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Abstract: We developed and validated a screening method for mycotoxin analysis in cereal products
and spices. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry
(UHPLC–MS/MS) was used for the analysis. Dispersive solid-phase extractions (d-SPEs) were used
for the extraction of samples. Ochratoxin A (OTA), zearalenone (ZEA), aflatoxins (AFLA; AFB1, AFB2,
AFG1, AFG2), deoxynivalenol (DON), fumonisin (FUMO; FB1, FB2, FB3), T2, and HT2 were validated
in maize. AFLA and DON were validated in black pepper. The method satisfies the requirements of
Commission Regulation (EC) no. 401/2006 and (EC) no. 1881/2006. The screening target concentration
(STC) was under maximum permitted levels (MLs) for all mycotoxins validated. The method’s
performance was assessed by two different proficiencies and tested with 100 real samples.

Keywords: mycotoxin; QuEChERS; LC–MS/MS; spices; cereals

1. Introduction

Mycotoxins represent a group of secondary metabolites with different pharmaco-
logical and toxicological aspects [1]. Alkaloids of Claviceps purpurea such as ergotamine,
ergometrine, and semi-synthesis derivate have been used in the therapy of Parkinson’s
disease, post-partum hemorrhage, and hemicrania [2]. The toxicological effects of other
mycotoxins, such as aflatoxins (AFLA; AFB1, AFB2, AFG1, AFG2), fumonisin (FUMO; FB1,
FB2, FB3), deoxynivalenol (DON), T-2, and HT-2, have been well documented and studied
in the literature [3–6].

Mycotoxicosis is a human and animal disease caused by ingestion, inhalation, or skin
contact of mycotoxins [7]. The symptoms, target organ of systemic toxicity, and clinical
outcome depend on several parameters such as type of mycotoxins, intake levels, time,
and route of exposures [8]. Mycotoxicosis can be acute or chronic, and different symptoms
characterize these two forms.

AFB1, AFB2, AFG1, and AFG2 are produced by fungi of the genus Aspergillus. The most
representatives fungi that produce AFLA are Aspergillus flavus and Aspergillus parasiticus [9,10].
AFLA are characterized by a lipophilic structure (Figure 1) derived from the same precursor,
versiconal hemiacetal acetate [11].

The acute ingestion of AFLA (aflatoxicosis) can lead to several symptoms that in-
clude gastrointestinal problems (diarrhea, abdominal pain), nervous system dysfunctions
(epilepsy, coma), liver damage (jaundice, hepatitis), and even death [12,13]. Chronic ex-
posure to AFLA is associated with multiple-organ cancer, immunosuppression, and other
diseases [14]. AFB1, AFB2, AFG1, and AFG2 are classified as group 1 (carcinogenic to
humans) by the Agency of Research on Cancer (IARC) and have mutagenic and terato-
genic effects in humans [15]. Once ingested, AFLA are converted by cytochrome P450
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into high reactive epoxides that can create adducts with nucleobases [16]. Hepatocellular
carcinoma (HCC) is strictly correlated with dietary exposure to AFB1 and adducts excreted
in urine [17,18].
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Figure 1. Molecular structure of some mycotoxins: (a) AFB1; (b) FB1; (c) deoxynivalenol (DON); (d) 
T2; (e) ochratoxin A (OTA); (f) zearalenone (ZEA). 
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mans (group 2B) by IARC [15,21]. FUMO can interfere with folic acid metabolism (terato-
genic effects), cause inhibition of sphingolipid biosynthesis, and have carcinogenic effects 
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[15]. The acute toxicity is mainly gastrointestinal, with nausea, diarrhea, and abdominal 
pain [24]. DON is also called vomitoxin since it can induce emesis [25]. It can also cause 
dysfunctions of the immune, neuroendocrine, and cardiovascular systems [26]. DON is a 
polar molecule that can resist at high temperatures, and it is soluble in polar organic sol-
vents [27,28]. It is classified as non-macrocyclic trichothecenes [29]. 

Non-macrocyclic trichothecenes also include T2 and HT2 (C-4 deacetylated form of 
T2, Figure 1) produced from Fusarium species [30]. The name derived from trichothecin, 

Figure 1. Molecular structure of some mycotoxins: (a) AFB1; (b) FB1; (c) deoxynivalenol (DON);
(d) T2; (e) ochratoxin A (OTA); (f) zearalenone (ZEA).

FUMO (FB1, FB2, FB3) are produced by fungi of the genus Fusarium [19]. FB1 con-
tamination is common in cereals, and it is the most toxic FUMO [20]. Acute ingestion of
FUMO can cause gastrointestinal problems, and they are considered possibly carcinogenic
to humans (group 2B) by IARC [15,21]. FUMO can interfere with folic acid metabolism
(teratogenic effects), cause inhibition of sphingolipid biosynthesis, and have carcinogenic
effects [11,21]. They are polar compounds and are not soluble in non-polar solvents
(Figure 1) [21]. Chronic exposure to AFB1 and FUMO can lead to liver cancer (sum of
carcinogenic effect) [22].

Fusarium species also produce DON, which is one of the most common mycotoxins in
cereals [23]. It is considered not classifiable as to carcinogenicity to humans (group 3) [15].
The acute toxicity is mainly gastrointestinal, with nausea, diarrhea, and abdominal pain [24].
DON is also called vomitoxin since it can induce emesis [25]. It can also cause dysfunctions
of the immune, neuroendocrine, and cardiovascular systems [26]. DON is a polar molecule
that can resist at high temperatures, and it is soluble in polar organic solvents [27,28]. It is
classified as non-macrocyclic trichothecenes [29].

Non-macrocyclic trichothecenes also include T2 and HT2 (C-4 deacetylated form of T2,
Figure 1) produced from Fusarium species [30]. The name derived from trichothecin, the first
non-macrocyclic trichothecene isolated in 1948 from Trichothecium roesum [11]. T2 is the most
toxic among all trichothecene [31]. T2 and HT2 have been reported frequently in cereal-based
products [32,33]. Acute toxicity symptoms are similar to DON [34]. T2 can inhibit DNA,
RNA, and protein synthesis [35]; can induce apoptosis; and has immunotoxic effects [32]. T2
and HT2 can resist temperature, and they are deactivated by low or high pH [35].
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Ochratoxin A (OTA) is the most important and toxic mycotoxin among ochratox-
ins [36]. It is an isocumaric derivate with a β-phenylalanine (Figure 1) [11]. Aspergillus
and Penicillium species can produce OTA; Aspergillus ochraceus and Penicillium verrucosum
are the most common [37]. It is located in group 2B in the IARC classification [15]. Its
toxicological activity can affect neuronal, renal, and immune systems [36]. OTA has a high
affinity for serum albumin and, therefore, it is characterized by a high plasma half-life [38].
It has been found in several foods such as milk, coffee, wine, and vegetables [38]. It also
has been reported in baby food [39]. OTA is soluble in polar organic solvents [40].

Zearalenone (ZEA) is a resorcylic acid lactone (Figure 1) produced by the Fusarium
genus species [8]. It is classified as group 3 by IARC [15]. It is associated with endocrine al-
teration with clinical manifestations of hyperestrogenism [41]. Swine are the most sensitive
species to the toxic effects of ZEA; clinical signs of acute mycotoxicosis are swelling of the
vulva, prolonged estrus, pseudopregnancy, and infertility [37]. ZEA can be found in crops,
wheat, maize, and snacks [42].

Mycotoxins in food are unavoidable contaminants [13]. High temperatures and bad
storage conditions can increase mycotoxin contamination in food [43–46]. They can resist
standard cooking methods [47–49], leading to serious health concerns [33].

In developing countries, there have been relatively recent episodes of mycotoxicosis.
One-hundred and twenty-five people died in Kenya (Africa) in 2004 [50], and there were
100 victims in 1974 in India [51]. There were alimentary toxic aleukia (ATA) cases in the
USSR in the 1950s associated with consuming trichothecenes in wheat [37].

Cereals such as maize, oat, and wheat are considered the most susceptible to mycotoxin
contamination [52–59]. It was proven that 25% of cereals consumed in the world in 1988
were contaminated by mycotoxins [60]. Products derived from cereals such as pasta, bread,
and snacks can contain cereal-derived mycotoxins [61,62].

One of the biggest problems related to the cereal contaminations of mycotoxin is the
carry-over effect. Mycotoxins consumed in feeding stuff are absorbed and metabolized by
animals and can be found in meat, eggs, and milk [63].

Different cereal-based products for human consumptions are mixed with black pep-
per for flavoring purposes or preservatives, leading to possible increases in mycotoxin
contents [60]. Spices are usually dried on the ground in the open air in poor hygienic
conditions that promote the growth of molds and production of mycotoxins [64,65]. The
Rapid Alert System for Food and Feed (RASFF) reported that the third most common
matrices with AFLA in Europe are herbs and spices [66].

The Commission Regulation (EC) no. 401/2006 established MLs of mycotoxins for
different food and feed [67]. AFLA (AFB1, the sum of AFB1 + AFB2 + AFG1 + AFG2, AFM1),
OTA, patulin, DON, ZEA, FUMO (FB1 + FB2), T-2 and HT-2, citrinin, ergot sclerotia, and
ergot alkaloids were regulated in Europe. The regulation does not consider the assessment
of exposure to the sum of mycotoxins [33] with potentially higher exposure. Furthermore,
the presence of masked mycotoxins can lead to an underestimation of their concentration
in a sample [68].

There are several analytical techniques to analyze mycotoxin in different matrices [69–73].
HPLC methods associated with fluorescence detection (FLD) or MS/MS are the most used
for mycotoxin analysis [74–81]. In most cases, methods are validated on a single matrix
and do not meet the supervisory bodies’ needs that require different mycotoxin limits for
different matrices [67,77,78,82]. Regarding extraction method, solid-phase extraction (SPE),
solid–liquid extraction (SLE), and liquid–liquid extraction (LLE) are common techniques used
for LC–MS/MS analysis and also for mycotoxin [74,82]. The challenge of mycotoxin analyses
is that they have different proprieties and polarity [83]. Therefore the right choice of the
extraction method can be difficult [84].

The QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method is becom-
ing one of the most used dispersive solid-phase extraction (d-SPE) methods in food
safety [69,85–88]. According to Web of Science, more than 1200 scientific papers cover
aspects or use QuEChERS for extraction procedures. The common steps of QuEChERS
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methods are LLE between an organic and an inorganic phase, addition of salts, agitation of
the sample, removal of the supernatant, and d-SPE between supernatant and sorbents [89].
Competent authorities already use QuEChERS extraction to analyze various molecules
such as pesticides and antibiotics [90,91].

Multiclass multi-residue methods (MRMs) with QuEChERS d-SPE are preferred over
other cleanup solutions requiring numerous steps and cost more time. Fast cleanup reduces
the costs, time, and space required with solid-phase cartridges [92].

QuEChERS does not require high solvents volume and can be performed with basic
laboratory devices [93] and with an extraction procedure that allows for the analysis of
20–30 samples in 1 h.

The majority of methods are focused on increasing mycotoxins analyzed in a sin-
gle matrix [94–97], especially in maize and in wheat [98].There are already QuEChERS
mycotoxin procedures in the literature [99–101]. However, they are validated in a single
matrix or use high-resolution mass spectrometry (HRMS), which is more expensive than
an LC–MS/MS.

The present work aimed to validate QuEChERS extraction together with a fast and
reliable LC–MS/MS method to detect 12 mycotoxins in cereals and 5 mycotoxins in black
pepper, following the (EC) Regulation limits 1881/2006 and (EC) Regulation 401/2006.

2. Materials and Methods
2.1. Chemical and Standards

Methanol, acetonitrile, and formic acid were LC–MS-grades (>99.9%), and were
purchased from Sigma-Aldrich (Amsterdam, Holland). Ultrapure water was obtained in
the laboratory using a Milli-Q system (Millipore Burlington, MA, USA). OTA, ZEA, DON,
AFB1, AFB2, AFG1, AFG2, FB1, FB2, FB3, T2, and HT2 were purchased by Sigma-Aldrich.

2.2. Materials

The products Supel QuE Citrate (EN) Tube (55227-U) and Supel QuE PSA (primary,
secondary amine, EN) Tube (55228-U) were purchased from Sigma-Aldrich (Amsterdam
Holland). The composition of 55227-U is 4 g MgSO4, 1 g NaCl, 0.5 g sodium citrate dibasic
sesquihydrate, and 1 g sodium citrate tribasic dihydrate. 55228-U contains 0.9 g MgSO4
and 150 mg of Supelclean PSA.

2.3. Working Solutions

Standards were mixed to obtain the following working solution: OTA, AFLA (AFB1,
AFB2, AFG1, AFG2), FUMO (FB1, FB2, FB3), ZEA, DON, MIX T2 (T2, HT2). Acetonitrile
was used as solvent, except for SMix1 (low level) and Smix2 (high level), where methanol
was used as solvent. A working solution was used to fortify the blank matrix sample, and
low level and high level were used as calibration solutions (Table 1).

2.4. Sample Preparation

The method was applied to screen mycotoxins in Sicily (Southern Italy). About 10 kg
of maize and 5 kg of black pepper were collected from 2 different local vendors in Palermo
(Sicily) and used for validation procedures. Samples were grounded using a Mixer B-400
laboratory mill by BÜCHI (Cornaredo, Italy) at ambient temperature with knives’ rotation
speed of 9000 rpm. Samples grounded were stored at −10 ◦C until analysis.

2.5. Sample Extraction

About 5.0 ± 0.1 g of the sample was weighted in a falcon tube of 50 mL. A total of
150 µL of OTA-d5 with a concentration of 100 µg/L was added to all samples (3.0 µg/Kg,
7.5 µg/L). One sample for each matrix was fortified with the working solution as described
above (Table 1). After 10 minutes, 10 mL of bidistilled water and 10 mL of an acetoni-
trile/formic acid solution (80:20 v/v) were added to the sample. The sample was vortexed
for 15 min and left to rest for 15 minutes at −20 ◦C. A mixture of salt (4 g MgSO4, 1 g
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NaCl, 0.5 g sodium citrate dibasic sesquihydrate, 1 g sodium citrate tribasic dihydrate)
was added, handle shacking occurred for about 1 minute, and the mixture was centrifu-
gated for 10 min at 5000 rpm. The supernatant was transferred into a mix of salt, 900 mg
MgSO4, and 150 mg Supelclean PSA. After 1 minute of handle shacking and 5 minutes of
centrifugationat 5000 rpm, 3 mL of the supernatant was evaporated (40 ◦C) and dissolved
in 600 µL of methanol/water (50/50 v/v). The sample was ready for the injection.

Table 1. Working solutions were obtained by mixing standard solutions. Conc: concentration, BMF:
blank matrix fortified, Vol: volume (µL).

Working
Solutions Conc. Fortified Sample SMix 1 (Low

Level)
SMix 2 (High

Level)

Conc
µg/Kg
(µg/L)

Vol 2

(µL) Conc. Vol 3

(µL) µg/L Vol 3

(µL)

OTA OTA 100 3.0 (7.5) 150 1.5 15 7.5 75
AFLA AFB1 100 1.6 (4.0) 0.8 4

AFG1 100 1.6 (4.0) 80 0.8 8 4 40
AFB2 25 0.4 (1.0) 0.2 1
AFG2 25 0.4 (1.0) 0.2 1

ZEA ZEA 1000 75 (187.5) 375 37.5 37.5 187.5 187.5
FUMO FB1 10,000 400 (1000) 200

FB2 10,000 400 (1000) 200 200 20 1000 100
FB3 10,000 400 (1000) 200

DON DON 10,000 100 (250) 50 50 5 250 25
MIX T2 T2 1000 25 (62.5) 12.5

125 12.5 62.5 62.5
HT2 1000 25 (62.5) 12.5

OTA-d5 1 OTA D5 100 3.0 (7.5) 150 7.5 75 7.5 75
1 Internal standard. 2 Volume of working solution to add to the fortified samples. 3 Volume of working solution
added to obtain 1 mL of SMix 1 (low level) and 1 mL of SMix2 (high level).

2.6. Instrumentation

The analysis was performed on a Thermo Fischer Ultra High Performance Liquid
Chromatography(UHPLC ) system (Thermo Fisher Scientific, California, CA, USA) con-
sisting of an ACCELA 1250 quaternary pump and an ACCELA autosampler. A Thermo
Scientific Hypersil Gold reversed-phase UHPLC column (50 mm, 2.1 mm ID, 1.9 µm) was
used for mycotoxin analysis.

The mobile phase (Table 2) was a time-programmed gradient using water (eluent A)
and methanol (eluent B). Both contained 2.50 mM of ammonium formate and 0.1% formic
acid. The chromatographic run started with 100% of A with a variation of 20% in 0.5 min.
The conditions were maintained for 1 min, and then A decreased until a percentage of 40%
in 0.1 min. Linear decrease of A occurred with a total percentage of B of 100% in 2.6 min.
Conditions were maintained for 0.7 min, and the system returned to 100% A and 0% of B
in 0.1 min for 1 min.

Table 2. The mobile phases in the chromatography run.

Time (min) A (%) B (%)

0 100 0
0.5 80 20
1.5 80 20
1.6 40 60
4.2 0 100
4.9 0 100
5 100 0
6 100 0

A triple quadrupole TSQ Vantage (Thermo Fisher Scientific, California, CA, USA)
in positive electrospray ionization (ESI) mode was used as a spectrometer. The product
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ion scans were obtained by a direct infusion of each analyte dissolved in methanol/water
(50/50 v/v).

The ESI parameters were set as follows: capillary temperature 310 ◦C, vaporizer
temperature 300 ◦C, sheath gas pressure 40 psi, auxiliary gas pressure 30 psi, capillary
voltage 4.8 kV. Collision gas, peak resolution, scan time, and scan width parameters were
set as described in [102]. Trace Finder version 4.1 from Thermo Fisher (Kandel, Germany)
was used to record and elaborate data. Results obtained from the analyte’s direct infusion
(parent, product 1, product 2, CE) and chromatography runs can be seen in Table 3.

Table 3. Retention time, the most abundant m/z ions and optimal collision energy (CE).

Mycotoxin Rt Parent Product 1 (m/z) CE (V) Product 2 (m/z) CE (V)

OTA 3.52 404.2 [M + H]+ 239.2 27 221.7 37
ZEA 3.43 319.1 [M + H]+ 283.2 20 187.0 22
AFB1 2.96 313.1 [M + H]+ 285.1 25 241.0 38
AFB2 2.91 315.1 [M + H]+ 287.1 27 259.0 30
AFG1 2.87 329.1 [M + H]+ 243.0 27 311.0 25
AFG2 2.82 331.1 [M + H]+ 245.0 30 313.0 30
DON 1.04 297.2 [M + H]+ 203 20 249.2 15
FB1 3.28 722.2 [M + H]+ 334.2 40 252.2 30
FB2 3.45 706.3 [M + H]+ 354.2 37 336.1 37
FB3 3.55 706.3 [M + H]+ 354.2 37 336.1 37
T2 3.32 484.2 [M + NH4]+ 305.0 15 215.0 15

HT2 3.17 442.2 [M + NH4]+ 263.0 15 215.0 15

2.7. Validation Procedure

The method was validated according to the EU Commission Decision 2002/657/EC,
following the Council Directive 96/23/EC and Regulation (EC) no. 401/2006. Linearity,
specificity, precision (repeatability and reproducibility within-laboratory), and ruggedness
were determined. The specificity was determined by analyzing 20 blank and fortified sam-
ples for each matrix to assay the absence of interfering peaks. The linearity was tested with a
standard curve of 5 points, including zero, as follows: AFB2- AFG2 (200–2000 µg/L), AFB1-
AFG2 (800–8000 µg/L), DON (50,000–500,000 µg/L), FUMO (200,000–2,000,000 µg/L), T2-
HT2 (125,00–125,000 µg/L), ZEA (37,500–375,000 µg/L), OTA (1500–15,000 µg/L). The
linear coefficients for each calibration in curve were r2 > 0.99. The precision was assessed
by fortifying 20 samples at screening target concentration (STC) and by analyzing 4 of
them each day for 5 days to calculate intermediate precision (RSDRi); then, the cut-off was
calculated. As required from Commission Regulation (EC) no. 401/2006, STC must be
under or equal with MLs report into (EC) Regulation 1881/2006.

The ruggedness test was performed according to Youden [103] by determination of the
effect of changing conditions (speed and time of centrifugation, time and speed of stirring,
evaporation temperature). The identification of analytes was made by comparing the
retention time in the sample (TRs) and the spiked sample (TRa) with a range of ±0.1 min.

The semi-quantification of analytes was made by extrapolation of data obtained in the
linear regression between low level and high level (Table 1), and the concentration in the
sample was obtained with the following formula:

CC = CS · D, (1)

Cc is the concentration in the matrix (µg/Kg), Cs is solution (µg/L), and D is the
dilution factor.

Matrix effect (MEs) in maize and spice were calculated as described by Juan Sun et al. [99]:

MEs = 100 (1 − (Abm/As)) (2)

Abm is the area in the blank matrix and As is the area of mycotoxin standard in solvent
(n = 3).

Accuracy was evaluated with the extraction of 20 fortified samples for each matrix.
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2.8. Real Samples

After validation, the method was tested with real samples collected during an in-
spection in Palermo (Sicily). Maize (n = 25) and wheat (n = 25) were collected from the
same local vendors; black pepper (n = 25) and coffee (n = 25) were from two different local
supermarkets in Palermo (Sicily). All samples were transported daily in the lab and, if
needed, grounded as described in Section 2.4. The extractions were performed as described
in Section 2.5.

3. Results and Discussion
3.1. Method Development
3.1.1. Extraction Solvent and Cleanup

The extraction method developed allows for extracting 12 mycotoxins in cereals and
5 in black pepper with a cheap and fast procedure. The best performance was attained
using water and a mixture of acetonitrile/formic acid (80:20 v/v) Other ratios (60:40,
40:60, 20:80, 50:50) were examined to reach this conclusion (Figure 2). Acetonitrile and
formic acid enhance analytical performance, as previously reported in the literature [104].
Acetonitrile/water extraction (in different percentages) is one of the most common mixtures
used for mycotoxin analysis [105]. Acetonitrile can reduce the extraction of lipophilic
materials such as fats and has a high capacity to extract molecules characterized by different
polarities [106]. All mycotoxins analyzed are soluble in acetonitrile, and a higher percentage
of acetonitrile can improve analytes’ extraction. OTA, AFLA, and ZEA are soluble in polar
organic solvents such as methanol and acetonitrile [40,107,108]. FUMO are hydrophilic
mycotoxins (Figure 1) and are soluble in the same solvents and water [109].
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Figure 2. Effect of solvents on the extraction recovery: (a) maize; (b) black pepper. ACN, acetonitrile; HCOOH, formic acid.
The increase of ACN increased the recovery of all mycotoxins.

Regarding trichothecenes, T2, HT2, and DON are low soluble in water but highly
soluble in ethanol and organic solvents [110]. For these reasons, acetonitrile, methanol, and
water were used for the extraction procedure. Furthermore, water is added in high starch
or low water matrices to reduce the interaction between them and analytes [111].

Formic acid and citrate salts decrease pH and contrast PSA’s effect of increasing pH in
the second step [112,113]. MgSO4 and NaCl increase the recovery of polar analytes, and
MSO4 with PSA performs better and increases mycotoxins’ recovery. [106,114].

The ratio between MgSO4 and PSA in the sorbent d-SPE step is always greater than 1
in all the literature, even if the quantity can change [106]. However, 900 MgSO4 and 150 mg
of Supelclean PSA is already used in different analytical techniques that use QuEChERS
methods for the extraction of analytes such as pesticides [115,116], likewise for the 4:1 w/w
ratio between MgSO4 and NaCl as salt added in the extraction procedure [69,113,117,118].
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3.1.2. Matrix Effect in Mycotoxin Analysis

LC–MS/MS is susceptible to MEs, a common and unpredictable problem that can
influence the validation process [119]. The ESI ionization is subject to ion suppression more
than other atmospheric pressure ionization (API) techniques such as atmospheric pressure
chemical ionization (APCI) [120].

Isotope-labeled internal standards can be useful to handle with MEs and are consid-
ered the “gold standard” approach [121]. This approach is useful for predicting the strong
MEs in the analytical signal [122]. However, isotope-labeled internal standards are very
expensive and do not exist for all mycotoxins, and recovery is not required in the screening
method [123]. For these reasons, the use of a fortified sample for each analyte session
seems more reasonable. Nevertheless, OTA-d5 was used in validation procedure and in
real samples to evaluate the entire process.

In the present work, a strong ME was observed for AFLA with a range of (+43.74,
−20.18) in maize and (−26.17, −0.89) in black pepper (Table 4).

Table 4. Results of the validation procedure.

Sample Type Mycotoxin Linearity
(µg/L)

Matrix
Effect (%)

STC
µg/kg

Cut-Off
µg/kg

Repeat-
ability

Recovery
(%)

Maize OTA 1.5–15 −25.40 3.0 0.93 1.81 73
ZEA 37.5–375 −2.85 75 43 7.83 65
AFB1 0.8–8 −12.18 1.6 0.95 0.95 79
AFG1 0.8–8 +43.74 1.6 1.06 0.19 75
AFB2 0.20–2 −20.18 0.4 0.37 0.14 117
AFG2 0.20–2 +6.69 0.4 0.27 0.057 77
DON 50–500 +37.06 100 75 36.7 120
FB1 200–2000 +57.26 400 75 36.7 60
FB2 200–2000 +66.82 400 46 141 60
FB3 200–2000 +21.47 400 212 223 92
T2 12.50–125 −13.35 25 23 1.99 99

HT2 12.50–125 −2.21 25 26 6.02 120
Black pepper OTA 1.5–15 −26.03 3.0 1.33 1.27 74

AFB1 0.8–8 −13.64 1.6 1.44 0.09 94
AFG1 0.8–8 −1.41 1.6 1.38 0.1 90
AFB2 0.2–2 −26.17 0.4 0.35 0.03 94
AFG2 0.2–2 −0.89 0.4 0.34 0.026 90

MEs have been reported several times in the literature, but with discordant data,
enhancing or suppressing black pepper [122,124,125] and maize [122]. FUMO was
strongly enhanced with an overall increase of 48.51%, as already reported by Beltrán
et al. (2009) [104]. Curiously, OTA suppression in black pepper and maize was similar and
had been reported before for maize [126].

The strong MEs in the mycotoxin analysis was caused by the lipid/water/protein
content of matrices analyzed [127]. For these reasons, the analysis of different matrices
should be validated according to (EC) no. 401/2006 that divides food into commodity
groups to validate screening methods [67]. In this case, the research validated the commod-
ity group of difficult or unique commodities (black pepper) that include cocoa beans and
products thereof; copra and products thereof; coffee, tea, and licorice and the commodity
group cereal grain and products thereof (maize), which include wheat, rye, barley, rice,
oats, wholemeal bread, white bread, crackers, breakfast cereals, and pasta. Confirma-
tory methods must be validated in each matrix and for these reason screening methods,
increasing the chance to discover new incidents and protect the consumers from high
mycotoxin exposure [67].

3.2. Method Optimization
3.2.1. Validation Parameters

The analytical parameters of the methods used for mycotoxin analysis are regulated
in Europe by the Commission Regulation (EC) no. 401/2006 that defines the criteria of



Int. J. Environ. Res. Public Health 2021, 18, 3774 9 of 17

analysis for the official control of the levels of mycotoxins in foodstuffs [128]. The analysis
was performed under RSDRi, and all cut-off levels were under STC. The linear correlation
of level tested in the range of linearity was acceptable (r2 > 0.99).

Regarding black pepper, maximum levels of OTA (15 µg/kg), AFB1 (5 µg/kg), and
the sum of AFB1 + AFB2 + AFG1 + AFG2 (10 µg/kg) were established from current
legislation [67]. More mycotoxins are regulated for maize and unprocessed cereals intended
for direct human consumption: OTA (3 µg/kg), DON (750 µg/kg), ZEA (75 µg/kg), AFB1
(2 µg/kg), the sum of AFB1 + AFB2 + AFG1 + AFG2 (4 µg/kg), FB1 + FB2 (400 µg/kg), and
the sum of T2-HT2 (3 µg/kg). All mycotoxin listed were validated according to (EC) no.
401/2006 regarding the screening method for mycotoxin analysis; the cut-off level must
be equal or lower than the STC level, and the method developed was complied with. The
validation data can be seen in Table 4.

3.2.2. Instrumental Method

A cheap and simple screening method of 12 (cereal) and 5 (black pepper) mycotoxins
was validated. Ammonium formate and formic acid were used to form ammonium
adduct and protonated precursor ion, respectively. The ammonium adduct was selected
as precursor ion only for T2 and HT2 (Table 3). All mycotoxins were detected within
4 min. The adequate resolution was obtained between ions with the same m/z, which
would be indistinguishable from the mass spectrometer if they coalesced. LC–MS/MS
is used frequently to analyze molecules regulated by EU Legislation [129–132], and it is
possible to perform semi-quantitative analysis [133]. For this reason, LC–MS/MS was
preferred over other screening analytical techniques such as enzyme-linked immunosorbent
assay (ELISA) [134,135].

Several parameters can influence the performance of mycotoxin analysis. Regarding
instrument setting, the positive ion mode (ESI+) was chosen because there is a better
response for the overall of mycotoxin [104,127], especially AFLA that among mycotoxins
are more regulated in the EU Legislation [67].

Water and methanol as mobile phases provided the best performance for peak res-
olution and run time for the chromatographic run. The same result was reported in the
literature [84,99,127]. Ammonium acetate and formic acid addiction in the mobile phase
increase the analytical performance [94,104,136,137]. The best results were achieved with
0.1% of formic acid and 2.5 mM of NH4COOH, as already reported by other authors [123].

With a total chromatography run of 6 min and an extraction procedure that takes
approximately 1 hour, the method developed is faster than other methods already reported
in the literature [138–142] and is useful for quick screening.

AFLA are not sensitive to heat treatment and can increase during the food storage
period. A quick screening before storage can be useful to have some data on mycotox-
ins’ presence [48,143,144].

Black pepper is a less studied matrix, and increased data on mycotoxins presence can
help in the risk assessment of mycotoxins exposure. This is especially the case because
there is a possible co-occurrence of mycotoxin due to the multiple fungal infections [145]
and because they are used as flavor-enhancers in convenience foods.

However, this result has not been reached without compromises. Masked mycotoxins
such as 3-acetyl deoxynivalenol (3-AcDON) and 15-acetyl-deoxynivalenol (15-AcDON)
that present different toxicities [146] are not currently regulated in EU Legislation and were
not analyzed. Some peaks are moderately overlapped, such as for FB2 and FB3; however
(EC) no. 1881/2006 requires only sum of FB1 + FB2 (Figure 3). Ergot sclerotia and ergot
alkaloids required from (EC) no. 1881/2006 were not analyzed.
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participation in the interlaboratory study. The following PTs were purchased by Progetto 
Trieste (Test Veritas, Padova, Italy): MA2050 that consist of maize with an assigned values 
of AFB1+, AFB2+, AFG1+, AFG2 of 16.57 μg/kg expressed as sum; maize MA2051 with DON 

Figure 3. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS)
chromatograms obtained from a blank maize spiked with working solution (Table 1). Fumonisins were spiked at 100 µg/kg
for a better visualization. From left to right: (a) AFB1, AFB2; (b) AFG1, AFG2; (c) FB1, FB2, FB3; (d)T2, HT2, DON; (e) OTA,
ZEA; (f) total ion chromatogram (TIC).
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3.3. Ring Test and Application to Real Samples
3.3.1. Ring Test

The laboratories’ performance was assessed by proficiency tests (PTs) following
ISO/IEC 17025:2018. The analytical quality of the validated method was assured by the
participation in the interlaboratory study. The following PTs were purchased by Progetto
Trieste (Test Veritas, Padova, Italy): MA2050 that consist of maize with an assigned values
of AFB1+, AFB2+, AFG1+, AFG2 of 16.57 µg/kg expressed as sum; maize MA2051 with
DON 702.14 µg/kg; ZEA 232.61 µg/kg; F2061 feed with 11.42 µg/kg AFB1; 2.42 µg/kg
AFB2; 7.65 µg/kg AFG1; wheat WH2062 with DON 527.05 µg/kg and T2 18.31 µg/kg;
dried figs DF2064 with AFB1 7.30 µg/kg; AFG1 5.35 µg/kg; and OTA 8.79 µg/kg; and GC
+ C2053 that consists of coffee with an assigned value of 7.53 µg/kg for OTA (Progetto
Trieste, Test Veritas, Padova, Italy). The results of all tests were compliant with ISO/IEC
17025:2018. It is worth noting that according to (EC) no. 401/2006, dried figs are classified
as “high sugar and low water content”, which is a commodity group not validated, and
despite this, the result was compliant with ISO/IEC 17025:2018.

3.3.2. Application of the Method to Real Samples

All samples were compliant and following (EC) no. 1881/2006. One sample of maize
resulted with OTA at 2.53 µg/Kg, and one sample of black pepper resulted with 1.85
µg/Kg of OTA and the contemporary presence of 0.358 µg/Kg of AFB2 (Table 5).

Table 5. Results of the analyses on real samples. A total of 25 samples were analyzed for each matrix.
Dash indicates that all results were under cut-off levels.

Sample
Commodity

Detected
Mycotoxin

Number of Sample with a
Detectable Amount of Mycotoxin Amount

Maize OTA 1 2.53 µg/kg
Wheat - 0 -

Black pepper OTA
AFB2

1
1

1.85 µg/kg
0.358 µg/kg

Coffee - 0 -

4. Conclusions

A new method for detecting 12 mycotoxins in cereals and 5 mycotoxins in spices (black
pepper) was developed and validated according to (EC) no. 401/2006. QuEChERS extrac-
tion was used effectively. The best performances were obtained with acetonitrile/formic
acid (80:20 v/v) as extraction solvent. Strong MEs were observed in all the FUMO analyzed
in maize, while AFLA had enhancing or suppressing effects. In black pepper, there was a
suppression of signals for all mycotoxins analyzed. Six PTs were developed to evaluate
the performance of the method. The method was applied to 100 real samples (25 maize, 25
wheat, 25 black pepper, and 25 coffee). Two samples had a detectable amount of mycotoxin,
maize (OTA, 2.53 µg/Kg), and black pepper (OTA, 1.85 µg/Kg, and AFB2, 0.358 µg/Kg).
The method proposed is suitable for screening and routine analysis to monitor mycotoxins
content in foodstuff following European Regulamentation. Further studies are needed to
increase the number of mycotoxins analyzed and increase commodity groups analyzed
with the same method.
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between Mycotoxin Exposure and Dietary Habits in Colorectal Cancer Development Among a Polish Population: A Study
Protocol. Int. J. Environ. Res. Public Health 2020, 17, 698. [CrossRef] [PubMed]

58. Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin Contamination of Foods in Southern Africa:
A 10-Year Review (2007–2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [CrossRef] [PubMed]

59. Cammilleri, G.; Graci, S.; Collura, R.; Buscemi, M.D.; Vella, A.; Macaluso, A.; Giaccone, V.; Giangrosso, G.; Cicero, A.; Lo Dico,
G.M.; et al. Aflatoxin M1 in Cow, Sheep, and Donkey Milk Produced in Sicily, Southern Italy. Mycotoxin Res. 2019, 35, 47–53.
[CrossRef] [PubMed]

60. Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; De Santis, B.; Faid, M.; Benlemlih, M.; Minardi,
V.; et al. Natural Occurrence of Mycotoxins in Cereals and Spices Commercialized in Morocco. Food Control. 2006, 17, 868–874.
[CrossRef]

61. Sarmast, E.; Fallah, A.A.; Jafari, T.; Mousavi Khaneghah, A. Occurrence and Fate of Mycotoxins in Cereals and Cereal-Based
Products: A Narrative Review of Systematic Reviews and Meta-Analyses Studies. Curr. Opin. Food Sci. 2021, 39, 68–75. [CrossRef]

62. Khaneghah, A.M.; Fakhri, Y.; Gahruie, H.H.; Niakousari, M.; Sant’Ana, A.S. Mycotoxins in Cereal-Based Products during 24
Years (1983–2017): A Global Systematic Review. Trends Food Sci. Technol. 2019, 91, 95–105. [CrossRef]

63. Animal Feed Contamination—1st Edition. Available online: https://www.elsevier.com/books/animal-feed-contamination/fink-
gremmels/978-1-84569-725-9 (accessed on 28 September 2020).

64. Martins, M.L.; Martins, H.M.; Bernardo, F. Aflatoxins in Spices Marketed in Portugal. Food Addit. Contam. 2001, 18, 315–319.
[CrossRef] [PubMed]

65. Selim, M.I.; Popendorf, W.; Ibrahim, M.S.; Sharkawy, S.E.; Kashory, E.S.E. Anatoxin B1 in Common Egyptian Foods. J. AOAC Int.
1996, 79, 1124–1129. [CrossRef] [PubMed]

66. European Commission. Directorate-General for Health and Food Safety. In RASFF Annual Report 2019; European Commission:
Brussels, Belgium, 2020; ISBN 978-92-76-17508-7.

67. EUR-Lex—02006R1881-20200701—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX%3A02006R1881-20200701 (accessed on 23 July 2020).

68. Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J.
Masked Mycotoxins: A Review. Mol. Nutr. Food Res. 2013, 57, 165–186. [CrossRef] [PubMed]

69. Cunha, S.C.; Fernandes, J.O. Development and Validation of a Method Based on a QuEChERS Procedure and Heart-Cutting
GC-MS for Determination of Five Mycotoxins in Cereal Products. J. Sep. Sci. 2010, 33, 600–609. [CrossRef] [PubMed]

70. Rodríguez-Carrasco, Y.; Moltó, J.C.; Mañes, J.; Berrada, H. Exposure Assessment Approach through Mycotoxin/Creatinine Ratio
Evaluation in Urine by GC–MS/MS. Food Chem. Toxicol. 2014, 72, 69–75. [CrossRef]

71. Rastogi, S.; Dwivedi, P.D.; Khanna, S.K.; Das, M. Detection of Aflatoxin M1 Contamination in Milk and Infant Milk Products from
Indian Markets by ELISA. Food Control. 2004, 15, 287–290. [CrossRef]

72. Rubert, J.; Soler, C.; Mañes, J. Application of an HPLC–MS/MS Method for Mycotoxin Analysis in Commercial Baby Foods. Food
Chem. 2012, 133, 176–183. [CrossRef]

73. Colombo, R.; Papetti, A. Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis. Molecules
2020, 25, 3441. [CrossRef]

74. Turner, N.; Subrahmanyam, S.; Piletsky, S. Analytical Methods for Determination of Mycotoxins: A Review. Anal. Chim. Acta
2009, 632, 168–180. [CrossRef]

75. Irakli, M.N.; Skendi, A.; Papageorgiou, M.D. HPLC-DAD-FLD Method for Simultaneous Determination of Mycotoxins in Wheat
Bran. J. Chromatogr. Sci. 2017, 55, 690–696. [CrossRef]

76. Czerwiecki, L.; Wilczyńska, G. Determination of Deoxynivalenol in Cereals by HPLC-UV. Mycotoxin Res. 2003, 19, 31–34.
[CrossRef]

77. Rasmussen, R.R.; Storm, I.M.L.D.; Rasmussen, P.H.; Smedsgaard, J.; Nielsen, K.F. Multi-Mycotoxin Analysis of Maize Silage by
LC-MS/MS. Anal. Bioanal. Chem. 2010, 397, 765–776. [CrossRef] [PubMed]

78. Mavungu, J.D.D.; Monbaliu, S.; Scippo, M.-L.; Maghuin-Rogister, G.; Schneider, Y.-J.; Larondelle, Y.; Callebaut, A.; Robbens, J.;
Peteghem, C.V.; Saeger, S.D. LC-MS/MS Multi-Analyte Method for Mycotoxin Determination in Food Supplements. Food Addit.
Contam. Part. A 2009, 26, 885–895. [CrossRef] [PubMed]

79. Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of Mycotoxins in
Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012,
60, 9352–9363. [CrossRef] [PubMed]

80. Njumbe Ediage, E.; Diana Di Mavungu, J.; Monbaliu, S.; Van Peteghem, C.; De Saeger, S. A Validated Multianalyte LC–MS/MS
Method for Quantification of 25 Mycotoxins in Cassava Flour, Peanut Cake and Maize Samples. J. Agric. Food Chem. 2011, 59,
5173–5180. [CrossRef] [PubMed]

81. Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods
2020, 9, 518. [CrossRef]

82. Zhang, B.; Chen, X.; Han, S.-Y.; Li, M.; Ma, T.-Z.; Sheng, W.-J.; Zhu, X. Simultaneous Analysis of 20 Mycotoxins in Grapes and
Wines from Hexi Corridor Region (China): Based on a QuEChERS–UHPLC–MS/MS Method. Molecules 2018, 23, 1926. [CrossRef]

http://doi.org/10.3390/ijerph17030698
http://www.ncbi.nlm.nih.gov/pubmed/31973151
http://doi.org/10.1080/10408398.2017.1357003
http://www.ncbi.nlm.nih.gov/pubmed/28799776
http://doi.org/10.1007/s12550-018-0329-y
http://www.ncbi.nlm.nih.gov/pubmed/30215192
http://doi.org/10.1016/j.foodcont.2005.06.001
http://doi.org/10.1016/j.cofs.2020.12.013
http://doi.org/10.1016/j.tifs.2019.06.007
https://www.elsevier.com/books/animal-feed-contamination/fink-gremmels/978-1-84569-725-9
https://www.elsevier.com/books/animal-feed-contamination/fink-gremmels/978-1-84569-725-9
http://doi.org/10.1080/02652030120041
http://www.ncbi.nlm.nih.gov/pubmed/11339266
http://doi.org/10.1093/jaoac/79.5.1124
http://www.ncbi.nlm.nih.gov/pubmed/8823921
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20200701
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20200701
http://doi.org/10.1002/mnfr.201100764
http://www.ncbi.nlm.nih.gov/pubmed/23047235
http://doi.org/10.1002/jssc.200900695
http://www.ncbi.nlm.nih.gov/pubmed/20155747
http://doi.org/10.1016/j.fct.2014.07.014
http://doi.org/10.1016/S0956-7135(03)00078-1
http://doi.org/10.1016/j.foodchem.2011.12.035
http://doi.org/10.3390/molecules25153441
http://doi.org/10.1016/j.aca.2008.11.010
http://doi.org/10.1093/chromsci/bmx022
http://doi.org/10.1007/BF02940088
http://doi.org/10.1007/s00216-010-3545-7
http://www.ncbi.nlm.nih.gov/pubmed/20213172
http://doi.org/10.1080/02652030902774649
http://www.ncbi.nlm.nih.gov/pubmed/19680964
http://doi.org/10.1021/jf302003n
http://www.ncbi.nlm.nih.gov/pubmed/22835072
http://doi.org/10.1021/jf2009364
http://www.ncbi.nlm.nih.gov/pubmed/21495720
http://doi.org/10.3390/foods9040518
http://doi.org/10.3390/molecules23081926


Int. J. Environ. Res. Public Health 2021, 18, 3774 15 of 17

83. Magan, N.; Olsen, M. Mycotoxins in Food: Detection and Control; Woodhead Publishing: Sawston, Cambridge, UK, 2004; ISBN
978-1-85573-733-4.

84. Rubert, J.; Dzuman, Z.; Vaclavikova, M.; Zachariasova, M.; Soler, C.; Hajslova, J. Analysis of Mycotoxins in Barley Using Ultra
High Liquid Chromatography High Resolution Mass Spectrometry: Comparison of Efficiency and Efficacy of Different Extraction
Procedures. Talanta 2012, 99, 712–719. [CrossRef]

85. Filigenzi, M.S.; Ehrke, N.; Aston, L.S.; Poppenga, R.H. Evaluation of a Rapid Screening Method for Chemical Contaminants of
Concern in Four Food-Related Matrices Using QuEChERS Extraction, UHPLC and High Resolution Mass Spectrometry. Food
Addit. Contam. Part. A 2011, 28, 1324–1339. [CrossRef]

86. Chiesa, L.M.; Nobile, M.; Malandra, R.; Pessina, D.; Panseri, S.; Labella, G.F.; Arioli, F. Food Safety Traits of Mussels and Clams:
Distribution of PCBs, PBDEs, OCPs, PAHs and PFASs in Sample from Different Areas Using HRMS-Orbitrap® and Modified
QuEChERS Extraction Followed by GC-MS/MS. Food Addit. Contam. Part A 2018, 35, 959–971. [CrossRef]

87. Mekonen, S.; Ambelu, A.; Spanoghe, P. Pesticide Residue Evaluation in Major Staple Food Items of Ethiopia Using the QuEChERS
Method: A Case Study from the Jimma Zone. Environ. Toxicol. Chem. 2014, 33, 1294–1302. [CrossRef]
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