk protein
complexes associated with gene mutation. We implement all protein complex-based models as an R
package PCLassoReg, which may serve as an effective tool to discover risk protein complexes in various
contexts.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Identifying risk genes is the first step in revealing the molecular
mechanism of cancer, finding drug targets, and developing novel
therapeutic strategies. Since the advent of high-throughput omics
data, a plethora of computational approaches have been developed
to identify risk genes [1–6]. However, since most genes need to be
translated into proteins and cooperate with other proteins to form
protein complexes or functional modules to carry out cellular func-
tions, although risk genes provide potential targets for cancer
research, they are inherently insufficient in revealing the underly-
ing molecular mechanisms and guiding the development of thera-
peutic strategies from a comprehensive perspective. Protein
complexes are key molecular entities that integrate multiple gene
products to perform cellular functions [7]. They are basic represen-
tatives of functional modules. Data from single cell organisms pro-
vide evidence that>50 % or even 80 % of proteins work in protein
complexes (complexome) [7–9]. Protein complexes play critical
roles in an array of biological processes, including protein synthe-
sis, signaling and cellular degradation processes [7]. Given the vital
functions of these macromolecular machines, identifying risk pro-
tein complexes in tumor samples is fundamental to our under-
standing of cancer biology. Furthermore, the sophisticated
organization of individual proteins into macromolecular assem-
blies significantly extends the functional diversity of individual
proteins and allows cells to acquire novel functionalities that are
beyond the performance of individual proteins [10–12]. Thus,
revealing the molecular mechanism of cancer and developing
new therapeutic strategies from a comprehensive perspective need
to shift from identifying individual risk genes toward identifying
risk protein complexes.

The study of protein complex is becoming an important means
to reveal the molecular mechanism and guide drug development.
To explore the molecular details of how severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infects cells and develop
drugs and vaccines against COVID-19, Krogan and co-workers
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characterized SARS-CoV-2-host protein complexes formed by the
physical interactions between 26 SARS-CoV-2 proteins and human
proteins using affinity-purification mass spectrometry, and identi-
fied 66 druggable human proteins targeted by 69 compounds,
which may lead to a therapeutic regimen to treat COVID-19 [13].
For human cancer, the role of some protein complexes in cancer
has been revealed, such as the E-cadherin/catenin adhesion com-
plex in the development and progression of cancer [14], the
TWIST/Mi2/NuRD protein complex in cancer metastasis [15], the
oncogenic Tcf/beta-catenin protein complex [16] and the shelterin
complex [17]. Potential therapeutic strategies that target protein
complexes rather than individual proteins are being revealed. For
example, the CAV1-GLUT3 complex has been reported to be tar-
geted by Atorvastatin to suppress tumor growth in non-small cell
lung cancer [18]. However, studying key protein complexes in can-
cer at the system level lacks reliable targets. To date, few methods
have been proposed to identify risk protein complexes on a large
scale. In our previous study, we proposed a protein complex-
based prognostic model, PCLasso [19], which shows superior prog-
nostic performance than those based on individual genes. PCLasso
uses survival outcome as the dependent variable and embeds pro-
tein complexes into the group Lasso-Cox model to construct prog-
nostic models, which identify risk protein complexes associated
with survival outcomes. However, PCLasso is unable to deal with
the classification problem and identify the risk protein complexes
that distinguish tumors from non-tumors, which may play impor-
tant roles in the occurrence and development of cancer.

In this study, we embed protein complexes into classification
models under the regularized learning framework, and propose a
protein complex-based, group Lasso-logistic (PCLassoLog) model
toward accurate cancer classification and risk protein complex dis-
covery. PCLassoLog is an extension of PCLasso tuned for protein
complex-based classification problems. We apply PCLassoLog to
the classification of lung adenocarcinoma (LUAD) and hepatocellu-
lar cancer (HCC) patients and prove that PCLassoLog has superior
predictive performance than the Lasso-logistic model based on
individual genes and is able to identify cancer-related risk protein
complexes. In addition, we calculate selection probabilities and
implement two other protein complex-based group selection mod-
els to complement PCLassoLog in identifying reliable risk protein
complexes. Finally, PCLassoLog is used to discover risk protein
complexes associated with cancer development in 12 cancer types
and those associated with gene mutation in LUAD. These risk pro-
tein complexes may provide potential targets at the protein com-
plex level for cancer research and guide the development of new
therapeutic strategies.
2. Materials and methods

2.1. Datasets

We collected deep protein expression datasets (1424 tumors
and 1060 non-tumors) for 12 cancer types including LUAD
[20,21], HCC [22], clear cell renal cell carcinoma (ccRCC) [23], colon
adenocarcinoma (COAD) [24], endometrial carcinoma (EC) [25],
esophageal squamous cell carcinoma (ESCC) [26], glioblastoma
(GBM) [27], gastric cancer (GC) [28], head-and-neck squamous cell
carcinoma (HNSCC) [29], lung squamous cell carcinoma (LSCC)
[30], ovarian cancer (OV) [31], and pancreatic ductal adenocarci-
noma (PDAC) [32] from recently published proteomics studies
(Table 1). The two protein expression datasets for LUAD were
obtained from the studies of Gillette et al. [20] and Xu et al. [21],
and were named LUAD.Gillette.Prot and LUAD.Xu.Prot, respec-
tively. We also obtained mRNA expression datasets of the same
samples in these two studies and named them LUAD.Gillette.
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mRNA and LUAD.Xu.mRNA, respectively. In addition, we obtained
three independent mRNA expression datasets for LUAD from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/): GSE10072 [33], GSE19804 [34], and GSE19188
[35], denoted as LUAD-valid1, LUAD-valid2, and LUAD-valid3,
respectively. For HCC, we obtained five independent mRNA expres-
sion datasets (GSE54236 [36], GSE76427 [37], GSE64041 [38],
GSE47197, and GSE14520 [39]) from the GEO database for verifica-
tion, which were denoted as HCC-valid1, HCC-valid2, HCC-valid3,
HCC-valid4, and HCC-valid5, respectively. In total, the mRNA
expression data of 909 tumors and 794 non-tumors were obtained
(Table 1). Data processing and normalization were provided in
Supplementary Text.

2.2. Protein complexes

The protein complexes were obtained from the CORUM data-
base (Release 3.0) [7]. We chose to download the core set as it is
a reduced dataset that is essentially free of redundant entries.
The core set contains 3512 mammalian protein complexes, from
which 2417 human protein complexes composed of 3420 unique
proteins were selected for downstream analysis.

2.3. Lasso-logistic model

Assume that we have a protein expression matrix X = [x1, x2, . . .,
xn] 2 Rn�p and a vector of response variables Y = [y1, y2, . . ., yn]T 2 Rn,
where n is the number of samples and p is the number of proteins.
The i-th sample can be denoted as (xi, yi), where xi 2 Rp is its
expression value vector and yi 2 0;1f g is a binary response vari-
able. Without loss of generality, we assume that yi = 1 means that
the sample is a tumor sample, and yi = 0 means it is a non-tumor
sample. Linear logistic regression models the condition probability
P y ¼ 1 xjð Þ by

log
P y ¼ 1 xjð Þ

1� P y ¼ 1 xjð Þ
� �

¼ b0 þ xTb ð1Þ

where b0 is the intercept and b ¼ b1;b2; :::; bp

� �T 2 Rp is the param-
eter vector. Then we have

P y ¼ 1 xjð Þ ¼ eb0þxTb

1þ eb0þxTb
ð2Þ

For logistic regression model, the likelihood function is:

L b0; bð Þ ¼
Yn
i¼1

P yi ¼ 1 xijð Þ½ �yi 1� P yi ¼ 1 xijð Þ½ �1�yi ð3Þ

Substituting (2) into (3) and taking the logarithm, we obtain the
log-likelihood function:

LL b0;bð Þ ¼
Xn
i¼1

yi b0 þ xTi b
� �� log 1þ eb0þxT

i
b

� 	h i
ð4Þ

The regression coefficients b0; b can be estimated by maximiz-
ing the log-likelihood function (4). This is equivalent to solving
the following problem:

min
b0 ;b

�1
n

Xn
i¼1

yi b0 þ xTi b
� �� log 1þ eb0þxT

i
b

� 	h i( )
ð5Þ

In the high-dimensional setting (p � n), directly solving the
problem (5) is ill-posed. The Lasso-logistic model can effectively
solve this problem by including a regularization term:

min
b0 ;b

�1
n

Xn
i¼1

yi b0 þ xTi b
� �� log 1þ eb0þxT

i
b

� 	h i
þ k

Xp

j¼1

bj
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ð6Þ
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Table 1
Details about the datasets used for the 12 cancer types.

Cancer types Source / GEO
accession NO.

Quantitative method /
Platform

Datasets Expression profiles NO. of tumors NO. of
non-tumors

NO. of proteins/ mRNAs

LUAD Gillette et al. [20] TMT 10-plex LUAD.Gillette.Prot Protein 110 101 7136
Xu et al. [21] LFQ LUAD.Xu.Prot Protein 103 103 6594
Gillette et al. [20] HiSeq4000 LUAD.Gillette.mRNA mRNA 110 101 17,679
GSE140343 [21] GPL20795 LUAD.Xu.mRNA mRNA 51 49 15,340
GSE10072 GPL96 LUAD-valid1 mRNA 58 49 12,754
GSE19804 GPL570 LUAD-valid2 mRNA 60 60 21,298
GSE19188 GPL570 LUAD-valid3 mRNA 91 65 21,298

HCC Gao et al. [22] TMT 11-plex HCC Protein 159 159 6478
GSE54236 GPL6480 HCC-valid1 mRNA 78 77 19,595
GSE76427 GPL10558 HCC-valid2 mRNA 115 52 34,693
GSE64041 GPL6244 HCC-valid3 mRNA 60 60 23,307
GSE47197 GPL16699 HCC-valid4 mRNA 61 61 16,390
GSE14520 GPL3921 HCC-valid5 mRNA 225 220 12,742

ccRCC Clark et al. [23] TMT 10-plex ccRCC Protein 110 84 7150
COAD Vasaikar et al. [24] TMT 10-plex COAD Protein 100 97 4376
EC Dou et al. [25] TMT 10-plex EC Protein 95 49 7908
ESCC Liu et al. [26] TMT 11-plex ESCC Protein 124 124 6461
GBM Wang et al. [27] TMT 11-plex GBM Protein 99 10 8828
GC Ge et al. [28] LFQ GC Protein 84 84 5439
HNSCC Huang et al. [29] TMT 11-plex HNSCC Protein 109 63 7515
LSCC Satpathy et al. [30] TMT 11-plex LSCC Protein 108 99 8218
OV Hu et al. [31] iTRAQ OV Protein 83 20 7599
PDAC Cao et al. [32] TMT 11-plex PDAC Protein 140 67 5755

TMT: tandem mass tags-based isobaric labeling; LFQ: label-free quantification; iTRAQ: isobaric tag for relative and absolute quantitation; LUAD: lung adenocarcinoma; HCC:
hepatocellular carcinoma; ccRCC: clear cell renal cell carcinoma; COAD: colon adenocarcinoma; EC: endometrial carcinoma; ESCC: esophageal squamous cell carcinoma;
GBM: glioblastoma; GC: gastric cancer; HNSCC: head-and-neck squamous cell carcinoma; LSCC: lung squamous cell carcinoma; OV: ovarian cancer; PDAC: pancreatic ductal
adenocarcinoma.
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where k > 0 is a control parameter and �j j is the l1 norm. It gener-

ates a sparse solution b̂0;b
^

� �
with only a few nonzero coefficients

bks, corresponding to the proteins selected. Then the probability
that a new sample is a tumor sample can be estimated by:

P y ¼ 1 xjð Þ ¼ eb̂0þxT b
^

1þ eb̂0þxT b
^

ð7Þ

where x is the protein expression vector of the new sample. Given a
threshold th, the new sample is predicted to be a tumor sample if
P y ¼ 1 xjð Þ P th and a non-tumor sample otherwise. In this study,
th = 0.5 was used. As important predictors, proteins with nonzero
coefficients can be considered as potential risk proteins for further
investigation.

2.4. Protein complex-based, group Lasso-logistic model

Note that the Lasso-logistic model is similar to the Lasso-Cox
model [19] except for the log likelihood function (the first term
in equation (6)). We use the same strategy as PCLasso to integrate
protein complexes into the regularized learning framework (6) and
propose a protein complex-based, group Lasso-logistic model
(PCLassoLog) to predict the class of samples and identify risk pro-
tein complexes. The group Lasso-logistic model for nonoverlapping
groups can be formulated as follows [40]:

min
b0 ;b

�1
n

Xn

i¼1

yi b0 þ xTi b
� �� log 1þ eb0þxT

i
b

� 	h i
þ k

XK
k¼1

ffiffiffiffiffiffiffiffi
Gkj j

p
k bGk

k
( )

ð8Þ

where k � k is the Euclidean norm or l2 norm, Gkj j is the size of the k-
th group, and bGk

2 R Gkj j is a coefficient vector of the k-th group
(Fig. S1A). PCLassoLog deals with the overlap problem of protein
complexes by using a latent group Lasso method [19,41,42]:
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min
b0 ;b

� 1
n

Pn
i¼1

yi b0 þ xTi b
� �� log 1þ eb0þxT

i
b

� 	h i
þ k

PK
k¼1

ffiffiffiffiffiffiffiffi
Gkj jp k ck k

� 

s:t: b ¼ PK
k¼1

ck

ð9Þ

where equation b ¼ PK
k¼1ck means that b is decomposed into the

sum of K latent vectorsck ¼ ck1; ck2; :::; ckp
� 	T

2 Rp; k ¼ 1;2; :::;K,

whose supports correspond to the proteins contained in each pro-
tein complex, i.e., supp ckð Þ � Gk (Fig. S1B). PCLassoLog is solved in
the same way as PCLasso [19] (see Supplementary Text).

2.5. Other group selection methods

In addition to the Lasso penalty, we investigated other two
penalties, namely smoothly clipped absolute deviation penalty
(SCAD) [43] and minimax concave penalty (MCP) [44]. The two
penalties add an additional parameter a for relaxing the penalties,
and are defined for k > 0 as follows:

pSCAD
k;a zj jð Þ ¼

k zj j; if zj j 6 k
� zj j2þ2ak zj j�k2

2 a�1ð Þ if k < zj j 6 ak

aþ1ð Þk2
2 if zj j > ak

8>><
>>: ð10Þ
pMCP
k;a zj jð Þ ¼ k zj j � zj j2

2a if zj j 6 ak
ak2
2 if zj j > ak

(
ð11Þ

where a > 2 for SCAD and a > 1 for MCP.
Among the three penalties, the Lasso is the largest, followed by

SCAD, and MCP is the smallest (Figure S2). The protein complex-
based, group SCAD-logistic model (PCSCAD) and group MCP-
logistic model (PCMCP) are defined by replacing the Lasso penalty
in PCLassoLog with SCAD andMCP penalties, respectively (see Sup-
plementary Text).
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2.6. Model evaluation and selection probability

The area under the ROC curve (AUC) and classification accuracy
were used to evaluate classification performance. To obtain an
unbiased evaluation, we adopted a resampling strategy. Let Im be
the m-th random subsample of 1;2; :::;nf g of size 2n=3b c without
replacement, where xb c is the largest integer not greater than
x,m ¼ 1;2; :::;M. Each Im was used as a training set to train the
model. Then the AUCs and classification accuracies of each model
on the corresponding test set 1;2; :::; nf gfIm and independent vali-
dation datasets were estimated. All M AUCs and accuracies were
used to evaluate the overall predictive performance of the model.
For each training set Im, cross-validation was used to determine
the optimal k value, denoted as km. For the PCSCAD and PCMCP
model, a series of a-values of 4, 6, 8, . . ., 500 were investigated.

To identify reliable risk protein complexes, we define the selec-
tion probability (SP) of the k-th protein complex according to the
stability selection theory [45–47] as follow:
SP kð Þ ¼ 1
M

# m : k 2 Ŝ
km

Imð Þ
n o

where Ŝ
km

Imð Þ � 1;2; :::;Kf g denotes the protein complexes
selected by PCLassoLog when applied to subsample Im. Selection
probabilities give a confidence measure for risk protein complexes
(see Supplementary Text).
3. Results

3.1. Overview of the PCLassoLog model

The PCLassoLog model is a classification model that selects
important predictors at the protein complex level to achieve accu-
rate classification and identify risk protein complexes. The PCLas-
soLog model has three inputs: a protein expression matrix, a
vector of binary response variables, and a number of known pro-
tein complexes (Fig. 1). Considering that proteins usually function
by forming protein complexes, PCLassoLog regards proteins
belonging to the same protein complex as a group and constructs
a group Lasso penalty (l1/l2 penalty) based on the sum (i.e. l1 norm)
of the l2 norms of the regression coefficients of the group members
to perform feature selection at the group level [41]. With the group
Lasso penalty, PCLassoLog trains the logistic regression model and
obtains a sparse solution at the protein complex level, that is, the
proteins belonging to a protein complex are either wholly included
or wholly excluded from the model. PCLassoLog outputs a predic-
tion model and a small set of protein complexes included in the
model, which are referred to as risk protein complexes (Fig. 1).
For further details, see Materials and Methods.
Fig. 1. Workflow of the PCLassoLog model. The PCLassoLog model takes a protein expres
as input. It estimates the correlation between protein expression and the response variab
prediction model for the classification of new patients and risk protein complexes of th
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3.2. PCLassoLog yields superior predictive performance based on
protein complexes

To evaluate the classification performance of PCLassoLog and its
ability to identify risk protein complexes, we constructed the
PCLassoLog model based on three protein expression datasets:
LUAD.Gillette.Prot, LUAD.Xu.Prot, and HCC (Table 1). For the conve-
nience of description, we will refer to the experiments based on the
three datasets as the ‘‘LUAD.Gillette.Prot”, ‘‘LUAD.Xu.Prot”, and
‘‘HCC” cases, respectively. For each case, we used a training set to
construct the PCLassoLog model and used a test set and multiple
independent validation sets to evaluate classification accuracy
and robustness. The samples in the test set are similar to those
in the training set, while the samples of the validation sets are
completely independent of the training set, and different platforms
may be used, which could better verify the robustness of PCLasso-
Log (Table 1). The AUCs and classification accuracies were calcu-
lated to evaluate classification performance. We also performed
the individual protein-based Lasso-logistic model following the
same procedure and compared the classification performance of
the two models.
3.2.1. LUAD.Gillette.Prot
Two independent protein expression datasets for LUAD were

collected. We first trained the PCLassoLog model using the LUAD.
Gillette.Prot dataset. The LUAD.Gillette.Prot dataset was randomly
split into a training set (LUAD.Gillette.Prot–train, n = 140) and a
test set (LUAD.Gillette.Prot–test, n = 71), keeping the ratio of the
number of tumors to non-tumors in the test set the same as that
in the training set. The PCLassoLog model trained on the LUAD.Gill
ette.Prot–train dataset (see Supplementary Text) contained 17
protein complexes composed of 34 proteins (Fig. 2A-C; Table S1).
Many proteins belonging to these 17 protein complexes have been
reported to play critical role in tumorigenicity or promote the pro-
liferation, metastasis, and invasion of LUAD, such as ILK [48],
PARVA [49], AQP4 [50], and PRKCI [51]. The Lasso-logistic model
selected 25 individual proteins (Fig. S3A; Table S2). Some proteins
identified by the Lasso-logistic model were shared by PCLassoLog,
but without the information at the protein complex level. Both
models achieved perfect classification on the LUAD.Gillette.Prot-
test dataset, and were almost perfect on the independent protein
expression dataset LUAD.Xu.Prot, with the AUC of PCLassoLog
slightly larger (Fig. 2D).

Next, we verified the classification performance of PCLassoLog
on more independent datasets. Due to the lack of protein expres-
sion data at present, we tried to use mRNA expression data as a
proxy. We first investigated the mRNA expression data in the
LUAD.Gillette.mRNA dataset, which were measured on the same
samples as the LUAD.Gillette.Prot dataset. Correlation analysis
based on the common 1037 protein complexes found that 99.5 %
sion matrix, a binary response variable vector, and a collection of protein complexes
le, and performs feature selection at the protein complex level. PCLassoLog outputs a
e disease.



Fig. 2. Classification of LUAD patients based on models constructed on the LUAD.Gillette.Prot dataset. (A) Plot of cross-validation errors. Each point represents the cross-
validation error of a k value, with error bars to give a confidence interval for the cross-validation errors. The vertical bar indicates the k value corresponding to the final model
we selected. The top of the plot gives the size of each model at the group (protein complex) level and the individual protein level. (B) Norms of the coefficient vectors of the
protein complexes. The complex IDs of the six protein complexes with the largest norm are shown on the right. (C) Coefficient paths of individual proteins. The proteins
corresponding to the protein complexes in (B) are shown on the right. Proteins belonging to the same protein complex were selected into the model at the same time. (D-F)
ROC curves of the PCLassoLog and Lasso-logistic models on two protein expression datasets (D), two matched mRNA expression datasets (E), and three independent mRNA
expression datasets (F). (G) Classification accuracies of the PCLassoLog and Lasso-logistic models on the seven datasets. 1: LUAD.Gillette.Prot-test; 2: LUAD.Xu.Prot; 3: LUAD.
Gillette.mRNA; 4: LUAD.Xu.mRNA; 5: LUAD-valid1; 6: LUAD-valid2; 7: LUAD-valid3.
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sample-wise protein-mRNA pairs and 83.3 % gene-wise protein-
mRNA pairs show significant positive Spearman correlations (BH
adjusted p value < 0.05) (Fig. S4A). Among the 34 proteins con-
tained in PCLassoLog, 31 (91.2 %) proteins have significant positive
correlations (Table S1), such as ILK, PARVA, FHL2, and FHL5 (Fig. S4-
B-4C), suggesting that mRNA expression data may be a feasible
proxy for protein expression data. Indeed, both PCLassoLog and
Lasso-logistic achieved almost perfect classification on the LUAD.
Gillette.mRNA dataset (Fig. 2E). For other four mRNA datasets, the
AUCs obtained by PCLassoLog are larger than those of the Lasso-
logistic model, as well as classification accuracies (Fig. 2E-G).

3.2.2. LUAD.Xu.Prot
We next constructed a PCLassoLog model with 18 protein com-

plexes / 36 proteins (Fig. S5A-C; Table S3) and a Lasso-logistic
model with 27 proteins (Fig. S3B; Table S4) based on the LUAD.
Xu.Prot dataset following the same procedure as above (see Supple-
mentary Text). PCLassoLog and Lasso-logistic yielded comparable
AUCs on the LUAD.Xu.Prot–test dataset and the independent pro-
tein expression dataset LUAD.Gillette.Prot (Fig. S5D). Considering
the significant positive correlation of protein-mRNA pairs between
LUAD.Xu.Prot and LUAD.Xu.mRNA datasets (Fig. S4D-F; Table S3),
we further evaluated the performance of PCLassoLog on the mRNA
expression datasets. PCLassoLog obtained larger AUCs than those of
the Lasso-logistic model on all the two matched mRNA expression
datasets and three independent datasets (Fig. S5E-F). The classifica-
tion accuracies showed the same trend (Fig. S5G).

3.2.3. HCC
We further constructed a PCLassoLog model with 18 protein

complexes / 35 proteins (Figure S6A-C; Table S5) and a Lasso-
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logistic model with 24 proteins (Fig. S3C; Table S6) based on the
HCC dataset (see Supplementary Text). Both PCLassoLog and
Lasso-logistic models achieved perfect classification on the HCC–
test dataset (Figure S6D). The AUCs of PCLassoLog on the five inde-
pendent datasets were all larger than those of the Lasso-logistic
model (Figure S6D), as well as the classification accuracies (Fig-
ure S6E), which further confirms the superior predictive perfor-
mance of PCLassoLog.
3.3. PCLassoLog produces discriminative and robust features at the
level of protein complexes

Next, we looked into the PCLassoLog and Lasso-logistic models,
and tried to explore the reasons why PCLassoLog could outperform
the Lasso-logistic model by comparing the features selected by the
two models. For the two LUAD protein expression datasets, the two
models share seven (Table S1) and eight (Table S3) proteins,
respectively. The difference is that Lasso-logistic only selects indi-
vidual proteins, while PCLassoLog selects all proteins that are pre-
sent in the protein complex containing it. We focused on these
shared proteins for comparison. For the ‘‘LUAD.Gillette.Prot” case,
the seven shared proteins belong to six protein complexes. To com-
pare the discriminative ability and robustness of features, we cal-
culated the t-statistics of the six protein complexes (see
Supplementary Text for the definition of the t-statistic of the pro-
tein complex) and their member proteins in all the eight datasets
(Fig. 3A). The larger absolute value of t-statistic reflects stronger
discriminative ability. Proteins that were consistently up-
regulated (e.g., FHL2; unpaired two-sided t-test, t-statistic > 0,
p < 0.05; points colored in red) or down-regulated (e.g., FHL5 and
TLN1; unpaired two-sided t-test, t-statistic < 0, p < 0.05; points col-



Fig. 3. Comparison of the protein complexes selected by PCLassoLog and the proteins selected by Lasso-logistic. (A) The ‘‘LUAD.Gillette.Prot” case. (B) The ‘‘LUAD.Xu.Prot”
case. The proteins shown in red were selected by both models. The x-axis represents t-statistics. P values were calculated by unpaired two-sided Student’s t-test. Red points
indicate that the expression of these proteins is significantly up-regulated in tumor samples, while cyan points indicate significant down-regulation (BH adjusted p
value < 0.05). Grey means no significant difference. For each protein complex, ‘‘Complex” represents a pseudo-protein constructed by a linear combination of proteins
contained in this protein complex, where the coefficients of the linear combination are obtained from the PCLassoLog model. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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ored in cyan) across all datasets help the prediction models achieve
robust predictive performance on independent datasets. In con-
trast, proteins with inconsistent expression levels across datasets
(e.g., VIM) may reduce the robustness of prediction models, espe-
cially the Lasso-logistic model based on individual proteins.

The features at the protein complex level tend to be more dis-
criminative. For example, for the ‘‘LUAD.Gillette.Prot” case, the t-
statistic of the FHL2-ACT complex increased by 42.4 %, 81.3 %,
41.2 %, 78.3 %, 38.8 %, 59.0 %, 58.9 %, and 104.6 % in the eight data-
sets compared with the t-statistic of FHL2 (Fig. 3A). For the ‘‘LUAD.
Xu.Prot” case, the t-statistic of the Ku antigen-NARG1 complex
increased by 11.2 %, 21.0 %, 44.7 %, 34.8 %, 37.3 %, 46.6 %, 20.4 %,
and 21.0 % in the eight datasets compared with the t-statistic of
XRCC6 (Fig. 3B). Other examples include SMN complex vs SNRPA,
ITGA2b-ITGB3-TLN1 complex vs TLN1 for the ‘‘LUAD.Gillette.Prot”
case (Fig. 3A), and PLOD2-FKBP10 complex vs PLOD2 for the
‘‘LUAD.Xu.Prot” case (Fig. 3B). Furthermore, the features at the pro-
tein complex level tend to be more robust. For example, the SMN
complex was consistently up-regulated across all eight datasets,
but SNRPA did not show a significant up-regulation in the LUAD.
Xu.mRNA dataset (Fig. 3A). These two trends may lead to the supe-
riority of the PCLassoLog model based on protein complexes over
the Lasso-logistic model based on individual proteins.
3.4. PCLassoLog produces better overall predictive performance

To show that the superior predictive performance of PCLassoLog
does not depend on the specific division of the dataset, we per-
formed 100 random divisions on the LUAD.Gillette.Prot, LUAD.Xu.
Prot, and HCC datasets, respectively. For each division, we used
the same strategy as the above experiments to construct classifica-
tion models and evaluate predictive performance. We trained 100
models for each of these three datasets (Figure S7). Then the
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resulting 100 AUCs and 100 classification accuracies obtained on
each dataset were used to evaluate the overall predictive
performance.

For the ‘‘LUAD.Gillette.Prot” case, except for the LUAD.Gillette.
Prot-test dataset, the AUCs and classification accuracies obtained
by PCLassoLog on the other six datasets are significantly higher
than those of the Lasso-logistic model (Fig. 4A). For the ‘‘LUAD.
Xu.Prot” case, the predictive performance of PCLassoLog on the
two protein expression datasets and two matched mRNA expres-
sion datasets is comparable to that of the Lasso-logistic model,
while the AUCs and classification accuracies obtained on the three
independent datasets are again significantly higher than those of
the Lasso-logistic model (Fig. 4B). For the ‘‘HCC” case, except for
the HCC-test dataset, the AUCs and classification accuracies of
PCLassoLog on the five independent datasets are significantly
higher than those of the Lasso-logistic model (Fig. 4C), further con-
firming the better prediction performance of PCLassoLog.

Next, we investigated the robustness of PCLassoLog in identify-
ing risk protein complexes. From the 100 random divisions, PCLas-
soLog identified 69 and 98 risk protein complexes in the two
datasets, respectively (Table S7 and S8). Of these, 29 (21 %) protein
complexes were identified in both datasets (Fig. 4D). At the indi-
vidual protein level, 53 (23 %) proteins were identified in both
datasets. The overlap is almost twice that of the Lasso-Logistic
model, where only 33 (12 %) proteins are shared between the
two datasets (Fig. 4D and Table S9). This indicates that PCLassoLog
has stronger robustness in identifying risk protein complexes than
the traditional Lasso-logistic model in identifying risk proteins.
3.5. Comparison with other protein complex-based methods

We next compared PCLassoLog with PCSCAD and PCMCP, which
were constructed following the same procedure as described above



Fig. 4. Comparison of overall prediction performance between PCLassoLog and Lasso-logistic. (A-C) The prediction performance of PCLassoLog and Lasso-logistic models in
the ‘‘LUAD.Gillette.Prot” case (A), the ‘‘LUAD.Xu.Prot” case (B), and the ‘‘HCC” case (C). Left: AUC; Right: classification accuracy. For each case, 100 models are constructed
based on the training set. Each box is plotted based on 100 AUCs/accuracies, which are calculated using the prediction results of the 100 models. The middle bar represents
the median, and the box represents the interquartile range; bars extend to 1.5 � the interquartile range. P values are calculated by the two-sided Wilcoxon rank-sum test. (D)
Comparison of risk protein complexes and proteins identified in the LUAD.Gillette.Prot and LUAD.Xu.Prot datasets.
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for evaluating the overall predictive performance of PCLassoLog
(see Supplementary Text). The number of protein complexes
selected by the PCMCP model is less than that of PCSCAD, and
PCSCAD is less than that of PCLassoLog (Figure S8A, S9A, S10A),
which is consistent with the successive reduction of penalties for
large coefficients of these three models (Figure S2). PCLassoLog
penalizes large coefficients the most, allowing more protein com-
plexes to enter the model to minimize training errors. Indeed,
when a is small, the average cross-validation errors of PCSCAD
and PCMCP are greater than those of PCLassoLog in all the three
datasets (Figure S11). As a?1, the number of protein complexes
included in the PCSCAD and PCMCP models and the cross-
validation errors become close to those of PCLassoLog (Figure S8A,
S9A, S10A, S11), which is consistent with their penalty function
approaching that of PCLassoLog as a?1. At the individual protein
level, PCSCAD and PCMCP contain fewer proteins than Lasso-
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logistic when a is small, and more than Lasso-logistic model as
a?1 (Figure S8B, S9B, S10B).

The PCLassoLog, PCSCAD, PCMCP, and Lasso-logistic model
obtained comparable performance on the LUAD.Gillette.Prot-test
(Figure S8C and S12A), LUAD.Xu.Prot-test (Figure S9C and
S13A), and HCC-test (Figure S10C and S14A) datasets, indicating
that all four models could achieve good prediction performance
on homogeneous datasets. On the two independent protein
expression datasets, LUAD.Xu.Prot (Figure S8D, S12B) and LUAD.
Gillette.Prot (Figure S9D, S13B), PCLassoLog is superior to PCSCAD
and PCMCP. This advantage is further observed on almost all mRNA
expression datasets, including the five datasets in the ‘‘LUAD.Gill
ette.Prot” case (Figure S8E-I, S12C-G), the five datasets in the
‘‘LUAD.Xu.Prot” case (Figure S9E-I, S13C-G), and the five datasets
in the ‘‘HCC” case (Figure S10D-H, S14B-F). When a is large, the
prediction performance of PCSCAD and PCMCP is close to that of



W. Wang, H. Yuan, J. Han et al. Computational and Structural Biotechnology Journal 21 (2023) 365–377
PCLassoLog, which is also consistent with the penalty functions of
PCSCAD and PCMCP approaching that of PCLassoLog as a?1. Com-
pared with Lasso-logistic model, the prediction performance of
PCSCAD and PCMCP is poor when a is small. However, when a is
large, the prediction performance of the two models is better than
that of Lasso-logistic model (Figure S8G-I, S9D-I, S10D, S10G-H,
S12E-G, S13B-G, S14B, and S14E-F).

The penalty of PCSCAD and PCMCP for large coefficients
increases with the increase of a, which is exemplified by the
ITGA2b-ITGB3-TLN1 complex (Figure S8J). The SP of ITGA2B-
ITGB3-TLN1 complex gradually decreased with the increase of a,
and finally stabilized at the SP of the ITGA2b-ITGB3-TLN1 complex
in the PCLassoLog model (SP = 0.54) (Figure S8J). PCSCAD had the
same trend as PCMCP, except that the SP of ITGA2B-ITGB3-TLN1
complex decreased faster, which could be attributed to the penalty
of PCSCAD being larger than that of PCMCP (Figure S2). This indi-
cates that the penalty strategies of the models are effective.

To compare the robustness of the three protein complex-based
models in identifying risk protein complexes, we calculated the
Jaccard coefficients of the sets of risk protein complexes identified
by the three models on the two LUAD datasets to compare the
overlap between them. The Jaccard coefficients of both PCSCAD
and PCMCP are smaller than that of PCLassoLog (0.210) (Fig-
ure S8K). The Jaccard coefficients of PCMCP are not stable, and
are slightly smaller than those of PCSCAD for most a values (Fig-
ure S8K). At the individual protein level, the Jaccard coefficients
of all three protein complex-based models are greater than that
of the Lasso-logistic model (0.123) (Figure S8L), even though the
number of risk proteins identified by PCSCAD and PCMCP is less
than that of the Lasso-logistic model (Figure S8B). This further
confirms the robustness of the protein complex-based models in
identifying risk protein complexes.

In addition, to estimate the risk of false positive results, we per-
mutated the class labels of the LUAD.Gillette.Prot-train, LUAD.Xu.
Prot-train, and HCC-trian datasets, and reconstructed the three
protein complex-based models. Results show that the AUCs and
accuracies obtained by the three models on all datasets are around
0.5, which is not better than random guessing (Figure S15), indi-
cating that the prediction results of the three models are reliable.

3.6. PCLassoLog identifies risk protein complexes

We next examined the top 10 risk protein complexes with the
highest SP identified by PCLassoLog in the LUAD and HCC datasets
(Table 2-3, Table S10A-B). The FHL2-ACT complex was identified
as a risk protein complex with a SP of 1 in both the LUAD.Gil-
lette.Prot and LUAD.Xu.Prot datasets (Table S7-S8). Both FHL2
and FHL5 in the FHL2-ACT complex belong to the FHL protein fam-
ily of transcriptional cofactors. Another protein complex related to
the FHL protein family, FHL2-FHL3 complex, also obtained a SP of
0.63 (Table 2). FHL proteins could interact with important regula-
tors of cancer development and progression, such as Smad2,
Smad3, and Smad4, and suppress tumor cell growth through a
TGF-b–like signaling pathway [52]. Numerous studies have
reported that FHL2 might act as a cell type specific oncoprotein
or tumor suppressor in human cancers [53], such as gastrointesti-
nal cancer [54], glioblastoma [55], and liver cancer [52]. FHL3 is
down-regulated in liver and breast cancer patients and could sup-
press cancer cell growth in these two cancer types [52,56]. Strik-
ingly, FHL2 and FHL3 are significantly up-regulated in all seven
LUAD datasets (Figure S16A-B), while FHL5 is significantly
down-regulated (Figure S16C), suggesting that FHL proteins and
their synergy may play important roles in the development of
LUAD.

Among these 10 risk protein complexes, most of the detected
proteins have been reported to play important roles in various can-
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cer types (Table 2). Some of these proteins are related to lung can-
cer. For example, in the MLC1-Na, K-ATPase-Kir4.1-AQP4-TRPV4-
syntrophin complex, both ATP1B1 and AQP4 have been suggested
as promising drug targets to combat non-small cell lung cancer
[50,57,58]. Inhibiting ATP1B1 expression by siRNA or specific car-
denolides treatment has been shown to result in markedly
impaired proliferation and migration of lung cancer cells [57].
Inhibiting AQP4 expression could significantly reduce lung cancer
cell migration [50]. Some proteins have been shown to be effective
in inhibiting tumor proliferation, metastasis or promoting cell
apoptosis by being targeted by drugs or miRNAs, such as GAPDH
[59] and PDIA3 [60] in the HMGB1-HMGB2-HSC70-ERP60-
GAPDH complex, and ITGB1 [61] and JAM2 [62] in the ITGA4-
ITGB1-JAM2 complex. For HCC, the top 10 risk protein complexes
also contain a large number of proteins related to the development
of various cancer types (Table 3). Some of these proteins have been
shown to be targets of miRNAs or drugs and exert inhibitory effects
in HCC, such as MAT1A [63,64], MAT2B [65–67], and AKAP1 [68].
This indicates that the risk proteins identified by PCLassoLog have
high credibility.

Among these risk proteins, a few proteins have been reported to
form complexes with other proteins to play important functions in
cancer. For example, the physical interaction between risk protein
CAV1 and GLUT3 has been reported to be targeted by Atorvastatin
to suppress tumor growth in non-small cell lung cancer [18].
MAT2B has been reported to cross talk with HuR and SIRT1 to
affect the pro-apoptotic and growth-suppressive effects of liver
cancer [67]. However, the role of interplay among the proteins con-
tained in these risk protein complexes in cancer development
remains largely unexplored. The risk protein complexes identified
by PCLassoLog provide valuable targets for researchers to better
study the synergistic effects of proteins at the protein complex
level.

3.7. Classification and risk protein complexes identification in pan-
cancer

In view of the superior classification performance of PCLassoLog
on LUAD and HCC, as well as the ability to identify risk protein
complexes, we applied PCLassoLog to the classification and identi-
fication of risk protein complexes for 10 additional cancer types
whose protein expression has been recently quantified [23,25–
28] (Table 1). PCLassoLog achieved median AUC of 1, 1, 1, 0.987,
1, 0.989, 1, 1, 1, and 0.982 on the ccRCC, COAD, EC, ESCC, GBM,
GC, HNSCC, LSCC, OV, and PDAC datasets, respectively (Fig. 5A
and S17A-C). The risk protein complexes and their selection prob-
abilities of the 10 cancer types are provided in Table S10.

Twenty-one protein complexes were identified as risk protein
complexes in at least five cancer types (Fig. 5B). Some of these pro-
tein complexes contain well-known cancer-related proteins, such
as HSP90-related protein complexes and cell cycle kinase com-
plexes (Fig. 5C). Six protein complexes are consistently up-
regulated (highlighted in red) in at least five cancer types, such
as PLOD2-FKBP10 complex, SRSF9-SRSF6 complex, and FHL2-
FHL3 complex (Fig. 5B-C). Only one protein complex, the
Angiogenin-PRI complex, is consistently down-regulated (high-
lighted in green) in at least 5 caner types (Fig. 5B-C). These protein
complexes that are consistently dysregulated in multiple cancer
types may be valuable targets for revealing the molecular mecha-
nism of cancers.

In contrast, some protein complexes were identified only in one
cancer type. We define a protein complex that has a SP>0.5 in one
cancer type but is not identified in other cancer types as a risk pro-
tein complex specific to that cancer type. Eight protein complexes
are specific to LUAD, such as CART complex and DNA repair com-
plex (Fig. 5D). The Methionine adenosyltransferase alpha1 beta-



Table 2
Risk protein complexes identified by PCLassoLog in the LUAD datasets.

NO. ID Complex Name Gene Symbol SPa Reference (PMID)c

1 3188 FHL2-ACT complex FHL2b; FHL5 1 FHL2: 19139564; 17352216; 17383428; 18615633; 19,139,564
2 5385 GAIT complex SYNCRIP; GAPDH; EPRS;

RPL13A
1 GAPDH: 25859407; 33029490; 26541605; EPRS: 27612429; 21941282;

33,740,160
3 7265 MLC1-Na, K-ATPase-Kir4.1-

AQP4-TRPV4-syntrophin
complex

ATP1B1; AQP4; KCNJ10;
MLC1; TRPV4; SNTG1

1 ATP1B1: 17471453; 20460749; AQP4: 21548930; 22372348; 27516192;
22105864; 22808259; 19,112,001

4 280 HMGB1-HMGB2-HSC70-
ERP60-GAPDH complex

GAPDH; HMGB1; HSPA8;
HMGB2; PDIA3

0.97 GAPDH: 25859407; 33029490; 26541605; PDIA3: 29228584; 20035634;
26125904; 28101228; 26,004,124

5 2422 ITGA4-ITGB1-JAM2 complex ITGB1; ITGA4; JAM2 0.95 ITGB1: 23441154; 28656629; 26509963; 26766915; 26903137; JAM2:
29575013; 27588115; 26,782,073

6 2378 ITGA2b-ITGB3-TLN1 complex ITGB3; ITGA2B; TLN1 0.94 ITGA2B: 31523198; 26198048; TLN1: 31068760; 23,722,670
7 1737 SF3b complex SF3B1; SF3B2; SF3B3; SF3B4;

PHF5A; DDX42; SF3B5;
SF3B6

0.94 SF3B2: 31,431,456

8 1085 DNA repair complex NEIL2-
PNK-Pol (beta) -LigIII (alpha)-
XRCC1

PDXK; POLB; XRCC1; LIG3;
NEIL2

0.9 PDXK: 22854025; 26387143; 32696745; POLB: 19330779; 25561897;
12,126,515

9 5465 IKB (epsilon)-RELA-cREL
complex

NFKBIE; RELA; REL 0.89 NFKBIE: 27670424; REL: 10602468; 939994; 12,430,173

10 5862 CAV1-VDAC1-ESR1 complex ESR1; VDAC1; CAV1 0.87 VDAC1: 23233904; 31364685; 22204343; 24781191; 29682501; 21315184;
23663973; 21297950; 27304056; CAV1: 15205342; 31534543; 15692148;
29080835; 30,604,627

Shown are the top 10 risk protein complexes with the highest SP. The full list of risk protein complexes is provided in Table S10A. aSelection probability; bProteins shown in
bold are detected in the LUAD datasets; cReferences related to the detected proteins in LUAD or other cancer types.

Table 3
Risk protein complexes identified by PCLassoLog in the HCC dataset.

NO. ID Complex Name Gene Symbol SPa Referencec

1 2440 ITGA9-ITGB1-ADAM9 complex ITGB1b; ADAM9;
ITGA9

1 ITGB1: 23441154; 28656629; 26509963; 26766915; 26903137; ITGA9:
31008533; 31489579; 26,596,831

2 7197 Methionine adenosyltransferase alpha1
beta-v1

MAT1A; MAT2B 1 MAT1A: 23665184; 32080887; 22318685; 31496615; 23241961;
24212770; MAT2B: 31493275; 31073374; 23814050; 18,698,677

3 7131 COMMD1-CCDC22-CCDC93-C16orf62
complex

CCDC22; CCDC93;
C16orf62; COMMD1

0.95 —

4 142 CD147-gamma-secretase complex BSG; PSEN1; NCSTN;
APH1A; PSENEN

0.85 BSG: 31497203; 24264599; APH1A: 30,944,650

5 6998 ST3GAL6-EGFR complex EGFR; ST3GAL6 0.81 EGFR: 24212818; 24318021; 25173978; ST3GAL6: 32929335; 25,061,176
6 3525 Tetrameric COG subcomplex COG7; COG8; COG5;

COG6
0.77 —

7 519 AMY-1-S-AKAP84-RII-beta complex PRKAR2B; AKAP1;
MYCBP

0.75 PRKAR2B: 29761841; 28008150; AKAP1: 28569781; 33193848;
33,868,472

8 7284 GSK3B-HSP90AA1-PKM2 complex HSP90AA1; PKM;
GSK3B

0.69 HSP90AA1: 20651736; 17513464; 34226297; 31567483; 30471108;
GSK3B: 30144430; 32698955; 30,845,991

9 4158 HSP90-FKBP38-CAM-Ca (2 + ) complex HSP90AA1; CALM1;
CAL; FKBP8

0.68 HSP90AA1: 20651736; 17513464; 34226297; 31567483; 30471108;
FKBP8: 30,348,988

10 6782 mitochondrial permeability transition pore
(PTP) complex (PPIF-SPG7-VDAC1)

VDAC1; PPIF; SPG7 0.67 23233904; 31364685; 22204343; 24781191; 29682501; 21315184;
23663973; 21297950; 27304056; PPIF: 33,495,413

Shown are the top 10 risk protein complexes with the highest SP. The full list of risk protein complexes is provided in Table S10B. aSelection probability; bProteins shown in
bold are detected in the HCC datasets; cReferences related to the detected proteins in HCC or other cancer types.
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v1 complex is specific to HCC. Its member proteins MAT1A and
MAT2B have been used as therapeutic targets for HCC drug devel-
opment [69,70]. Some of the proteins in these protein complexes
have been suggested as biomarkers or therapeutic targets for the
corresponding cancer type, such as PIK3C3 (Phosphatidylinositol
3-kinase complex) in GBM [71], and TGFBI (BP-SMAD complex)
in GC [72]. These cancer-specific protein complexes deserve fur-
ther investigation.

3.8. Comparison with survival-related risk protein complexes

We next compared the risk protein complexes identified by
PCLassoLog and the survival-related risk protein complexes, which
were identified by PCLasso [19]. The main difference is that PCLas-
soLog uses class labels as dependent variables, while PCLasso uses
survival outcomes. In other words, PCLassoLog identifies risk pro-
tein complexes on the premise of maximizing classification accu-
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racy, while PCLasso is premised on maximizing prognostic
accuracy. Therefore, the risk protein complexes identified by
PCLassoLog may be mainly related to the initiation and develop-
ment of cancer, while the risk protein complexes identified by
PCLasso are more likely to be related to cancer progression.

A total of 10 cancer types were analyzed by both PCLassoLog
and PCLasso. Only a few protein complexes are identified by both
PCLassoLog and PCLasso in LUAD, HCC, ccRCC, EC, GC, HNSCC,
and LSCC, respectively (Table S11). The risk protein complexes
identified by the two models are very different in multiple cancer
types, implying that the molecular mechanisms may also change at
different stages of cancer development and progression. The com-
mon risk protein complexes identified by PCLasso and PCLassoLog
may play a role in both cancer development and cancer progres-
sion. For example, the PLOD2-FKBP10 complex was identified by
both PCLassoLog and PCLasso in LUAD (Table S11). PLOD2 has been
shown to be elevated in NSCLC cells and related to poor prognosis



Fig. 5. Pan-cancer analysis of risk protein complexes identified by PCLassoLog. (A) Box plots of AUCs of the PCLassoLog model on the protein expression data of 10 cancer
types. For each cancer type, the entire dataset is randomly divided into a training set (2/3) and a test set (1/3). The training set is used to train the model, and the test set is
used to evaluate the model. This process is repeated 100 times. Each boxplot represents 100 AUCs obtained on 100 test sets. (B) Risk protein complexes identified by the
PCLassoLog model across multiple cancer types. Each row of the matrix represents a type of cancer, and each column represents a protein complex. The color of the (i, j)
element of the matrix indicates the SP of the j-th protein complex identified as a risk protein complex of the i-th cancer type. The protein complex shown in red indicates that
it is consistently up-regulated in the corresponding cancer types, while green indicates that it is consistently down-regulated. (C) The protein–protein network of risk protein
complexes identified in multiple cancer types. The protein–protein interactions were obtained from the STRING database. The width of the line indicates the edge confidence.
Pink nodes indicate that the proteins are consistently up-regulated in at least five cancer types, and cyan nodes indicate that the proteins are consistently down-regulated in
at least five cancer types. The six consistently up-regulated protein complexes and one consistently down-regulated protein complexes marked in (B) are highlighted in red
and green, respectively. HSP90 related complexes and cell cycle kinase complexes are highlighted in grey. (D) Risk protein complexes specific to each cancer type. The values
in the rectangular boxes indicate selection probabilities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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in LUAD [73]. It promotes NSCLC metastasis directly by enhancing
migration and indirectly by inducing collagen reorganization [73].
FKBP10 expression is also negatively correlated with the survival of
lung cancer patients. FKBP10 downregulation has been shown to
suppress lung cancer growth and cancer stem-like features [74].
Two integrin complexes (ITGAV-ITGB1 complex and ITGB1-NRP1
complex) were identified by both PCLassoLog and PCLasso in GC
(Table S11). The integrin family regulates a diverse array of cellular
functions crucial to the initiation, progression, and metastasis of
solid tumours [75]. ITGAV has been shown to be overexpressed
in GC and associated with shorter overall survival and disease-
free survival. Downregulation of ITGAV could result in suppression
of proliferation, migration, and invasion of GC cells [76]. ITGB1 has
been shown to be targeted by miR-29c to mediate GC initiation
[77] and targeted by miR-29a to mediate GC metastasis [78]. The
374
importance of integrins that affect nearly every step of cancer pro-
gression from primary tumour development to metastasis has
made them an appealing target for cancer therapy [75,79]. The risk
protein complexes identified by PCLassoLog and PCLasso are both
important, and they could complement each other to reveal the
molecular mechanism of different stages of cancer from a more
comprehensive perspective.
3.9. Risk protein complexes associated with genomic mutations in
LUAD

In addition to risk protein complexes related to cancer develop-
ment, PCLassoLog can also be used to identify risk protein com-
plexes in other contexts, such as risk protein complex related to
genomic mutations. Based on protein expression data from the
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studies of Gillette et al. [20], we applied PCLassoLog to classifica-
tion of LUAD patients with/without TP53, KRAS, STK11, EGFR,
KEAP1, RB1, BRAF mutation, and ALK fusion, and obtained median
AUC of 0.844, 0.675, 0.862, 0.780, 0.947, 0.686, 0.843, and 0.985,
respectively (Figure S18). This indicates that protein complexes
could accurately predict some mutant phenotypes in LUAD, espe-
cially TP53, STK11, KEAP1 mutation, and ALK fusion. Risk protein
complexes related to each mutant phenotype were identified
(Table S12). Among them, risk protein complexes with the largest
SP include the sulphiredoxin-peroxiredoxin complex (SP = 1) that
related to KEAP1 mutation, the DDX11-Ctf18-RFC complex
(SP = 0.99) and MDC1-H2AFX-TP53BP1 complex (SP = 0.92) that
related to TP53 mutation, the RhBG-kAE1-ankyrin-G complex
(SP = 0.83) that related to ALK fusion.
4. Discussion

In this study, we propose the PCLassoLog model and verify its
high classification accuracy and ability to identify reliable risk pro-
tein complexes. Using PCLassoLog, we identified risk protein com-
plexes associated with cancer development in 12 cancer types and
with gene mutations in LUAD. Pan-cancer analysis revealed risk
protein complexes that play important functions in multiple can-
cer types and risk protein complexes specific to each cancer type.

PCLassoLog embeds protein complexes into the group Lasso-
logistic model, and uses mixed l1 and l2 penalties to achieve feature
selection. At the individual protein level of each protein complex,
the l2 norm fits the regression coefficients to obtain the optimal
linear combination to accumulate the weaker discriminant ability
of individual proteins and form pseudo-proteins at the protein
complex level with strong discriminant ability. The l1 penalty tends
to choose only a few nonzero coefficients. Thus, at the protein com-
plex level, the l1 norm ensures selection of a few important protein
complexes, which are referred to as risk protein complexes. By
introducing latent variables, PCLassoLog can elegantly handle the
overlap problem of protein complexes. Although many proteins
are subunits of more than one protein complex, PCLassoLog pro-
duces a sparse solution, which matches the way proteins function
in different protein complexes. For a protein belonging to multiple
protein complexes, PCLassoLog independently estimates its regres-
sion coefficient in different protein complexes. The coefficients of
this protein in the unselected protein complexes will be zero. In
contrast, the coefficients of this protein in the selected protein
complexes will be nonzero and will contribute to the final model.
This is consistent with that a protein may belong to multiple pro-
tein complexes, but only some of them are related to the develop-
ment of cancer.

Compared with the Lasso-logistic model based on individual
proteins, PCLassoLog selects features with stronger reproducibility
at the level of protein complexes across different datasets (Fig. 4D).
In terms of classification accuracy, although the prediction perfor-
mance of the Lasso-logistic model on the test sets is comparable to
that of PCLassoLog, its prediction performance on the independent
datasets decreases dramatically (Fig. 4A-C). This may be due to the
unstable expression of individual proteins, which is usually caused
by tumor heterogeneity or batch effects [19,80]. Protein complexes
have been reported to be inherently resistant to batch effects and
have the advantage of being more robust than individual proteins
as features at the functional level [19,81]. Thus, it is not surprising
that PCLassoLog can achieve more robust prediction performance
on independent datasets. Both models use cross-validation to
select the optimal k. Accordingly, the Lasso-logistic model included
less proteins than PCLassoLog (Figure S7). We also investigated a
variant of Lasso-logistic model (Lasso-logistic2) which selects the
same number of features as PCLassoLog by controlling k (Fig-
375
ure S19A). The prediction performance of the Lasso-logistic2
model is comparable to that of the Lasso-logistic model on the test
set, but poor on the independent data sets (Figure S19B-C). This
further indicates that PCLassoLog has a more robust and accurate
performance when the number of protein features is comparable.
Compared with the Lasso-logistic model with elastic net penalty
(ENet, a = 0.5), which also uses both l1 and l2 penalties, the predic-
tive performance of PCLassoLog was better in the ‘‘LUAD.Gillette.
Prot” case and slightly worse in the ‘‘LUAD.Xu.Prot” and ‘‘HCC”
case. However, PCLassoLog has the characteristic of identifying risk
protein complexes that ENet does not have. In addition, although
PCLassoLog is a linear model, the overall predictive performance
is better than that of nonlinear models such as random forest
and extreme gradient boosting (see Supplementary Text for
details) in the three cases (Figure S20).

Compared with PCSCAD and PCMCP, PCLassoLog has the highest
prediction accuracy on independent datasets (Figure S8-10),
which could be attributed to it recruiting more protein complexes
into the model in order to compensate for its over-shrinkage of
large coefficients. However, this may also cause PCLassoLog to
include some irrelevant features into the model. Therefore, we cal-
culated the selection probability of each risk protein complex to
measure its reliability. In general, it is reliable enough to select risk
protein complexes with a probability>0.5 [46,47]. In addition,
PCSCAD and PCMCP are implemented to complement PCLassoLog
in identifying reliable risk protein complexes. PCSCAD and PCMCP
effectively capture important features by reducing the penalty for
large coefficients, but at the expense of certain prediction accuracy.
The three models could be used in combination to better complete
the task of accurate classification and identifying risk protein com-
plexes. Nonetheless, because there is no gold standard for risk pro-
tein complexes at present, we cannot use a precision and recall
framework to evaluate the reliability of the risk protein complexes
discovered, which will be an issue to be further resolved in the
future.

Similar to the PCLasso model, the most important contribution
of PCLassoLog is the ability to identify risk protein complexes,
which may provide valuable targets for researchers to study the
synergistic effects of proteins on cancer development. The differ-
ence is that PCLasso identifies risk protein complexes associated
with cancer progression, whereas PCLassoLog identifies risk pro-
tein complexes associated with cancer initiation and development.
Moreover, PCLassoLog can be used to identify risk protein com-
plexes in other contexts, such as those associated with genomic
mutation (Table S12). With risk protein complexes, researchers
can discover and understand protein functions and carcinogenic
mechanisms from a more comprehensive perspective. Further,
new therapeutic strategies could be developed from the perspec-
tive of the complex, such as simultaneously inhibiting the expres-
sion of proteins in the complex, or blocking their binding, etc.
PCLassoLog provides researchers with an effective tool to discover
unknown risk protein complexes. Note that one limit of PCLasso-
Log is that the risk protein complexes identified by PCLassoLog
are derived from the known protein complex database CORUM.
Since changes in protein interactions during cancer progression
may form new protein complexes that play key carcinogenic roles,
how to identify such dynamic risk protein complexes is an issue
worthy of further research.

We have developed an R package ‘PCLassoReg’ (https://CRAN.R-
project.org/package=PCLassoReg and https://github.com/weili-
u123/PCLassoReg), a freely available implementation of all protein
complex-based models, including PCLassoLog, PCSCAD, PCMCP,
and PCLasso. In addition to the risk protein complexes discovered
in this study (Table S10 and S12), researchers can use our package
to identify risk protein complexes for other cancer types or in other
contexts based on their own data.

https://CRAN.R-project.org/package=PCLassoReg
https://CRAN.R-project.org/package=PCLassoReg
https://github.com/weiliu123/PCLassoReg
https://github.com/weiliu123/PCLassoReg
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