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Abstract: Tumor cell invasion depends largely on degradation of the extracellular matrix (ECM) by
protease-rich structures called invadopodia, whose formation and activity requires the convergence
of signaling pathways engaged in cell adhesion, actin assembly, membrane regulation and ECM
proteolysis. It is known that β1-integrin stimulates invadopodia function through an invadopodial
p(T567)-ezrin/NHERF1/NHE1 signal complex that regulates NHE1-driven invadopodia proteolytic
activity and invasion. However, the link between β1-integrin and this signaling complex is unknown.
In this study, in metastatic breast (MDA-MB-231) and prostate (PC-3) cancer cells, we report that
integrin-linked kinase (ILK) integrates β1-integrin with this signaling complex to regulate invadopo-
dia activity and invasion. Proximity ligation assay experiments demonstrate that, in invadopodia,
ILK associates with β1-integrin, NHE1 and the scaffold proteins p(T567)-ezrin and NHERF1. Ac-
tivation of β1-integrin increased both invasion and invadopodia activity, which were specifically
blocked by inhibition of either NHE1 or ILK. We conclude that ILK integrates β1-integrin with the
ECM proteolytic/invasion signal module to induce NHE1-driven invadopodial ECM proteolysis and
cell invasion.
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1. Introduction

Dissemination of metastatic cells to distant sites is the leading cause of cancer fatality,
underlying the need for new therapeutic approaches specifically focusing on invasive
tumor cell spreading [1]. However, our limited understanding of invasion has impeded
the development of anti-metastatic therapies [2–6]. Successful invasion processes require
changes in tumor cell adhesion properties, cell motility and proteolytic remodeling of the
extracellular matrix (ECM). It is now well-established that metastatic cells have plasma
membrane structures dedicated to driving their increased invasion, called invadopodia.
Invadopodia drive cancer cell dissemination through localized proteolytic degradation
of the ECM [7–15], which has been shown to drive invasion and metastasis, making
the understanding of their dynamics crucial to the design of efficient treatments against
metastasis [6,16–19].

Integrins are the main cell adhesion receptors for ECM components. They are het-
erodimeric transmembrane receptors composed of an α and a β subunit. Integrin engage-
ment with a substrate may trigger the recruitment of specific signaling, scaffolding and cy-
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toskelatal proteins, thereby promoting cancer cell invasion and metastasis [15,20,21]. In can-
cer cells, activation of β1-integrin increases invadopodia-driven ECM degradation [20,21],
and recent work has made it clear that β1-integrin is required for invadopodium stability
through adhesion to the ECM and activation of actin polymerization [15,22,23]. β1-integrin
initiates invadopodia, promotes their maturation by interacting with the tyrosine kinase,
Arg, to phosphorylate cortactin [23,24] and directly recruits the EGFR to a shared lipid
raft complex in the invadopodia membrane, where it is restrained by binding the phos-
phorylated form of the scaffolding protein NHERF1 [25,26]. Additionally, β1-integrin
adhesion to the ECM also promotes active, invadopodia focal ECM proteolysis through the
phosphorylation of ezrin at T567 [25]. This results in the formation of a “protein–protein”
signal complex dedicated to the regulation of invadopodial proteolytic function and sub-
sequent invasive and metastatic potential: the β1-integrin/p-ezrin/NHE1/p-NHERF1
“invadosome” localized in invadopodia that regulates their Na+/H+ exchanger type 1
(NHE1)-driven proteolytic activity [25,27,28].

It is now well-known that the NHE1 is localized in invadopodia and drives β1-
integrin-stimulated invadopodia formation and proteolytic activity, firstly, through the
acidification of the extracellular nanospace around invadopodia which drives ECM pro-
teolysis [29] and, secondly, through the alkalinization of the invadopodial cytosol which
causes the release of cofilin from cortactin to stimulate the dynamic process of invadopodia
protrusion [30,31]. Invadopodia-dependent invasion is activated by both EGF [29,31–33]
and tumor hypoxia [34] through their stimulation of invadopodial NHE1. However, how
β1 signaling is connected to NHE1-driven invadopodia activity promoting tumor invasion
is still not completely understood, making the elucidation of the basic mechanisms of
invadopodia-driven tumor invasion a major challenge in tumor biology [7,9,10,35].

A candidate could be the scaffolding protein, integrin linked kinase (ILK), a ki-
nase that, by directly interacting with the β1-integrin cytoplasmic domain, links β1-
integrin to down-stream signal systems. ILK is over-expressed in aggressive human
tumors, promotes cellular transformation, cell survival, epithelial mesenchymal tran-
sition (EMT) and metastasis and is associated with poor prognosis [15,36–40] (https:
//www.proteinatlas.org/ENSG00000166333-ILK/; accessed on 28 January 2021). More-
over, a role of ILK in the maturation of invadopodia into degradative protrusions has been
demonstrated. Specifically, knocking-down ILK protein levels with small hairpin RNA led
to a reduction in membrane type-I matrix metalloproteinase (MMP) trafficking to invadopo-
dia and of their degradation of the ECM [41–43]. On the contrary, ILK-knockdown no
longer affected invadopodia formation and stability in integrin-inhibited cells, indicating
the critical role of ILK in mediating integrin-dependent invadopodia function. However,
its specific mechanism(s) of action involved in driving integrin-dependent invadopodia
function has not been described.

In this study, we explored the possibility that β1-integrin–ILK signaling may act as a
master integrator of the invadopodia protein–protein complex that regulates invadopodia
proteolytic function and subsequent invasion through the activity of NHE1. We observed
that ILK is expressed in invadopodia of invasive breast and prostate cancer cells where
it forms protein–protein complexes with NHE1, β1-integrin, NHERF1 and ezrin phos-
phorylated at T567. Furthermore, ILK regulated both β1-integrin- and NHE1-driven
invadopodial ECM proteolysis and cell invasion, thus promoting an invasive phenotype
in breast and prostate cancer cells in vitro by coordinating an ECM proteolytic/invasion
signal module.

The present study adds ILK as an essential component in the molecular mechanisms
driving cancer cell invasion, making it a potential marker for pre-symptomatic cancers and
exploitable as a therapeutic target in those cancers.

https://www.proteinatlas.org/ENSG00000166333-ILK/
https://www.proteinatlas.org/ENSG00000166333-ILK/
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2. Results
2.1. ILK Co-Localizes with β1-Integrin, NHERF1, p-Ezrin and NHE1 at Sites of Focal ECM
Proteolysis

We started by analyzing the direct associations between ILK, β1-integrin p-ezrin,
NHE1 and NHERF1 at proteolytically active invadopodia, utilizing in situ proximity lig-
ation assay (in situ PLA), which can measure endogenous protein–protein interactions
occurring within 40 nm (please see Materials and Methods for further description). In-
vadopodia ECM proteolysis was visualized using a protocol based on the degradation-
dependent release of fluorescence of a quenched fluorophore (DQ Green-BSA) dissolved in
Matrigel, where proteolysis of the ECM was measured as the amount of focal fluorescence
unquenched by proteolysis [29]. When measured with high-resolution microscopy, this
allowed for simultaneous quantification and mapping of focal proteolytic activity, which
permitted a more exact co-localization between focal digestion and proteins, or protein
complexes, of interest. As an experimental system, we used MDA-MB-231 and PC-3 can-
cer cells, two cell lines derived from metastatic lesions of breast and prostate carcinoma,
respectively, which are considered to be models of advanced, aggressive cancer.

We first examined the co-expression of ILK with each of the above proteins and their
association with ECM focal digestion using epifluorescence in cells cultured for 6 h on DQ
Green-BSA-Matrigel. As can be seen in Figure 1, ILK co-localized with β1-integrin, NHE1,
NHERF1 and p-ezrin, principally in areas of focal ECM proteolysis in both breast MDA-MB-
231 (Figure 1A) and prostate PC-3 (Figure 1B) cancer cells. Analysis of the protein–protein
co-localization PLA signal (PLA co-localization index) demonstrated that ILK highly co-
localized with β1-integrin and p(T567)-ezrin, suggesting that these two protein pairs were
very close to each other in the complex and were expressed in all the invadopodia. The co-
localization index of the PLA pairs ILK/NHE1 and ILK/NHERF1 were lower in each cell
line, suggesting that these two proteins were further away from ILK in the protein–protein
complex than were p-ezrin and β1-integrin. Furthermore, Li’s intensity correlation quotient
(ICQ) analysis of the images [29] revealed high co-dependence between the distribution
of the various PLA complexes and the DQ-BSA proteolysis signal (ICQ = 0.403 ± 0.015;
0.381 ± 0.021; 0.314 ± 0.019 and 0.334 ± 0.015 (n = 5 independent fields, p < 0.001) for
ILK-β1-integrin, ILK-p-ezrin, ILK-NHERF1 and ILK-NHE1, respectively).

NHE1 and p(T567)-ezrin play an important role in regulating the function of invadopo-
dia [25,29]. To further explore the structure of these protein–protein signal complexes within
invadopodia, we next examined the co-expression of ILK with NHE1 and p(T567)-ezrin
using confocal microscopy. This permitted the reconstruction of invadopodia and determi-
nation of the co-localization of ILK-NHE1 and ILK-p-ezrin with focal ECM proteolysis at a
finer scale. As seen in Figure 2, ILK highly co-localized with both NHE1 and p(T567)-ezrin
within invadopodia structures as visualized by the strong co-localization of the complexes
with the focal ECM proteolysis of both MDA-MB-231 (Figure 2A) and PC-3 (Figure 2B)
cells. Z sectioning and 3D reconstruction (alpha blending), together with RGB analysis,
revealed that invadopodia were approximately 1 µm in diameter and 3–5 µm in length and
that ILK co-localization with both NHE1 and p(T567)-ezrin occurred within the structures
of invadopodial focal digestion.

Altogether, these data suggest that stimulation of cancer cells to develop invadopodia
by plating on ECM occurs through the formation of a protein–protein complex formed by
β1-integrin, ILK, p(T567)-ezrin, NHERF1 and NHE1.
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Figure 1. ILK formed protein–protein complexes with β1-integrin receptor, p-ezrin, NHERF1 and NHE1 in areas of focal 
digestion of Matrigel in MDA-MB-231 (A) and PC-3 (B) cells. To better visualize invadopodial focal digestion and protein–
protein complex localization in Matrigel, we utilized PLA for each protein–protein complex together with in situ zymogra-
phy using the quenched fluorescent substrate, DQ Green-BSA. Therefore, quantifiable fluorescence was released only 
upon digestion of the matrix. After the cells digested the fluorogenic substrate (green), the cells were fixed for subsequent 
PLA analysis (red). The white arrows indicate areas of co-localization of BSA-Bodipy with the PLA signal. The histograms 
display the analysis of co-localization of ILK with the other proteins (PLA co-localization index) in the specific area of focal 
proteolysis in ECM digesting cells. Mean ± S.E.M., n = 6, ns: non-significant, **p < 0.01, ***p < 0.001 for co-localization index 
compared to the ILK-β1 PLA analysis. 
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olysis at a finer scale. As seen in Figure 2, ILK highly co-localized with both NHE1 and 
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3 (Figure 2B) cells. Z sectioning and 3D reconstruction (alpha blending), together with 
RGB analysis, revealed that invadopodia were approximately 1 µm in diameter and 3-5 
µm in length and that ILK co-localization with both NHE1 and p(T567)-ezrin occurred 
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Figure 1. ILK formed protein–protein complexes with β1-integrin receptor, p-ezrin, NHERF1 and NHE1 in areas of
focal digestion of Matrigel in MDA-MB-231 (A) and PC-3 (B) cells. To better visualize invadopodial focal digestion and
protein–protein complex localization in Matrigel, we utilized PLA for each protein–protein complex together with in situ
zymography using the quenched fluorescent substrate, DQ Green-BSA. Therefore, quantifiable fluorescence was released
only upon digestion of the matrix. After the cells digested the fluorogenic substrate (green), the cells were fixed for
subsequent PLA analysis (red). The white arrows indicate areas of co-localization of BSA-Bodipy with the PLA signal.
The histograms display the analysis of co-localization of ILK with the other proteins (PLA co-localization index) in the
specific area of focal proteolysis in ECM digesting cells. Mean ± S.E.M., n = 6, ns: non-significant, ** p < 0.01, *** p < 0.001
for co-localization index compared to the ILK-β1 PLA analysis.
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Figure 2. ILK formed protein–protein complexes with NHE1 and p-ezrin within invadopodia in MDA-MB-231 (A) and 
PC-3 (B) cells. Cells seeded on Matrigel were allowed to digest the green fluorogenic substrate (DQ) and PLA co-localiza-
tion assays after fixation. Confocal images in axial planes taken at the bottom of the cells (XY) of a typical region showed 
protein–protein complexes (red) and digestion (green) localization. In each field, zoomed sections (XZ) reconstructed by 
alpha blending analysis of the indicated regions of interest (white box) are shown on the right. Importantly, protein–
protein complexes (red) and digestion (green) were co-localized in protrusive digestive structures on the ventral cell sur-
face. Scale bars = 10 µm (XY) and 5 µm (XZ). 

Figure 2. ILK formed protein–protein complexes with NHE1 and p-ezrin within invadopodia in MDA-MB-231 (A) and
PC-3 (B) cells. Cells seeded on Matrigel were allowed to digest the green fluorogenic substrate (DQ) and PLA co-localization
assays after fixation. Confocal images in axial planes taken at the bottom of the cells (XY) of a typical region showed
protein–protein complexes (red) and digestion (green) localization. In each field, zoomed sections (XZ) reconstructed by
alpha blending analysis of the indicated regions of interest (white box) are shown on the right. Importantly, protein–protein
complexes (red) and digestion (green) were co-localized in protrusive digestive structures on the ventral cell surface. Scale
bars = 10 µm (XY) and 5 µm (XZ).
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2.2. Role of ILK and NHE1 in Regulating β1-Integrin-Driven Invadopodia Proteolytic Activity

The results depicted in Figure 2 demonstrated strong co-localization of the β1-integrin-
ILK-NHE1 complex with focal ECM proteolysis. To further confirm the regulatory role
of this protein–protein complex in cancer cell invasion, we assessed global invadopodia-
mediated ECM proteolysis as described in the Materials and Methods. Cells that had been
seeded on DQ-labeled Matrigel were treated as follows: 5 mg/mL of either a β1-integrin
activating antibody (P4G11) or inhibiting antibody (P5D2) in the absence or presence of
5 µM of the ILK inhibitor, Cpd22, or 5 µM of the specific NHE1 inhibitor, cariporide, with
typical experiments for control and cariporide-treated cells shown in Figure 3A.
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Figure 3. ILK and NHE1 activity are necessary for β1-integrin-driven invadopodia proteolytic activity. To examine the
role of NHE1 and ILK in invadopodial-dependent focal digestion of the ECM, MDA-MB-231 and PC3 cells were plated
on Matrigel with DQ-Green BSA and, 1 h later, were treated with either the NHE1 inhibitor, ILK inhibitor, β1-integrin
inhibiting antibody or β1-integrin activating antibody, with the β1-integrin activating antibody added in either the presence
or the absence of the specific NHE1 or ILK inhibitor. After 24 h, ECM digestion was analyzed using fluorescence microscopy
for a series of individual cells as described in the Materials and Methods. (A) Typical experiment showing control and
cariporide-treated cell. (B) Histograms showing Mean ± S.E.M., n = 4, ** p < 0.05, *** p < 0.001 for focal proteolysis compared
to the control cells.
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Analysis of Matrigel proteolysis revealed that both breast (Figure 3B, left panel)
and prostate (Figure 3B, right panel) cancer cell lines responded similarly to β1-integrin
activation (P4G11 antibody) or inhibition (P5D2 antibody) alone and in combination with
the inhibition of ILK (Cpd22, 5 µM) or NHE1 (cariporide, 5 µM). Inhibition of β1-integrin
reduced focal invadopodia proteolytic activity by about 65% in MDA-MB-231 and 55% in
PC-3 cells, while inhibition of ILK alone reduced this proteolysis by about 70% in both cell
lines. Stimulation of β1-integrin increased invadopodia proteolytic activity almost twofold
in both cell lines, and the simultaneous inhibition of either ILK or NHE1 together with
β1-integrin stimulation blocked this increased activity to levels similar to ILK or NHE1
inhibitors alone.

2.3. ILK and NHE1 Mediate β1-Integrin-Driven Invasion

Considering the above role of β1, ILK and NHE1 in regulating invadopodia-mediated
ECM proteolysis, we next tested their role in invasion using a 3D invasion assay where the
cells had to cross a thick layer of Matrigel. As can be seen in Figure 4, in invasion, both breast
(left panel) and prostate (right panel) cell lines also responded similarly to β1-integrin
activation (P4G11 antibody) or inhibition (P5D2 antibody) alone and in combination
with the inhibition of ILK (Cpd22, 5 µM) or of NHE1 (cariporide, 5 µM). Inhibition of
β1-integrin reduced invasion levels by about 0.65% in MDA-MB-231 and 55% in PC-3
cells, while inhibition of ILK alone reduced invasion by about 70% in both cell lines.
Stimulation of β1-integrin increased invasive activity by about 40% in both cell lines, and
the simultaneous inhibition of either ILK or NHE1 together with β1-integrin stimulation
blocked this increased invasion to levels only slightly higher than that of the ILK or NHE1
inhibitors alone.
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Figure 4. ILK and NHE1 activity are necessary for β1-integrin-driven invasion. To examine the roles
of ILK and NHE1 in an invasive capacity, MDA-MB-231 and PC3 cells were stimulated with the β1
integrin activating antibody and treated with either the ILK inhibitor or the β1 integrin inhibiting
antibody in the presence or absence of the specific NHE1 inhibitor, cariporide. Cell invasion was
analyzed quantitatively by fluorescent labeling of cells that had traversed 8 µm polycarbonate
membranes coated with 5 mg/mL Matrigel (Chemicon Int., Livermore, CA, USA) as described in the
Materials and Methods. Mean ± S.E.M., n = 4, *** p < 0.001 compared to control cells.
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Altogether, these data suggest that cancer cells develop functional invadopodia and
perform subsequent invasion by establishing a compartmentalized, functional “signalsome”
inside invadopodia, composed of β1-integrin, ILK, NHE1, p-ezrin and p-NHERF1. These
data demonstrate that ILK functionally participates in the well-known β1-integrin/NHE1
protein complex regulation of invadopodia activity. Figure 5 shows a model of the possible
structure of this invadopodial protein–protein signalsome.
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Figure 5. Model of the localization and role of ILK in NHE1-driven invadopodia formation and
function. The insert is a magnification of the cellular membrane extrusion, the invadopodia, into the
ECM. Invadopodia are F-actin-enriched membrane protrusions responsible for ECM degradation,
whose formation is activated by β1-integrin binding to the ECM. This results in β1-integrin binding
to and its activation of ILK and in the phosphorylation of the adapter protein, ezrin, at threonine 567.
P-ezrin binds to NHE1 and the cytoskeleton and shifts the complex to PIP2-rich lipid rafts where
NHE1 is activated [25]. NHE1, with its two functions as a scaffolding protein and ion exchanger,
leads to membrane protrusion and proteolysis. As a proton transporter, NHE1 promotes invasion
through its control of the acidification of the peri-invadopodial space, where NHE1 proton-secreting
activity and proteases act in concert to degrade the ECM during invasion. The proteases cathepsin B,
D and L, urokinase plasmogen activator and the matrix metalloproteinases MMP-2 and MMP-9 are
released extracellularly, while MT1-MMP is associated with the membrane and participates, together
with cathepsin B, in the processing of inactive pro-MMP-2 into active MMP-2. Glycolytic enzymes
are enriched in invadopodia, leading to the localized production of intracellular protons secreted
via active NHE1, resulting in peri-invadopodial acidification favorable for the activity of the various
proteases localized in this sub-cellular region. Furthermore, the NHE1-dependent alkalinization of
the invadopodia cytosol results in phosphorylation of cortactin with subsequent release of cofilin,
which promotes actin polymerization, growth of the invadopodia cytoskeleton and invadopodia
protrusion. NHE1 also promotes invadopodial formation via its interaction with the cytoskeleton
through binding to the actin-anchoring protein, phospho-ezrin.
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3. Discussion

One of the primary spatial cues leading to the formation of invadopodia, degradation
of the underlying ECM via focal proteolysis and permission of tumor cell invasion is
the activation of β1-integrin through cell-substrate adhesion [7–14]. We have previously
identified a signaling complex that links the binding of β1-integrin to the ECM to the
assembly of a p(T567)-ezrin/p-NHERF1 signal protein complex, which activates NHE1
and subsequent invadopodia formation and proteolytic activity [25,28,29,33,44]. However,
the structural mechanisms by which β1-integrin and this signalsome are functionally
interconnected in invadopodia have only started to be defined.

While in vitro studies have demonstrated that ILK increases invasion and metastasis
(see Introduction), the precise mechanism(s) involved in its role in driving metastasis
are unknown. Therefore, we determined ILK expression in invadopodia, its association
with other invadopodial proteins and its role in mediating both invadopodia proteolytic
function and invasion. In particular, we aimed to elucidate the role of ILK in the invadopo-
dial β1-integrin receptor-promoted p(T567)-ezrin/p-NHERF1/NHE1 complex in driving
invadopodial proteolysis and invasion.

In this study, we demonstrated that through binding to the ECM, the β1-integrin re-
ceptor promotes its association with ILK, facilitating the formation of a protein–protein β1-
integrin/p(T567)-ezrin/NHERF1/NHE1 signaling complex that promotes NHE1-dependent
invadopodia formation and proteolytic activity [11,29,31]. This preferential invadopodia
co-localization of ILK with β1-integrin, its adapter proteins (p-ezrin and NHERF1) and the
integrator/driver protein, NHE1, was firstly identified by combining PLA measurements
of ILK associated with the different signalsome components with the in situ assay for
invadopodial focal ECM proteolysis. We found that, within the areas of focal invadopodial
ECM proteolysis, ILK most stringently associated with the β1-integrin and p(T567)-ezrin
components of the complex and somewhat less stringently with NHERF1 and NHE1 to
finely regulate the development and function of invadopodia. These data were then con-
firmed by confocal microscopy combined with PLA, in which we observed the localization
of PLA protein–protein pairs within the reconstructed invadopodial complex (Figure 2).

Lastly, we determined the role of ILK in this signaling cassette in regulating invadopo-
dia proteolytic action (Figure 3) and invasive capacity (Figure 4) by using inhibitors of both
ILK (Cpd22) and NHE1 (cariporide) together with either an activator (P4G11) or an inhibitor
(P5D2) of β1-integrin. We found that specific activation of β1-integrin with an activating
antibody (P4G11) stimulated both invadopodia-dependent focal proteolysis (Figure 3) and
invasion (Figure 4) that were abrogated by the pharmacological inhibition of both ILK and
NHE1. The hypothesis that invasion is driven in breast and prostate cancer cells, at least in
part, through the invadopodia was further supported by the similar regulatory pattern of
ECM proteolysis with invasion. The human cell lines used in this study were either p53-
null (PC-3) or contained a mutant p53 (MDA-MB-231). Future experiments performed in
invasive cancer cells containing wild-type p53 will allow for the assessment of whether loss
of p53 plays a role in the structural and functional definition of the β1-integrin-dependent
signalsome in invadopodia. Because this study was conducted in 2D, it does not provide
details on whether the invadopodial β1-integrin/ILK/NHE1/p(T567)-ezrin/NHERF1
signalsome is constitutively present and/or equally functional during essential steps of
the metastatic cascade, i.e., cancer cell local invasion, intravasation and extravasation.
Future studies performed in animal models will establish the in vivo significance of the
invadopodial signalsome during metastatic dissemination.

Altogether, these data demonstrate that ILK functionally participates in the forma-
tion of a compartmentalized functional “signalsome” composed of β1-integrin, NHE1,
p(T567)-ezrin and NHERF1 that drives invadopodial proteolytic activity and subsequent
invasion. We believe that ILK is a potential marker for the detection and identification
of pre-metastatic cancers and, therefore, could be exploited as an anti-metastasic target
in these cancers. A model of the possible structure of this invadopodial protein–protein
signalsome is presented in Figure 5 and the Graphical Abstract.
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4. Materials and Methods
4.1. Cell Culture and Transfection of Constructs

MDA-MB-231 cells [45] and PC-3 cells [46] were cultured as previously described.
The ILK inhibitor, Cpd22, was purchased from EMD Millipore (Burlington, MA, USA).
The NHE1 inhibitor (cariporide) and β1-integrin activating (P4G11) and inhibitory (P5D2)
antibodies were purchased from Santa Cruz Biotechnology, (Santa Cruz, CA, USA).

4.2. Matrigel Layer Preparation and Invadopodia Activity Assay Using In Situ Zymography

Experiments were conducted in 4 mg/mL Matrigel containing a quenched BODIPY
linked to BSA (DQ-Green BSA) as previously described [29]. Focal proteolysis produced
fluorescence on a black background which was used both to quantify proteolytic activity
levels and in co-localization analysis. The quantity of invadopodia activity was determined
with the following measurements: (i) percent of cells with active invadopodia, (ii) number
of invadopodia per active cell and (iii) pixel density of digestion performed by individual
invadopodia. The mean total actual invadopodia proteolytic activity for 100 cells was
then calculated as follows: invadopodial index = percentage of invadopodia-positive cells
(proteolytically active areas also positive for both actin/cortactin) × mean pixel density of
invadopodia/cell.

4.3. Invasion across Matrigel Layer in Boyden Chambers

A quantitative measure of in vitro invasion was assayed by cells traversing an 8 µm
polycarbonate membrane coated with 5 mg/mL Matrigel (Chemicon Int., Livermore,
CA, USA) as previously described [47]. Cell fluorescence was read using a Cary Eclipse
fluorescence plate reader (Varian) at 480/520 nm.

4.4. Proximity Ligation Assay

To analyze the potential direct association between ILK, β1-integrin, NHE1, p(T567)-
ezrin and NHERF1, we used an in situ proximity ligation assay (in situ PLA) (Duolink
II Kit; Sigma-Aldrich, Arklow, Ireland), which can detect endogenous protein–protein
interactions that occur within 40 nm [48] and provides a fluorescent signal (red) only when
the two target proteins are co-localized. The advantages of PLA are that it has greatly
improved sensitivity for establishing endogenous protein–protein interactions and gives
in situ information about whether these co-localizations occur in specific intracellular
compartments. PLA complexes were detected either with a Nikon TE 2000S epifluores-
cence microscope, equipped with a MicroMax 512BFT CCD camera (Princeton Instruments,
Trenton, NJ, USA) using a Nikon lamp shutter with a mercury short-arc photo-optic HBO
103 W/2 lamp for excitation (OSRAM GmbH, Augsburg, Germany) or, at 600× magnifica-
tion in oil immersion, with a laser scanning confocal microscope (LSCM) (C1/TE2000-U;
Nikon Instruments SpA, Sesto Fiorentino, FI, Italy), equipped with He/Ne 633 and Argon
488 lasers with 495–519 (B2-A) and 642–660 (Cy5) nm excitation filters. All images were
taken under Plan Apo 60XA/1.40 NA oil objective (Nikon, Japan), and scanning was con-
ducted with 25–30 optical series from the top to the bottom of the cell with a 0.45 µm step
size. Parameters related to fluorescence intensity were maintained at constant values in all
measurements. The tighter the association of the two proteins, the higher the number of
positive points per cell and the percentage of cells positive for the signal. Therefore, mean
pixel density for each cell was the sum of all points contained in that cell. The quantity
of co-localization was determined with the following measurements: (i) pixel density of
co-localization and (ii) percent of cells with co-localization. From these measures, the mean
total co-localization for 100 cells was calculated as follows: co-localization index = percent-
age of co-localization-positive cells × mean pixel density of co-localized points/cell. This
analysis was combined with the Matrigel degradation assay described above to measure
invadopodia-driven ECM digestion. To determine the potential direct association between
ILK, β1-integrin, NHE1, p(T567)-ezrin and NHERF1 at proteolytically active invadopodia,
we analyzed the overlap of PLA signal and proteolysis signal with Li’s intensity correlation
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quotient (ICQ) analysis [29] of the images in Figure 1 and the 3D reconstruction of the
invadopodia in confocal microscopy (Figure 2). The ICQ of cells in five independent fields
for each cell type and treatment was calculated using the JACoP image analysis package
plugin in ImageJ. ICQ values were near zero when apparent co-localization was due to
random staining or very high intensities in one window, while if the two intensities were
interdependent (co-localized), the values were positive with a maximum of 0.5. In addition
to being useful for identifying potential low-affinity interactions within protein complexes
that may be missed in high-affinity co-immunoprecipitation or pull-down experiments,
ICQ analysis provides information on cellular localization of the signals.

4.5. Image Analysis

For every image, a Z-stack was acquired using the Metamorph software (Universal
Imaging Corp, West Chester, PA, USA), and every three-color stack (red, green and blue)
was the sum of the three stacks (one for each color) acquired separately in black and
white (B/W). Before image analysis, each stack was deconvolved using the AutoDeblur 9.1
function of the AutoQuant software (Troy, NY, USA) and then merged by transforming the
three channels corresponding to red, green and blue into a single two-color stack using
the ‘RGB merge’ command of the ImageJ software. To verify co-localization, the three
separate B/W stacks were analyzed with the “co-localization” plugin of ImageJ with a ratio
of 97 and threshold of 50 for both channel 1 and 2. Then, selecting the “co-localized points
(8 bit)” option, a new stack was obtained where the co-localized pixels appeared white
on a black background, which was then converted into a voxel-gradient (VG) using the
shading function of AutoVisualize (AutoQuant software, Troy, NY, USA) for observation of
the 3D co-localization zones in a volume.

The random or co-dependent nature of the above calculated “apparent” dye-overlap
co-localizations was tested using Li’s intensity correlation quotient (ICQ) as described above.

4.6. Statistical Procedures

In the in vitro experiments, an unpaired Student’s t-test was applied to analyze the
statistical significance between treatments, in which p < 0.05 was considered significant.
All comparisons were performed with InStat (GraphPad Software, San Diego, CA, USA).
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