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A B S T R A C T

Background: Bladder cancer (BCa), one of the most common cancers worldwide, is characterized
by high rates of recurrence, progression, and mortality. Machine learning algorithms offer
promising advancements in enhancing predictive models. This study aims to develop robust
machine learning models for predicting BCa survival using clinical and gene expression data.
Methods: Clinical data from BCa patients were obtained from the Surveillance, Epidemiology, and
End Results database. Cox proportional hazards regression models assessed the association be-
tween clinical variables and overall survival. Machine learning algorithms, including logistic
regression, random forest, XGBoost, decision tree, and LightGBM, were employed to predict
survival at 1, 3, and 5 years. The TAGO database, combined with the data from The Cancer
Genome Atlas and four databases from the Gene Expression Omnibus, which have available
genomic data and clinical data, were selected. Gene expression data were transformed into gene
sets data, and the performance of models based on clinical data and gene sets data and their
combination were compared. Furthermore, the impact of model-derived scores on overall survival
was evaluated.
Results: Among 138,741 BCa patients with available clinical data, key independent predictors of
survival included age, race, marital status, surgery, chemotherapy, radiation, and TNM stages.
Clinical data machine learning (CML) models used these clinical predictors to achieve AUC values
of 0.860, 0.821, and 0.804 in the testing sets for predicting survival at 1, 3, and 5 years,
respectively. In the TAGO database, which has 863 patients with clinical and genomic data, the
integrated clinical and gene expression machine learning model (IML) outperformed the CML and
gene expression machine learning (GML) models in survival prediction. Patients with higher IML
and GML model scores exhibited poorer survival outcomes.
Conclusions: This study successfully identifies key clinical and genomic predictors, a significant
step forward in BCa research. The development of predictive models for BCa survival underscores
the potential of integrated data approaches in improving BCa management and treatment
strategies.
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1. Introduction

Bladder cancer (BCa), one of the most common malignant tumors, is diagnosed in over 500,000 individuals worldwide annually,
resulting in approximately 200,000 deaths each year [1]. BCa is classified into non-muscle invasive bladder cancer (NMIBC) and
invasive (MIBC) types based on tumor invasion depth [2]. Patients with NMIBC generally exhibit a favorable 5-year survival rate (over
90 percent), although they have high recurrence and progression rates [3]. One of the primary treatments for NMIBC is transurethral
resection of the bladder tumor (TURBT) [4]. In contrast, MIBC patients often have a poor prognosis and require more aggressive
treatments, including radical cystectomy, chemotherapy, and immunotherapy [5]. Given MIBC’s aggressive nature and tendency for
metastasis, its 5-year survival rate falls below 50 percent [6]. Several prognostic factors are strongly linked to the outcomes in patients
with BCa. These include anatomical extent like the TNM staging system [7]; histological details such as pathological subtype and tumor
grade [7]; baseline characteristics including age and gender [8]; and various molecular biomarkers [9]. Accurate risk stratification is
essential for clinicians to develop tailored surveillance and follow-up strategies because of its high progression and death rates.
Implementing a systematic surveillance protocol will enhance survival benefits for BCa patients.

Machine learning is a powerful tool for integrating critical clinicopathological parameters and molecular biomarkers to predict
clinical outcomes. The ability of machine learning models to predict 1, 3, and 5-year outcomes can significantly aid clinicians in
making informed decisions. Despite several risk models being developed for BCa patient risk stratification using these clinical factors
[10,11], they often face limitations such as small sample sizes or lack of external validation. In this study, we constructed and validated
novel machine learning models using a large population dataset from the Surveillance, Epidemiology, and End Results (SEER)
database, aiming to predict the overall survival (OS) of BCa patients. Moreover, the gene set-based genetic data was added to increase
the accuracy of machine learning models. This approach underscores the necessity and advantages of machine learning in enhancing
prognostic accuracy and providing robust, validated tools that support personalized treatment planning and improve patient
outcomes.

Despite numerous advancements in treatment strategies, BCa continues to pose significant challenges for effective management.
Immune dysregulation is central to the progression of BCa [12], which has catalyzed the development of immunotherapy as a
promising treatment avenue. Immune checkpoint inhibitors (ICI) like atezolizumab, pembrolizumab, durvalumab, nivolumab, and
avelumab have been approved for metastatic and advanced BCa [13]. However, the effectiveness of ICI remains limited, with response
rates in BCa patients typically at most 10–30 % [14]. Given this variability in response, there is a critical need for predictive tools that
can accurately identify which BCa patients are likely to benefit from ICI therapy.

In this study, we aimed to identify independent risk factors that affect overall survival in BCa patients and to develop predictive
models. We constructed and validated machine learning models that estimate survival probabilities at 1, 3, and 5 years for patients
with BCa. By integrating gene expression data with clinical information, the accuracy values of survival prediction models were
enhanced. This integration of genomic and clinical data allowed us to create personalized prognosis prediction models for individual
patients, ultimately aiding in more informed clinical decision-making.

2. Methods

2.1. Data sources

2.1.1. The database for clinical data machine learning (CML)
The workflow for this study is illustrated in Fig. 1. Since the SEER (Surveillance, Epidemiology, and End Results) is a publicly

accessible database, ethical review or informed consent is not required in this study. The data used in this study was sourced from the
November 2022 release of SEER Research Data. Patient records were obtained using the SEER*Stat software, containing cancer-related
population data across 17 registries from 2000 to 2020, covering approximately 30 % of the U.S. population. The inclusion criteria
were: (1) Subjects identified using the site codes C67.0–C67.9 for bladder cancer. (2) Patients diagnosed between 2004 and 2015, as
the AJCC 6th edition was used during this timeframe. (3) Subjects flagged as the first malignant primary indicator. The exclusion
criteria included: (1) Survival time of less than one month. (2) Patients under 18 years of age. (3) Missing values in survival or clinical
information. For each patient, data were collected on age, gender, race, marital status, T stage, N stage, M stage, surgery, chemo-
therapy, radiation therapy, and follow-up information (overall survival status and time) from the SEER database.

2.1.2. The database for gene expression machine learning (GML) and Integrated Clinical Data and Gene Expression Machine Learning (IML)
The datasets utilized for constructing and validating Gene expression Machine Learning (GML) and Integrated Clinical and gene

expression Machine Learning (IML) models were sourced from two primary platforms: The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO). For the TCGA dataset, we downloaded data from the TCGAbiolinks package [15]. Additionally, expression
data from GEO datasets, specifically GSE13507 [16], GSE31684 [17], GSE32548 [18], and GSE48276 [19], were downloaded. The
expression data and clinical information from these datasets were used to construct and validate models to predict the overall survival
status in BCa patients. In the TCGA and GEO datasets, clinical variables (OS, OS Time, Gender, Age, T stage, and N stage) were selected
due to their availability and relatively low rates of missing values (less than 30 %). Only samples containing both clinical and gene
expression data were retained for further analysis. The data from TCGA and GEO were merged into a single cohort, named the TAGO
set. Given the limited number of samples (863 in the TAGO set) and the missing value ratio for the N stage (approximately 22 %),
directly deleting all samples with missing values could impair the machine learning prediction ability. Therefore, we imputed the
missing values in the TAGO set using the most frequent values observed for each clinical variable.
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Additionally, to further validate our signature, we incorporated an independent cohort of bladder cancer patients receiving
immunotherapy from the IMvigor210 trial [20]. This cohort’s mRNA and clinical data were obtained from the "IMvigor210CoreBi-
ologies" package.

2.2. Data preprocessing

2.2.1. Preprocessing of data from SEER
In the SEER database, bladder cancer (BCa) patients were divided into two subgroups: younger and older, based on the median age

value. Gender contains male and female groups. Racial classification included Non-Hispanic White (NHW) and Others. Marital status
was categorized as Married or Unmarried. Surgical options included None, Local Tumor Destruction (LTD), Partial Cystectomy (PC),
Radical Cystectomy (RC), and Pelvic Exenteration (PE). To simplify the research, RC and PE patients were grouped into “RC/PE”.
Chemotherapy and radiation treatments were classified as ‘No/Unknown’ or ‘Yes’. Staging was categorized as follows: T stage into T0
(including "T0", "Ta", "Tis"), T1, T2, T3, and T4; N stage into N0, N1-3 (including N1, N2, and N3); and M stage into M0 and M1.
Survival differences across subgroups were analyzed using Kaplan-Meier (KM) survival curves, with p-values calculated by the log-
rank test.

The SEER dataset was randomly divided into training (70 %) and testing (30 %) sets. Demographic data for these two sets were
presented in supTable 1. Differences between the training and testing sets were assessed. In the comparison tests, the variable "OS
Time" which was numerical, was analyzed using a t-test. A chi-squared test was used to measure other categorical variables. Univariate
Cox regression and multivariate Cox analysis were conducted to identify potential predictive features for model construction. The
results were displayed in Table 1. Only the variables with p < 0.05 in multivariate Cox analysis were used for model construction.

2.2.2. Preprocessing of data from TAGO
In the preprocessing phase, Gender was categorized into male and female groups. Age was divided into younger and older based on

the median value. T stage was classified into T0 (including "T0", "Ta", "Tis"), T1, T2, T3, and T4, while N stage was grouped into N0 and

Fig. 1. The workflow of this study. Clinical Data Machine Learning (CML); Surveillance, Epidemiology, and End Results (SEER); Combined cohorts
of TCGA and GEO (TAGO); Gene Expression Machine Learning (GML); Integrated Clinical Data and Gene Expression Machine Learning model (IML);
logistic regression (LR); random forest (RF); XGBoost (XGB); decision tree (DT); LightGBM (LBM).
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N1-3 (including N1, N2, and N3). The TAGO set was then randomly divided into training (70 %) and testing (30 %) sets. Demographic
data for these two sets are presented in SupTable 2. Differences between the training and testing sets were assessed: a t-test was
conducted on the variable "OS Time," while chi-squared tests were conducted on the other variables.

2.3. Gene set variation analysis (GSVA)

The comprehensive exploration of gene set value was undertaken through GSVA [21], including 50 hallmark gene sets sourced
from the MSigDB website [22]. This analysis utilized the GSVA package in R, employing expression profiles from TAGO. Individual
samples were scored based on gene sets using GSVA, thereby deriving GSVA scores indicative of the gene set’s activity for each sample.
The GSVA scores of 50 hallmark gene sets were used in the machine learning model to predict the survival of BCa.

2.4. Machine learning Prepare on clinical and gene set variables

We employed machine learning techniques to enhance the accuracy of models predicting the survival of bladder cancer (BCa)
patients. These techniques aimed to predict survival status at 1, 3, and 5-year intervals. Our study focused on overall survival (OS),
defined as the time from diagnosis until death from any cause. Patients were categorized into ’alive’ or ’deceased’ groups based on
their survival status at these intervals. Patients with unavailable survival status at specific time points were excluded from the model
construction and validation. For example, if a patient died of a heart attack 41 months after BCa diagnosis, the survival status would be
recorded as "alive" at 1 year, "alive" at 3 years, and "deceased" at 5 years. Conversely, if another patient was last known to be alive 47
months after BCa diagnosis, the survival status would be recorded as "alive" at 1 year, "alive" at 3 years, and "not available" at 5 years.
This patient would be excluded from models predicting 5-year survival.

For the clinical variables available in the SEER and TAGO datasets, we applied the following conversion rules to transform cate-
gorical variables into numerical values. Specifically, the Age variable was converted into a binary format: "Younger" was mapped to
0 and "Older" to 1. Gender was coded as 0 for "male" and 1 for "female". The Race variable was simplified, with "NHW" mapped to 0 and
"Others" to 1. Marital status was coded as 0 for "Unmarried" and 1 for "Married". Surgery types were encoded as follows: "None" to 0,
"LTD" to 1, "PC" to 2, and "RC/PE" to 3. Chemotherapy status was represented as 0 for "No/Unknown" and 1 for "Yes," while radiation
treatment was similarly coded as 0 for "None/Unknown" and 1 for "Yes." The T stage variable, representing tumor stages, was encoded
with "T0" as 0, "T1" as 1, "T2" as 2, "T3" as 3, and "T4" as 4. The N stage variable, indicating lymph node involvement, was simplified to
"N0" as 0 and "N1-3″ as 1. Finally, the M stage variable, denoting metastasis status, was mapped from "M0" to 0 and "M1" to 1.

For the gene set variables, represented by GSVA scores of 50 hallmark gene sets in the TAGO dataset, we used min-max normal-
ization. This technique scales the data to a range between 0 and 1. Min-max normalization works by subtracting the minimum value in
the variable from each data point and then dividing by the range (the difference between the maximum and minimum values). This
ensures that the minimum value of each gene set becomes 0 and the maximum value becomes 1, with all other values adjusted
proportionally in between. This process ensures that no single gene set disproportionately influences the model.

Table 1
Univariate and Multivariate Cox proportional hazards regression analysis in SEER database.

Characteristics Univariate Cox Multivariate Cox

HR (95 %) p-value HR (95 %) p-value

Age Older Reference <0.01 Reference <0.01
Younger 0.31 (0.31–0.32) 0.32 (0.32–0.33)

Gender Female Reference 0.49 – –
Male 0.99 (0.97–1.01)

Race NHW Reference <0.01 Reference <0.01
Others 0.94 (0.92–0.96) 0.91 (0.89–0.93)

Marital Married Reference <0.01 Reference <0.01
Unmarried 1.37 (1.35–1.39) 1.28 (1.26–1.30)

Surgery None Reference <0.01
0.33
<0.01

Reference <0.01
<0.01
<0.01

LTD 0.78 (0.76–0.81) 0.83 (0.80–0.86)
PC 0.96 (0.89–1.04) 0.52 (0.48–0.56)
PE/RC 1.18 (1.13–1.23) 0.47 (0.45–0.50)

Chemotherapy No/Unknown Reference <0.01 Reference <0.01
Yes 1.19 (1.17–1.22) 0.83 (0.81–0.84)

Radiation No/Unknown Reference <0.01 Reference <0.01
Yes 3.57 (3.46–3.70) 1.23 (1.18–1.28)

T stage T0 Reference <0.01
<0.01
<0.01
<0.01

Reference <0.01
<0.01
<0.01
<0.01

T1 1.56 (1.53–1.59) 1.54 (1.51–1.58)
T2 3.06 (2.99–3.13) 3.33 (3.24–3.42)
T3 3.22 (3.11–3.34) 4.35 (4.15–4.56)
T4 5.82 (5.60–6.05) 5.74 (5.49–6.01)

N stage N0 Reference <0.01 Reference <0.01
N1-3 3.73 (3.60–3.86) 1.75 (1.68–1.82)

M stage M0 Reference <0.01 Reference <0.01
M1 8.38 (8.06–8.72) 3.45 (3.30–3.61)
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2.5. Machine learning training and validation

To enhance the predictive value of clinical biomarkers, we developed three distinct categories of machine learning models: clinical
data machine learning (CML), which utilizes only clinical variables; gene expression machine learning (GML), which employs gene set
variables from gene expression profiles; and the integrated clinical data and gene expression machine Learning (IML), which combines
both clinical and gene set variables. CML models were developed using datasets from the SEER and TAGO databases. Due to data
availability constraints, the models based on GML and the IML were specifically developed using data only from the TAGO database.
For the implementation of these models, we utilized several machine learning algorithms, including logistic regression (LR), decision
tree (DT), random forest (RF), XGBoost (XGB), and LightGBM (LBM). LR, a generalized linear regression analysis model [23], uses a
logistic function (Sigmoid function) to predict the probability of binary outcomes [24]. DT is a non-parametric, supervised learning
method for classification and regression [25], forming decision rules from data features. RF builds on the decision tree approach [25],
utilizing an ensemble of trees where each tree is constructed from a random subset of data and features, with final predictions based on
averaging or majority voting to enhance generalizability and reduce overfitting. XGB [26] and LBM [27] further advance this concept
using a gradient-boosting framework that includes regularization to control complexity and prevent overfitting.

Extensive hyperparameter tuning was conducted to optimize the performance of the algorithms using the grid search method,
which systematically varies parameters to find the best-performing combination based on model accuracy. The parameter grids were
defined as follows: for Logistic Regression, regularization strength (C) values of [0.1, 1, 10]; for Random Forest, number of trees
(n_estimators) of 100 and 200 and maximum depth of the tree (max_depth) of 5 and 10; for XGBoost, number of gradient boosted trees
(n_estimators) of 100 and 200, learning rates of 0.01 and 0.1, and maximum depth of a tree (max_depth) of 3, 5, and 7; for Decision
Tree, maximum depth of a tree (max_depth) of 3, 5, 7, and 10 and minimum number of samples required to split an internal node
(min_samples_split) of 2, 5, and 10; for LightGBM, number of leaves in one tree (num_leaves) of 31, 50, and 100, learning rates of 0.01
and 0.1, and number of boosting iterations (n_estimators) of 100 and 200. The tuning process was further enhanced through 5-fold
cross-validation, solving model overfitting and ensuring that the hyperparameters generalize well across unseen data. The perfor-
mance of each model was evaluated based on a suite of metrics in the testing sets, including the Area Under the Curve (AUC), accuracy
score, precision score, F1 score, and recall score. These metrics provide a comprehensive view of eachmodel’s performance. All models
were built and tested using the scikit-learn package [28], a widely used library in the machine learning community for building and
deploying models.

2.6. Visualization of importance values of features in models

In the context of explainable machine learning, we utilized SHapley Additive exPlanations (SHAP) values to provide the accurate
importance values for each feature in XGBoost model [29]. SHAP values, derived from Shapley values in cooperative game theory,
assign an importance value to each feature based on its contribution to the prediction. These values quantify how much each feature
shifts the output from the baseline prediction. SHAP is primarily used for tree-based machine learning models. SHAP values were
visualized through SHAP summary plots, typically presented as bar graphs.

2.7. Comparison of prognostic signatures

We systematically reviewed 24 prognostic signatures associated with bladder cancer to identify the published bladder cancer
signatures and obtained their gene names. These signatures include genes related to platinum resistance [30], tumor microenviron-
ment [31], metabolism [32–35], B cells [36,37], and immune [38], FGFR3 alterations [39], cell cycle [40], autophagy [41,42], fer-
roptosis [43], focal adhesion [44], TGF-β pathway [45], IFN-γ signaling [46], anoikis [47], CpG methylation [48], aging [49], and
pyroptosis [50]. Other signatures were obtained by the statistical analysis [51–53]. Before the model construction, clinical variables
were integrated into these signatures. The same model training parameters and the same testing set used in the IML were adopted in
these signatures. These steps are crucial to fairly compare the model performance based on different signatures. The ability of all
signatures to predict survival at 1, 3, and 5 years was assessed by the AUC value in the testing set. These AUC values were then
compared with the AUC value of our IML model.

2.8. The relationship of model score with prognosis

GML and IML scores were generated by the GML and IMLmodels to predict 3-year survival. These scores indicated the likelihood of
death for BCa patients 3 years after treatment. Samples were then divided into high and low groups based on the median score value,
and survival curves were plotted for overall survival (OS) in these groups. In the TCGA-BLCA cohort, which included patients who
underwent surgery and chemotherapy, both GML and IML scores were calculated due to the availability of genomic and clinical data.

In the IMvigor cohort, only GML scores could be predicted, as clinical features such as age and TNM staging were lacking. To
evaluate the relationship between GML scores and immunotherapy, we selected the IMvigor210-bladder cohort, which contains
complete overall survival information. IMvigor210 was a multicenter, single-arm, phase 2 trial that assessed the efficacy and safety of
atezolizumab, a monoclonal antibody targeting the protein PD-L1. Survival curves for high and low GML score groups were plotted to
analyze overall survival in the IMvigor210-bladder cohort.
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3. Results

3.1. Demographic baseline characteristics of SEER

Theprocess of this study is illustrated in Fig. 1.Utilizing inclusion and exclusion criteria,which arepresented in Section2.1.1., the study
comprised138,741bladder cancer (BCa)patients.Agewasdivided intoyounger andolder groupsbasedon themedianvalue (71years old),
with younger patients demonstrating better survival rates, whereas older patients exhibited poorer survival (Fig. 2A). No significant dif-
ference in survival rateswasobservedbetweengenders (Fig. 2B). Statistically significantdifferences in survivalwereobservedamongracial
subgroups (Fig. 2C).Marital status impacted survival outcomes, asmarried BCapatients exhibited a lowermortality risk compared to those
who were unmarried (Fig. 2D). Patients undergoing local tumor destruction (LTD) presented the most favorable prognosis compared to
other surgical interventions (Fig. 2E). The analysis of chemotherapyand radiation indicatedpoorer outcomes, as presented inFig. 2FandG,
respectively. Lastly, TNM staging, a critical prognostic factor, showed that advanced stages correlated with decreased survival Fig. 2H–J.
The 138,741 patients were randomly categorized into the training set (97,121 patients) and validation set (41,620 patients) in a 7:3 ratio.
There was no statistically significant difference in each variable between the two sets (supTable 1).

3.2. Prognostic factor analysis

Prognostic factor analysis of the entire cohort, presented in Table 1, revealed significant associations between poorer survival and
several factors: increased age, NHW, unmarried status, absence of surgery, lack of chemotherapy, use of radiation treatment, and
advanced TNM stages.

Fig. 2. Kaplan-Meier Survival Analysis Across Subgroups. Kaplan-Meier survival curves for various patient subgroups categorized by age (A),
gender (B), race (C), marital status (D), surgical intervention (E), chemotherapy (F), radiation therapy (G), and tumor staging—T stage (H), N stage
(I), M stage (J). Subgroup specifics include non-Hispanic White (NHW); types of surgical interventions: Local Tumor Destruction (LTD), Partial
Cystectomy (PC), Radical Cystectomy (RC), and Pelvic Exenteration (PE); staging according to the AJCC 6th edition for T (T_6th), N (N_6th), and M
(M_6th) stages. The p-values were calculated using the log-rank test, a nonparametric hypothesis test designed to compare the survival trends of two
or more groups amidst censored observations. For comparisons involving three or more groups, an overall test result p-value is reported. An overall
p-value less than 0.05 indicates statistically significant evidence that at least one of the groups differs from the others in terms of survival time.
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Our survival analysis showed that BCa patients undergoing chemotherapy (Fig. 2F) and radiation (Fig. 2G) tend to exhibit lower
survival rates. Additionally, chemotherapy was associated with worse survival in univariate Cox analysis but better survival in
multivariate Cox analysis. Conversely, radiation was associated with worse survival outcomes in univariate and multivariate analyses.
These findings contradict the common perception that treatments such as chemotherapy and radiation should increase the survival of
cancer patients. This apparent contradictionmay be because patients with advanced BCa, who inherently have lower survival rates, are
more likely to receive chemotherapy and radiation. We stratified BCa patients into two subgroups based on TNM staging: local stage
BCa (T0/T1, and N0, and M0) and advanced stage BCa (T2/T3/T4, or N1-3, or M1). In both the local stage and advanced BCa,
chemotherapy enhanced survival (Fig. 3A and C). These results support our hypothesis that confounding factors, such as TNM stages,
influenced the association of chemotherapy with worse survival in univariate Cox analysis. The use of radiation was linked to poorer
survival outcomes in both local BCa (Fig. 3B) and advanced BCa (Fig. 3D). Given the potential effects of confounding factors, additional
prospective research that addresses these confounding factors is essential to further investigate the role of radiation in BCa treatment.

3.3. CML Models for Survival Prediction in SEER

Based on the significant prognostic factors identified in the multivariate Cox analysis in Table 1, we selected age, race, marital
status, surgery, chemotherapy, radiation, T stage, N stage, and M stage for constructing machine learning models. The prediction
targets were the survival status of BCa patients at 1, 3, and 5 years after treatment. The number of alive/deceased samples in the

Fig. 3. Treatment Associations with Survival in Different Bladder Cancer (BCa) Stages. (A) The impact of chemotherapy on survival in the
local stage of BCa. (B) The impact of radiation on survival in the local stage of BCa. (C) The impact of chemotherapy on survival in the advanced
stage of BCa. (D) The impact of radiation on survival in the advanced stage of BCa. The p-values were calculated using the log-rank test, a
nonparametric hypothesis test designed to compare the survival trends of two or more groups amidst censored observations.
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training sets for these time points were 84,000/11,926, 71,295/24,726, and 62,190/33,591, respectively. The numbers of alive/
deceased samples in the testing sets for these time points were 35,891/5,180, 30,341/10,783, and 26,527/14,501, respectively.

After hyperparameter tuning on the training set, the CML models demonstrated excellent predictive performance across various
algorithms on the testing set. XGBoost consistently emerged as the best-performing model for predicting 1-, 3-, and 5-year survival in
the testing dataset of the SEER database, with AUC values of 0.860, 0.821, and 0.804, respectively (Fig. 4A). The highest accuracy
values in the testing dataset for XGBoost were 0.896, 0.814, and 0.756 at these intervals (Fig. 4B). The F1 scores of XGBoost in the
testing dataset were 0.449, 0.557, and 0.571 (Fig. 4C). The precision values of XGBoost in the testing dataset were 0.674, 0.742, and
0.751 (Fig. 4D). The recall values of XGBoost in the testing dataset were 0.337, 0.445, and 0.461 (Fig. 4E), respectively. These results
underscore the efficacy of machine learning in utilizing clinical variables to accurately predict survival outcomes in bladder cancer
patients.

Subsequently, we used SHAP summary plots from the XGBoost algorithm on the testing sets to identify the most influential features
(supFig. 1A–C). The summary plot displays the relative impact of each feature on model predictions, ranking the top features by their
mean absolute SHAP values. Our analysis highlighted the T stage as the most critical predictor of survival for 1 and 3 years. For 5-year
predictions, the importance of age increased, with age proving to be the most vital factor.

3.4. Comparison of CML models, GML, and IML models in TAGO

In the combined cohorts of TCGA and GEO, referred to as the TAGO cohort, we developed three models for predicting survival: the
clinical data machine learning (CML) model, the gene expression data machine learning (GML) model, and the integrated machine
learning (IML) model, which combines clinical and gene set features. Using logistic regression, random forest, XGBoost, decision tree,
and LightGBM algorithms, we evaluated the models’ accuracy for predicting 1-, 3-, and 5-year survival. The number of alive/deceased
samples in the training sets for these time points were 467/92, 171/201, and 140/234, respectively. In the testing sets, the numbers of
alive/deceased samples for 1-, 3-, and 5-year survival were 198/45, 98/86, and 66/94, respectively. For comparison, we recorded the
best performance values for each machine learning algorithm at each time point. The IML outperformed the other models, achieving
the highest AUC values in the testing sets at 1, 3, and 5 years, with scores of 0.786, 0.819, and 0.813, respectively, as shown in Fig. 5A.
The IML also demonstrated superior accuracy (Fig. 5B) and F1 scores (Fig. 5C) for predicting 3- and 5-year survival compared to CML
and GML in the testing sets. These results were further supported by metrics such as precision (Fig. 5D). In terms of Recall value
(Fig. 5E), CML and GML performed better than IML. Logistic regression significantly outperformed other machine learning algorithms
among the IML models for 1-, 3-, and 5-year survival.

The most influential features from the IML models for predicting 1-, 3-, and 5-year survival were presented in SupFig. 2A–C. T
stages consistently emerged as the most significant predictor of survival across all time frames. Additionally, gene sets such as Unfolded
Protein Response (UPR), Epithelial-Mesenchymal Transitions (EMT), and PI3K/Akt/mTOR signaling (PI3KAM) were among the top
influential features, highlighting their importance in survival prediction.

Fig. 4. Clinical Data Machine Learning (CML) Models for Survival Prediction at 1, 3, and 5 Years in the Testing Dataset of SEER Database.
(A) AUC values for models predicting survival at 1, 3, and 5 years. (B) Accuracy values for models predicting survival at 1, 3, and 5 years. (C) F1
score values for models predicting survival at 1, 3, and 5 years. (D) Precision values for models predicting survival at 1, 3, and 5 years. (E) Recall
values for models predicting survival at 1, 3, and 5 years. Decision Tree (DT); LightGBM (LBM); Logistic Regression (LR); Random Forest (RF);
XGBoost (XGB).
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Fig. 5. Comparison of IML, CML, and GML based on AUC (A), accuracy (B), F1 score (C), precision (D), and recall (E) values for models predicting survival at 1, 3, and 5 Years in the testing sets.
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3.5. Comparison of IML with published prognostic signatures

To facilitate a rigorous comparison between the IML and other published prognostic signatures, we systematically reviewed BCa
literature over the past six years, incorporating 24 distinct signatures into our analysis (SupTable 3). These signatures cover various
biological processes, including platinum resistance, tumor microenvironment interactions, metabolic pathways, B cell involvement,
FGFR3 alterations, cell cycle dynamics, autophagy, focal adhesion, the TGF-β pathway, IFN-γ signaling, anoikis, CpG methylation,
aging, and pyroptosis. We employed the same training and testing datasets used for IML (Fig. 5A), including the same clinical variables
and modeling parameters, to ensure consistency across evaluations.

In the 1-year survival predictions, Signature 13 achieved the highest AUC at 0.791 (Fig. 6A). For 3-year predictions, Signature 15 led
with an AUC of 0.832 (Fig. 6B) and topped the five-year predictions with an AUC of 0.806 (Fig. 6C). By comparison, the IML signature
showed AUC values for 1, 3, and 5-year survival predictions of 0.786, 0.819, and 0.813, respectively (Fig. 5A), making it the best
performer in the five-year category and second best for the one-year predictions. Signatures 15, 10, 24, and 13 outperformed our IML
signature in the three-year predictions. Upon reviewing the original publications for these signatures, we discovered that they employed
TCGA and GEO datasets to identify significant prognostic genes. Notably, the testing sets used in this comparison study also come from
TCGA and GEO datasets, which might increase the performance of these signatures. Conversely, our IML signature derives from 50
hallmark gene sets sourced from the MSigDB website, and it does not utilize any selection steps for prognostic gene sets. In summary, our
study highlights the importance of independent validation and original datasets in assessing the efficacy of predictive models.

3.6. Relationship of GML and IML scores with prognosis

This section investigated the relationship between IML and GML scores and prognosis. The overall survival (OS) data were sourced
from two cohorts: the TCGA-BLCA cohort, comprising BCa patients who underwent surgery and chemotherapy, and the IMvigor
cohort, which included BCa patients treated with the PD-L1 antibody. In the TCGA-BLCA cohort, both GML and IML scores were
obtained due to the availability of expression data and clinical features. Conversely, in the IMvigor cohort, only GML could be pre-
dicted, as clinical features (age and TNM staging) were lacking. We utilized the GML and IML models to predict the scores of samples
and estimate the probability of death. The BCa samples were then classified into high and low groups based on the median value of the
IML or GML scores. We plotted their survival curves accordingly. The survival curves revealed that patients with high GML scores
exhibited a worse prognosis (Fig. 7A). Similarly, patients with high IML scores also showed a poorer prognosis (Fig. 7B). To further
evaluate the impact of the GML score on the effectiveness of immunotherapy, we analyzed the IMvigor cohort. This cohort contains the
data of patients treated with atezolizumab monotherapy (an anti-PD-L1 antibody). The group with lower scores demonstrated a better
prognosis (Fig. 7C), suggesting that the benefits of immunotherapy are more pronounced in this subgroup.

4. Discussion

Bladder cancer (BCa) represents a challenging medical condition with a diverse range of treatment modalities and varied prog-
nostic outcomes. Recent advances in machine learning have led to the development of models that identify numerous risk factors
related to tumor mortality, thereby enhancing the personalization of risk prediction. Accurate survival estimation is vital during
patient consultations and treatment decisions. Our study used data from the SEER database to develop models that predict survival
based on clinical features. However, these clinical variables could not capture the biological variance at the molecular level. To address
this limitation, we integrated data from the TCGA and GEO databases to perform an integrated machine learning (IML) analysis
combining clinical features and gene set data. The results of our integrated analysis are promising. We achieved AUC values of 0.786,
0.819, and 0.813 for predicting 1-year, 3-year, and 5-year survival, respectively. These performancemetrics highlight the robustness of
our model across various time intervals and demonstrate its utility in providing clinicians with critical insights into patient prognosis.
Using clinical and gene expression data, our model not only accurately predicts outcomes but also enhances the understanding of the
underlying biological mechanisms that drive tumor progression and response to treatment.

Our multivariate Cox regression analysis indicates that radiation therapy might negatively affect survival. Radiotherapy is a
curative treatment for muscle-invasive bladder cancer, employing high-energy ionizing radiation to induce cancer cell death [54]. The
primary objective of radiotherapy is to alleviate urinary symptoms associated with advanced cancer, such as hematuria. However, the
prognosis remains challenging, as approximately a quarter of patients receiving palliative bladder radiotherapy either discontinued
treatment or died within a month of initiation. According to a systematic review, radiotherapy has no clear benefit after radical surgery
in BCa [55]. Another study indicated that radiation therapy patients’ five-year OS rates are lower [56]. This adverse effect may be
associated with the selective depletion of lymphocytes following radiotherapy. Radiation-induced lymphopenia (RIL), which occurs in
approximately 70 % of patients undergoing external beam radiation therapy, has long been documented [57]. Studies have demon-
strated a significant detrimental prognostic association between lymphopenia and survival in patients receiving radiation therapy for
solid tumors [57,58]. Given these findings, the efficacy and safety of additional radiation therapy in treating BCa warrant further
investigation.

The present study successfully established machine learning models to predict the individualized survival probabilities of bladder
cancer (BCa) patients at critical time points of 1, 3, and 5 years post-treatment. These time points are crucial as they reflect the short-
term, medium-term, and long-term survival outcomes of BCa patients, offering valuable insights into the efficacy of treatment pro-
tocols. Studies usually used the nomogram based on the multivariate Cox analysis to predict the survival rate. However, machine
learning algorithms have significant advantages in accuracy compared to these statistical models. Our models outperformed the
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Fig. 6. Performance of published signatures for predicting survival status at 1, 3, and 5 Years in the testing sets.
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existing published signatures based on our comparative analysis results. Our research developed a model that integrates clinical and
gene sets data. To our knowledge, this study is the first to report on machine learning models that utilize clinical data and gene set
information to predict BCa survival at these specific time points. Integrating these diverse data types enhances the models’ predictive
accuracy and reliability, potentially setting a new standard in personalized cancer care.

Recent advances in Immune Checkpoint Blockade (ICB) therapy have demonstrated its potential to enhance survival rates in
various metastatic cancers, including BCa. However, a significant subset of BCa patients remains unresponsive to these treatments [6].
Our research revealed that low GML score BCa patients with high survival rates when treated with immunotherapy. This observation
underscores the potential of the GML score as a predictive biomarker for immunotherapy responsiveness. The GML score, a novel
metric derived from machine learning models, can differentiate between patients likely to benefit from immunotherapy versus those
who might not. This finding warrants further investigation to validate the GML score’s effectiveness in clinical applications and to
explore its implications for broader cancer treatment protocols.

In the TAGO database, the CML model for predicting 1-, 3-, and 5-year survival rates in the testing sets are AUC values of 0.732,
0.797, and 0.785, respectively. Notably, AUC values increased significantly from the 1-year to the 3-year before slightly decreasing at
the 5-year. A similar trend was observed in the IML model (AUC values of 0.786, 0.819, and 0.813 at 1, 3, and 5 years) from the same
database, presenting an unusual phenomenon where models are more accurate for predicting longer-term rather than shorter-term
survival. We propose several reasons for this observation: (1) The ratio of alive/deceased significantly impacts model performance.
For example, the training set is more ’balanced’ at the 3-year interval (171 alive vs. 201 deceased) compared to the 1-year (467 alive
vs. 92 deceased) and 5-year intervals (140 alive vs. 234 deceased). This suggests that the more imbalanced the dataset, the lower the
AUC value tends to be. Machine learning models often struggle to learn effectively from imbalanced data [59]. (2) In the TAGO
database, only 863 samples have survival follow-up data, and the training and testing sets are randomly divided at a 7:3 ratio. The
limited sample size and random division might influence model performance and contribute to this unusual phenomenon.

Our research has several limitations. First, essential clinical data, such as preoperative laboratory results, were unavailable, which
may have affected the predictive accuracy of the CML model. Developing a more comprehensive predictive model that includes these
elements is advisable. Second, the sample size based on gene set data is limited. Increasing the number of samples could significantly
improve these models’ robustness and predictive capabilities. Additionally, deep learning techniques have generally outperformed
traditional machine learning methods in various predictive applications. Therefore, incorporating deep learning techniques should be
considered in future studies. Finally, the role of medical imaging techniques, such as radiomics (e.g., CT scans) and pathomics (e.g.,
whole slide images), in predicting bladder cancer survival rates warrants further investigation. These imaging assessments could
substantially enhance the precision of future prognostic models, offering a more detailed approach to predicting patient outcomes in
bladder cancer.

5. Conclusions

To enhance the accuracy of our models by clinical data, gene expression data features were also incorporated alongside these
clinical variables. We constructed and validated machine learning models that estimate survival probabilities at 1, 3, and 5 years for
BCa patients. This integration allowed us to develop personalized prognosis prediction models for individual patients, facilitating more
informed clinical decision-making. It was observed that models incorporating clinical and gene expression data offered more accurate
survival estimates than models based solely on clinical or gene expression data. However, prospective studies are needed to perform
external validation of these models.

Fig. 7. Survival of GML and IML Scores in Different Cohorts. (A) The association of GML scores with overall survival (OS) in TCGA-BLCA cohort.
(B) The association of IML scores with OS in TCGA-BLCA cohort. (C) The association of GML score with OS in the cohort treated with immuno-
therapy. The p-values were calculated using the log-rank test, a nonparametric hypothesis test designed to compare the survival trends of two or
more groups amidst censored observations.
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[22] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo, J.P. Mesirov, Molecular signatures database (MSigDB) 3.0, Bioinformatics 27 (2011)
1739–1740, https://doi.org/10.1093/bioinformatics/btr260.

[23] J.C. Stoltzfus, Logistic regression: a brief primer, Acad. Emerg. Med. 18 (2011) 1099–1104, https://doi.org/10.1111/j.1553-2712.2011.01185.x.
[24] T. Yan, W. Xu, J. Lin, L. Duan, P. Gao, C. Zhang, et al., Combining multi-dimensional convolutional neural network (CNN) with visualization method for

detection of Aphis gossypii glover infection in cotton leaves using hyperspectral imaging, Front. Plant Sci. 12 (2021) 604510, https://doi.org/10.3389/
fpls.2021.604510.

[25] Y.-C. Wang, D.-J. Tsai, L.-C. Yen, Y.-H. Yao, T.-T. Chiang, C.-H. Chiu, et al., Clinical characteristics of COVID-19 patients and application to an artificial
intelligence system for disease surveillance, J. Clin. Med. 11 (2022) 1437, https://doi.org/10.3390/jcm11051437.

[26] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2016) 785–794, https://doi.org/10.1145/2939672.2939785.

[27] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., LightGBM: a highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2017. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011)
2825–2830.

[29] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, Curran Associates, Inc.,
2017. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.

[30] Y. Hao, C. Wang, D. Xu, Identification and validation of a novel prognostic model based on platinum resistance-related genes in bladder cancer, Int. Braz J. Urol.
49 (2023) 61–88, https://doi.org/10.1590/s1677-5538.ibju.2022.0373.

[31] Z. Wang, L. Tu, M. Chen, S. Tong, Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer, BMC
Cancer 21 (2021) 692, https://doi.org/10.1186/s12885-021-08447-7.

[32] X. Li, S. Fu, Y. Huang, T. Luan, H. Wang, J. Wang, Identification of a novel metabolism-related gene signature associated with the survival of bladder cancer,
BMC Cancer 21 (2021) 1267, https://doi.org/10.1186/s12885-021-09006-w.

[33] X. Liu, C. Chen, P. Xu, B. Chen, A. Xu, C. Liu, Development and experimental validation of a folate metabolism-related gene signature to predict the prognosis
and immunotherapeutic sensitivity in bladder cancer, Funct. Integr. Genomics 23 (2023) 291, https://doi.org/10.1007/s10142-023-01205-x.

[34] C. Huang, Y. Li, Q. Ling, C. Wei, B. Fang, X. Mao, et al., Establishment of a risk score model for bladder urothelial carcinoma based on energy metabolism-related
genes and their relationships with immune infiltration, FEBS Open Bio 13 (2023) 736–750, https://doi.org/10.1002/2211-5463.13580.

[35] L. Wei, L. Ji, S. Han, M. Xu, X. Yang, Construction and validation of a prognostic model of metabolism-related genes driven by somatic mutation in bladder
cancer, Front Biosci (Landmark Ed) 28 (2023) 242, https://doi.org/10.31083/j.fbl2810242.

[36] J. Zhou, R. Zhou, Y. Zhu, S. Deng, B. Muhuitijiang, C. Li, et al., Investigating the impact of regulatory B cells and regulatory B cell-related genes on bladder
cancer progression and immunotherapeutic sensitivity, J. Exp. Clin. Cancer Res. 43 (2024) 101, https://doi.org/10.1186/s13046-024-03017-8.

[37] R. Zhou, J. Zhou, B. Muhuitijiang, X. Zeng, W. Tan, Construction and experimental validation of a B cell-related gene signature to predict the prognosis and
immunotherapeutic sensitivity in bladder cancer, Aging (2023), https://doi.org/10.18632/aging.204753.

[38] G. Qu, Z. Liu, G. Yang, Y. Xu, M. Xiang, C. Tang, Development of a prognostic index and screening of prognosis related genes based on an immunogenomic
landscape analysis of bladder cancer, Aging (Albany, NY) 13 (2021) 12099–12112. https://doi.org/10.18632/aging.202917.

[39] T. Xu, W. Xu, Y. Zheng, X. Li, H. Cai, Z. Xu, et al., Comprehensive FGFR3 alteration-related transcriptomic characterization is involved in immune infiltration
and correlated with prognosis and immunotherapy response of bladder cancer, Front. Immunol. 13 (2022) 931906, https://doi.org/10.3389/
fimmu.2022.931906.

[40] W.-W. Shi, J.-Z. Guan, Y.-P. Long, Q. Song, Q. Xiong, B.-Y. Qin, et al., Integrative transcriptional characterization of cell cycle checkpoint genes promotes clinical
management and precision medicine in bladder carcinoma, Front. Oncol. 12 (2022) 915662, https://doi.org/10.3389/fonc.2022.915662.

[41] R. Cao, B. Ma, G. Wang, Y. Xiong, Y. Tian, L. Yuan, Identification of autophagy-related genes signature predicts chemotherapeutic and immunotherapeutic
efficiency in bladder cancer (BLCA), J Cellular Molecular Medi 25 (2021) 5417–5433, https://doi.org/10.1111/jcmm.16552.

[42] C. Shen, Y. Yan, S. Yang, Z. Wang, Z. Wu, Z. Li, et al., Construction and validation of a bladder cancer risk model based on autophagy-related genes, Funct.
Integr. Genomics 23 (2023) 46, https://doi.org/10.1007/s10142-022-00957-2.

[43] S. Liu, J. Zhai, D. Li, Y. Peng, Y. Wang, B. Dai, Identification and validation of molecular subtypes’ characteristics in bladder urothelial carcinoma based on
autophagy-dependent ferroptosis, Heliyon 9 (2023) e21092, https://doi.org/10.1016/j.heliyon.2023.e21092.

[44] J. Hu, L. Wang, L. Li, Y. Wang, J. Bi, A novel focal adhesion-related risk model predicts prognosis of bladder cancer —— a bioinformatic study based on TCGA
and GEO database, BMC Cancer 22 (2022) 1158, https://doi.org/10.1186/s12885-022-10264-5.

[45] Z. Liu, T. Qi, X. Li, Y. Yao, B. Othmane, J. Chen, et al., A novel TGF-β risk score predicts the clinical outcomes and tumour microenvironment phenotypes in
bladder cancer, Front. Immunol. 12 (2021) 791924, https://doi.org/10.3389/fimmu.2021.791924.

[46] H. Deng, D. Deng, T. Qi, Z. Liu, L. Wu, J. Yuan, An IFN-γ-related signature predicts prognosis and immunotherapy response in bladder cancer: results from real-
world cohorts, Front. Genet. 13 (2023) 1100317, https://doi.org/10.3389/fgene.2022.1100317.

[47] S. Zhu, Q. Zhao, Y. Fan, C. Tang, Development of a prognostic model to predict BLCA based on anoikis-related gene signature: preliminary findings, BMC Urol.
23 (2023) 199, https://doi.org/10.1186/s12894-023-01382-8.

[48] Y. Guo, J. Yin, Y. Dai, Y. Guan, P. Chen, Y. Chen, et al., A novel CpG methylation risk indicator for predicting prognosis in bladder cancer, Front. Cell Dev. Biol. 9
(2021) 642650, https://doi.org/10.3389/fcell.2021.642650.

[49] D. Wang, H. Ning, H. Wu, Y. Song, Y. Chu, F. Liu, et al., Construction and evaluation of a novel prognostic risk model of aging-related genes in bladder cancer,
Curr. Urol. 17 (2023) 236–245, https://doi.org/10.1097/CU9.0000000000000218.

[50] J. Zhao, C. Wu, Y. Wang, M. Li, Y. Jiang, Y. Luo, Identification of a pyroptosis related gene signature for predicting prognosis and estimating tumor immune
microenvironment in bladder cancer, Transl Cancer Res TCR 11 (2022) 1865–1879, https://doi.org/10.21037/tcr-22-177.

[51] J. Li, J. Cao, P. Li, Z. Yao, R. Deng, L. Ying, et al., Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical
analysis, BMC Cancer 21 (2021) 858, https://doi.org/10.1186/s12885-021-08611-z.

[52] F. Tang, Z. Li, Y. Lai, Z. Lu, H. Lei, C. He, et al., A 7-gene signature predicts the prognosis of patients with bladder cancer, BMC Urol. 22 (2022) 8, https://doi.
org/10.1186/s12894-022-00955-3.

[53] J. Chu, N. Li, F. Li, A risk score staging system based on the expression of seven genes predicts the outcome of bladder cancer, Oncol. Lett. (2018), https://doi.
org/10.3892/ol.2018.8904.

[54] S. Ashley, A. Choudhury, P. Hoskin, Y. Song, P. Maitre, Radiotherapy in metastatic bladder cancer, World J. Urol. 42 (2024) 47, https://doi.org/10.1007/
s00345-023-04744-x.

Y. Tang et al. Heliyon 10 (2024) e38242 

14 

https://doi.org/10.1158/1078-0432.CCR-11-2271
https://doi.org/10.1371/journal.pone.0038863
https://doi.org/10.1016/j.ccr.2014.01.009
https://doi.org/10.1038/nature25501
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1111/j.1553-2712.2011.01185.x
https://doi.org/10.3389/fpls.2021.604510
https://doi.org/10.3389/fpls.2021.604510
https://doi.org/10.3390/jcm11051437
https://doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
http://refhub.elsevier.com/S2405-8440(24)14273-9/sref28
http://refhub.elsevier.com/S2405-8440(24)14273-9/sref28
https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1590/s1677-5538.ibju.2022.0373
https://doi.org/10.1186/s12885-021-08447-7
https://doi.org/10.1186/s12885-021-09006-w
https://doi.org/10.1007/s10142-023-01205-x
https://doi.org/10.1002/2211-5463.13580
https://doi.org/10.31083/j.fbl2810242
https://doi.org/10.1186/s13046-024-03017-8
https://doi.org/10.18632/aging.204753
https://doi.org/10.18632/aging.202917
https://doi.org/10.3389/fimmu.2022.931906
https://doi.org/10.3389/fimmu.2022.931906
https://doi.org/10.3389/fonc.2022.915662
https://doi.org/10.1111/jcmm.16552
https://doi.org/10.1007/s10142-022-00957-2
https://doi.org/10.1016/j.heliyon.2023.e21092
https://doi.org/10.1186/s12885-022-10264-5
https://doi.org/10.3389/fimmu.2021.791924
https://doi.org/10.3389/fgene.2022.1100317
https://doi.org/10.1186/s12894-023-01382-8
https://doi.org/10.3389/fcell.2021.642650
https://doi.org/10.1097/CU9.0000000000000218
https://doi.org/10.21037/tcr-22-177
https://doi.org/10.1186/s12885-021-08611-z
https://doi.org/10.1186/s12894-022-00955-3
https://doi.org/10.1186/s12894-022-00955-3
https://doi.org/10.3892/ol.2018.8904
https://doi.org/10.3892/ol.2018.8904
https://doi.org/10.1007/s00345-023-04744-x
https://doi.org/10.1007/s00345-023-04744-x


[55] T. Iwata, S. Kimura, M. Abufaraj, F. Janisch, P.I. Karakiewicz, V. Seebacher, et al., The role of adjuvant radiotherapy after surgery for upper and lower urinary
tract urothelial carcinoma: a systematic review, Urol. Oncol.: Seminars and Original Investigations 37 (2019) 659–671, https://doi.org/10.1016/j.
urolonc.2019.05.021.

[56] Y. Yamamoto, A. Kawashima, T. Morishima, T. Uemura, A. Yamamoto, G. Yamamichi, et al., Comparative effectiveness of radiation versus radical cystectomy
for localized muscle-invasive bladder cancer, Advances in Radiation Oncology 8 (2023), https://doi.org/10.1016/j.adro.2022.101157.

[57] H. Paganetti, A review on lymphocyte radiosensitivity and its impact on radiotherapy, Front. Oncol. 13 (2023), https://doi.org/10.3389/fonc.2023.1201500.
[58] P.J.J. Damen, T.E. Kroese, R van Hillegersberg, E. Schuit, M. Peters, J.J.C. Verhoeff, et al., The influence of severe radiation-induced lymphopenia on overall

survival in solid tumors: a systematic review and meta-analysis, Int. J. Radiat. Oncol. Biol. Phys. 111 (2021) 936–948, https://doi.org/10.1016/j.
ijrobp.2021.07.1695.

[59] M. Zheng, F. Wang, X. Hu, Y. Miao, H. Cao, M. Tang, A method for analyzing the performance impact of imbalanced binary data on machine learning models,
Axioms 11 (2022) 607, https://doi.org/10.3390/axioms11110607.

Y. Tang et al. Heliyon 10 (2024) e38242 

15 

https://doi.org/10.1016/j.urolonc.2019.05.021
https://doi.org/10.1016/j.urolonc.2019.05.021
https://doi.org/10.1016/j.adro.2022.101157
https://doi.org/10.3389/fonc.2023.1201500
https://doi.org/10.1016/j.ijrobp.2021.07.1695
https://doi.org/10.1016/j.ijrobp.2021.07.1695
https://doi.org/10.3390/axioms11110607

	Improve clinical feature-based bladder cancer survival prediction models through integration with gene expression profiles  ...
	1 Introduction
	2 Methods
	2.1 Data sources
	2.1.1 The database for clinical data machine learning (CML)
	2.1.2 The database for gene expression machine learning (GML) and Integrated Clinical Data and Gene Expression Machine Lear ...

	2.2 Data preprocessing
	2.2.1 Preprocessing of data from SEER
	2.2.2 Preprocessing of data from TAGO

	2.3 Gene set variation analysis (GSVA)
	2.4 Machine learning Prepare on clinical and gene set variables
	2.5 Machine learning training and validation
	2.6 Visualization of importance values of features in models
	2.7 Comparison of prognostic signatures
	2.8 The relationship of model score with prognosis

	3 Results
	3.1 Demographic baseline characteristics of SEER
	3.2 Prognostic factor analysis
	3.3 CML Models for Survival Prediction in SEER
	3.4 Comparison of CML models, GML, and IML models in TAGO
	3.5 Comparison of IML with published prognostic signatures
	3.6 Relationship of GML and IML scores with prognosis

	4 Discussion
	5 Conclusions
	Data availability
	Funding statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


