organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Bromobenzyl)-N'-(2-pyridyl)benzene-1,2-diamine

Sudesh T. Manjare,^a Harkesh B. Singh^a* and Ray J. Butcher^b

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: chhbsia@chem.iitb.ac.in

Received 24 September 2009; accepted 26 September 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.092; data-to-parameter ratio = 16.3.

In the title compound, $C_{18}H_{16}BrN_3$, molecules are linked into dimers by co-operative intermolecular N-H···N hydrogen bonding. Only one N-H group is involved in hydrogen bonding. The planes of the pyridine and bromophenyl rings are twisted by 61.49 (3) and 79.11 (8)°, respectively, from the plane of the central phenyl ring.

Related literature

The title compound was isolated as part of a project to further investigate the chemistry of chalcogen-carbene compounds (Dutton et al., 2007). The stability of imidazole-based carbenes depends very much on the nature of the substituents attached to the imidazole nitrogen atoms, see: Huynh et al. (2006); Kuhn et al. (1993). For bond lengths in analogous compounds, see: Albéniz et al. (2002); Denk et al. (2001). For details of the synthesis, see: Hahn et al. (2007).

Experimental

Crystal data C18H16BrN3 $M_r = 354.25$

Triclinic $P\overline{1}$

b = 9.5314 (8) A	Z = 2
c = 11.0606 (8) Å	Mo $K\alpha$ radiation
$\alpha = 98.741 \ (6)^{\circ}$	$\mu = 2.56 \text{ mm}^{-1}$
$\beta = 90.727 \ (6)^{\circ}$	T = 200 K
$\gamma = 103.581 \ (6)^{\circ}$	$0.51 \times 0.43 \times 0.16 \text{ mm}$
$V = 803.48 (10) \text{ Å}^3$	
Data collection	
Data collection	
Oxford Diffraction Gemini R	8461 measured reflections
diffractometer	3249 independent reflections
Absorption correction: multi-scan	2038 reflections with $I > 2\sigma(I)$
(CrysAlis Pro; Oxford	$R_{\rm int} = 0.042$
Diffraction, 2009)	
$T_{\min} = 0.553, \ T_{\max} = 1.000$	
Refinement	
	100
$R[F^2 > 2\sigma(F^2)] = 0.039$	199 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 0.89	$\Delta \rho_{\rm max} = 0.59 \ {\rm e \ A^{-5}}$

Table 1

3249 reflections

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $D-{\rm H}$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N2-H2A\cdots N3^{i}$ 0.88 2.08 2.952 (3) 175

 $\Delta \rho_{\min} = -0.48 \text{ e} \text{ Å}^{-3}$

Symmetry code: (i) -x + 1, -y, -z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

HSB is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. STM thanks the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5071).

References

- Albéniz, A. C., Espinet, P., Manrique, R. & Pérez-Mateo, A. (2002). Angew. Chem. Int. Ed. 41, 2363-2366.
- Denk, M. K., Rodezno, J. M., Gupta, S. & Lough, L. J. (2001). J. Organomet. Chem. 617, 242-253.
- Dutton, J. L., Tabeshi, R., Jennings, M. C., Logh, A. J. & Ragogna, P. J. (2007). Inorg. Chem. 46, 8594-8602.
- Hahn, F. E., Jahnke, M. C. & Pape, T. (2007). Organometallics, 26, 150-154.
- Huynh, H. V., Han, Y., Ho, J. H. H. & Tan, G. K. (2006). Organometallics, 25, 3267-3274.
- Kuhn, N., Henkel, G. & Kratz, T. (1993). Chem. Ber. 126, 2047-2049.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o2640 [doi:10.1107/S1600536809039130]

N-(2-Bromobenzyl)-N'-(2-pyridyl)benzene-1,2-diamine

S. T. Manjare, H. B. Singh and R. J. Butcher

Comment

The structure of the title compound, C₁₈H₁₆BrN₃, (2), is shown below. Dimensions are available in the archived CIF.

Carbene compounds sometimes show unpredictable reactivity patterns and are subject to hydrolysis (Denk *et al.* 2001; Albéniz *et al.*, 2002). The stability of imidazole based carbenes depends very much on the nature of the substituents attached to the imidazole nitrogen atoms (Hahn *et al.*, 2007; Huynh *et al.* 2006).

The title compound was isolated as part of a project to further investigate the chemistry of chalcogen-carbene compounds (Dutton *et al.*, 2007), in particular tellurium-carbene chemistry with pyridine as a substituent on the nitrogen of the benzimidazole ring. However, in contrast with electron donating substituents such as *n*-butyl, and i-propyl, which lead to tellurium carbene formation, electron withdrawing groups such as phenyl and pyridyl result in hydrolysed products, such as the title compound. A repeated attempt to synthesize the pyridine substituted tellurone compound gave the title compound whose structure is reported here.

In (2) the bonds are in the usual ranges found for analogous compounds (Albéniz et al. 2002; Denk et al. 2001)).

The molecules are linked into dimers by cooperative intermolecular N—H···N hydrogen bonding. The two N—H moieties adopt different conformations with respect to the phenyl ring to which they are both attached. N1—H is only twisted by 18.0 (2)° from this plane. As a result of this coplanarity the hydrogen attached to N1 does not form any hydrogen bonds. N2—H, however, is twisted by 51.8 (2)° from this plane so as to participate in the intermolecular hydrogen bonding mentioned above. The planes of the pyridine and bromo-phenyl rings are twisted by 61.49 (3)° and 79.11 (8)° from the plane of the central phenyl ring.

The cleavage of carbene carbon from benzimidazole ring in the title compound may be due to: 1) destabilization of C=Te by the electron withdrawing group present on the benzimidazolium nitrogen, 2) crowding near to the carbene carbon. The exact mechanism is under investigation. This structural study has confirmed the cleavage of the carbene carbon.

Experimental

In all cases, the starting benzylimidazoylium salt, 1, shown in scheme (1) was prepared using standard methods (Hahn *et al.* 2007). With the appropriate salt, the title compound could be made by three different methods: (a). In a round bottom flask the benzylimidazoylium salt 1 (1.0 mmol) was taken in THF (40 mL) under nitrogen atmosphere and of *n*-BuLi (2.0 mmol) was added at -78 °C, reaction mixture was stirred for 1-2 h. Then Te powder was added to the reaction mixture at room temperature, and stirred for 8-10 h. After completion of reaction, water (30 mL) was added and extracted with dichloromethane, dried over Na₂SO₄ and evaporated. The residue obtained was dissolved in toluene and small amount of petroleum ether was added to separate the residue from the solution. The solution was filtered, evaporated and the residue was dissolved in diethyl ether and a small amount of petroleum ether (60-80 °C) to afford the pure colorless product in 45% yield.

(b) The benzylimidazoylium salt 1 (1.0 mmol) was added to a brown solution of Na_2Te_2 (2.0 mmol) at room temperature under nitrogen atmosphere and the reaction mixture was stirred for 6-10 h at room temperature. Then KO^tBu (1.0 mmol) was added to the reaction mixture and stirred further for 5-7 h. After completion of reaction, the reaction was quenched by adding water (50 mL), and extracted with dichloromethane, dried over Na_2SO_4 , and evaporated. The residue obtained was dissolved in toluene and small amount of petroleum ether was added to separate the residue from the solution. The solution was filtered and evaporated; the residue was dissolved in diethyl ether and a small amount of petroleum ether (60-80 °C) to afford the pure crystalline product.

(c) In a round bottom flask the benzylimidazoylium salt 1 (1.0 mmol) was taken in THF (40 mL) under nitrogen atmosphere and Te metal powder (1.0 mmol) was added, then KO^tBu (2.0 mmol) was added to the reaction mixture at -20 °C. The reaction mixture was stirred for 5-6 h. Then the reaction was quenched by adding water (50 mL), and extracted with dichloromethane, dried over Na₂SO₄, and evaporated. The residue obtained was dissolved in toluene and some petroleum ether was added to separate the residue from the solution. The solution was filtered and evaporated; the residue was dissolved in diethyl ether and small amount of petroleum ether (60-80 °C) to afford the pure product.

Mp 156-158 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15 (m, ¹H), 7.54 (dd, J = 7.6 Hz, J = 1.2 Hz, ¹H), 7.43 (m, ¹H), 7.32 (m, ¹H), 7.23 (m, 2H), 7.11 (m, 2H), 6.71 (m, 2H), 6.61 (dd, J = 8 Hz, J = 1.2 Hz, ¹H), 6.40 (m, ¹H), 6.15 (s, ¹H), 4.83 (d, J = 5.6 Hz, ¹H), 4.41 (d, J = 6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 158.4, 148.4, 144.5, 138.1, 132.9, 128.9, 128.8, 127.8, 127.6, 127.4, 125.7, 123.4, 117.7, 114.6, 111.7, 107.4, 48.2. MS: m/z 353 [M]⁺, 355 [M+2]⁺. Anal. Calcd. for C₁₈H₁₆BrN₃ (%): C, 61.03; H, 4.55; N, 11.86. Found: C, 60.85; H, 4.55; N, 11.40.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 and 0.99 Å $U_{iso}(H) = 1.2U_{eq}(C)$. The H attached to N was idealized with a distance of 0.88 Å.

Figures

Fig. 1. The molecular structure of $C_{18}H_{16}BrN_3$ the showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2. The molecular packing for $C_{18}H_{16}BrN_3$ viewed down the *a* axis. The hydrogen bonding between N—H···N is shown by dashed lines.

Fig. 3. The formation of the title compound.

N-(2-Bromobenzyl)-N'-(2-pyridyl)benzene-1,2-diamine

Crystal data C₁₈H₁₆BrN₃ Z = 2 $M_r = 354.25$ $F_{000} = 360$ $D_{\rm x} = 1.464 {\rm Mg m}^{-3}$ Triclinic, P1 Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 1 a = 7.9429 (5) Å Cell parameters from 3047 reflections b = 9.5314 (8) Å $\theta = 4.7 - 34.8^{\circ}$ *c* = 11.0606 (8) Å $\mu = 2.56 \text{ mm}^{-1}$ $\alpha = 98.741 \ (6)^{\circ}$ T = 200 K $\beta = 90.727 \ (6)^{\circ}$ Irregular plate, colorless $0.51\times0.43\times0.16~mm$ $\gamma = 103.581 \ (6)^{\circ}$ $V = 803.48 (10) \text{ Å}^3$

Data collection

Oxford Diffraction Gemini R diffractometer	3249 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2038 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}$
T = 200 K	$\theta_{\min} = 4.7^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009)	$k = -11 \rightarrow 11$
$T_{\min} = 0.553, T_{\max} = 1.000$	$l = -13 \rightarrow 13$
8461 measured reflections	

Refinement

Refinement on F^2	
Least-squares matrix: f	ull

 $R[F^2 > 2\sigma(F^2)] = 0.039$

 $wR(F^2) = 0.092$

S = 0.89

3249 reflections

199 parameters

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.052P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.59 \text{ g} \text{ Å}^{-3}$

$$\Delta p_{\text{max}} = 0.39 \text{ e A}$$

$$\Delta \rho_{\rm min} = -0.48 \text{ e A}^{-5}$$

Primary atom site location: structure-invariant direct Exti

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br	0.83487 (5)	0.00876 (4)	0.69232 (3)	0.05856 (16)
N1	0.7358 (3)	0.1251 (3)	0.31573 (19)	0.0433 (6)
H1A	0.6776	0.0542	0.2595	0.052*
N2	0.5888 (3)	0.1863 (3)	0.1091 (2)	0.0405 (6)
H2A	0.6118	0.1008	0.0849	0.049*
N3	0.3381 (3)	0.0980 (2)	-0.01114 (19)	0.0326 (5)
C1	0.7931 (4)	0.2636 (3)	0.2846 (2)	0.0351 (7)
C2	0.7198 (4)	0.2970 (3)	0.1804 (2)	0.0348 (7)
C3	0.7745 (4)	0.4348 (3)	0.1484 (3)	0.0408 (7)
НЗА	0.7240	0.4563	0.0772	0.049*
C4	0.9013 (4)	0.5417 (4)	0.2185 (3)	0.0477 (8)
H4A	0.9353	0.6370	0.1975	0.057*
C5	0.9773 (4)	0.5079 (4)	0.3189 (3)	0.0481 (9)
H5A	1.0669	0.5799	0.3661	0.058*
C6	0.9258 (4)	0.3714 (3)	0.3522 (2)	0.0467 (8)
H6A	0.9807	0.3501	0.4217	0.056*
C1A	0.7671 (4)	0.0915 (3)	0.4359 (2)	0.0386 (7)
H1AA	0.8930	0.1249	0.4575	0.046*
H1AB	0.7348	-0.0160	0.4317	0.046*
C2A	0.6705 (3)	0.1589 (3)	0.5388 (2)	0.0342 (7)
C3A	0.6902 (4)	0.1324 (3)	0.6583 (2)	0.0384 (7)
C4A	0.6043 (4)	0.1895 (4)	0.7542 (3)	0.0487 (9)
H4AA	0.6192	0.1680	0.8342	0.058*
C5A	0.4973 (5)	0.2775 (4)	0.7325 (3)	0.0563 (10)
H5AA	0.4387	0.3185	0.7981	0.068*
C6A	0.4744 (4)	0.3068 (4)	0.6165 (3)	0.0546 (9)
H6AA	0.3992	0.3672	0.6018	0.066*
C7A	0.5616 (4)	0.2476 (3)	0.5202 (3)	0.0441 (8)
H7AA	0.5456	0.2690	0.4403	0.053*
C1B	0.4294 (4)	0.2041 (3)	0.0757 (2)	0.0343 (7)
C2B	0.3615 (4)	0.3199 (3)	0.1284 (3)	0.0434 (8)
H2BA	0.4278	0.3943	0.1892	0.052*
C3B	0.1994 (4)	0.3253 (4)	0.0920 (3)	0.0492 (8)

H3BA	0.1509	0.4029	0.1282	0.059*
C4B	0.1052 (4)	0.2177 (4)	0.0020 (3)	0.0495 (8)
H4BA	-0.0076	0.2202	-0.0258	0.059*
C5B	0.1800 (4)	0.1081 (4)	-0.0453 (3)	0.0416 (7)
H5BA	0.1155	0.0336	-0.1068	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0621 (3)	0.0737 (3)	0.0418 (2)	0.01693 (18)	-0.00365 (15)	0.01454 (16)
N1	0.0608 (17)	0.0325 (16)	0.0236 (12)	-0.0093 (12)	-0.0039 (11)	-0.0031 (10)
N2	0.0443 (15)	0.0301 (15)	0.0423 (13)	0.0096 (12)	-0.0114 (12)	-0.0092 (11)
N3	0.0360 (14)	0.0304 (14)	0.0282 (12)	0.0038 (10)	-0.0026 (10)	0.0016 (10)
C1	0.0394 (17)	0.0335 (18)	0.0242 (14)	-0.0033 (13)	0.0026 (12)	-0.0020 (12)
C2	0.0414 (17)	0.0313 (18)	0.0255 (14)	0.0038 (13)	-0.0022 (12)	-0.0071 (12)
C3	0.0469 (18)	0.037 (2)	0.0376 (16)	0.0091 (15)	0.0018 (14)	0.0042 (14)
C4	0.056 (2)	0.036 (2)	0.0449 (18)	0.0000 (15)	0.0111 (16)	0.0032 (14)
C5	0.052 (2)	0.042 (2)	0.0337 (16)	-0.0149 (15)	0.0044 (15)	-0.0058 (14)
C6	0.052 (2)	0.050 (2)	0.0245 (14)	-0.0113 (16)	-0.0044 (13)	-0.0005 (14)
C1A	0.0429 (18)	0.0388 (19)	0.0280 (14)	-0.0001 (13)	0.0022 (12)	0.0020 (12)
C2A	0.0305 (16)	0.0300 (17)	0.0330 (15)	-0.0077 (13)	0.0005 (12)	0.0001 (12)
C3A	0.0389 (17)	0.0340 (18)	0.0325 (15)	-0.0070 (13)	0.0020 (13)	0.0000 (12)
C4A	0.055 (2)	0.046 (2)	0.0322 (16)	-0.0092 (17)	0.0068 (15)	-0.0018 (14)
C5A	0.060 (2)	0.040 (2)	0.060 (2)	0.0016 (18)	0.0256 (18)	-0.0052 (17)
C6A	0.051 (2)	0.041 (2)	0.072 (2)	0.0117 (16)	0.0156 (18)	0.0075 (17)
C7A	0.0418 (18)	0.037 (2)	0.0497 (18)	0.0007 (15)	0.0040 (14)	0.0094 (14)
C1B	0.0397 (17)	0.0336 (18)	0.0284 (14)	0.0055 (13)	0.0060 (13)	0.0058 (12)
C2B	0.052 (2)	0.0335 (19)	0.0420 (17)	0.0080 (15)	0.0057 (15)	-0.0006 (13)
C3B	0.054 (2)	0.042 (2)	0.058 (2)	0.0196 (17)	0.0179 (17)	0.0119 (16)
C4B	0.0390 (18)	0.060 (2)	0.054 (2)	0.0136 (17)	0.0071 (16)	0.0197 (17)
C5B	0.0356 (18)	0.047 (2)	0.0394 (16)	0.0036 (15)	-0.0004 (14)	0.0095 (14)

Geometric parameters (Å, °)

1.900 (3)	C1A—H1AA	0.9900
1.389 (4)	C1A—H1AB	0.9900
1.446 (3)	C2A—C7A	1.377 (4)
0.8800	C2A—C3A	1.396 (4)
1.370 (3)	C3A—C4A	1.380 (4)
1.423 (3)	C4A—C5A	1.369 (5)
0.8800	C4A—H4AA	0.9500
1.336 (4)	C5A—C6A	1.372 (5)
1.347 (3)	С5А—Н5АА	0.9500
1.397 (4)	C6A—C7A	1.398 (4)
1.401 (4)	С6А—Н6АА	0.9500
1.384 (4)	С7А—Н7АА	0.9500
1.383 (4)	C1B—C2B	1.393 (4)
0.9500	C2B—C3B	1.359 (4)
1.372 (4)	C2B—H2BA	0.9500
	1.900 (3) 1.389 (4) 1.446 (3) 0.8800 1.370 (3) 1.423 (3) 0.8800 1.336 (4) 1.347 (3) 1.397 (4) 1.401 (4) 1.384 (4) 1.383 (4) 0.9500 1.372 (4)	1.900 (3)C1A—H1AA1.389 (4)C1A—H1AB1.446 (3)C2A—C7A0.8800C2A—C3A1.370 (3)C3A—C4A1.423 (3)C4A—C5A0.8800C4A—H4AA1.336 (4)C5A—C6A1.347 (3)C5A—H5AA1.397 (4)C6A—C7A1.401 (4)C6A—H6AA1.384 (4)C7A—H7AA1.383 (4)C1B—C2B0.9500C2B—C3B1.372 (4)C2B—H2BA

C4—H4A	0.9500	C3B—C4B	1.384 (5)
C5—C6	1.377 (4)	СЗВ—НЗВА	0.9500
С5—Н5А	0.9500	C4B—C5B	1.361 (4)
С6—Н6А	0.9500	C4B—H4BA	0.9500
C1A—C2A	1.526 (4)	С5В—Н5ВА	0.9500
C1—N1—C1A	123.2 (2)	C7A—C2A—C1A	122.8 (3)
C1—N1—H1A	118.4	C3A—C2A—C1A	120.4 (3)
C1A—N1—H1A	118.4	C4A—C3A—C2A	122.6 (3)
C1B—N2—C2	124.4 (2)	C4A—C3A—Br	117.6 (2)
C1B—N2—H2A	117.8	C2A—C3A—Br	119.8 (2)
C2—N2—H2A	117.8	C5A—C4A—C3A	119.1 (3)
C5B—N3—C1B	117.5 (2)	С5А—С4А—Н4АА	120.4
N1 - C1 - C2	119 3 (2)	C3A—C4A—H4AA	120.4
N1 - C1 - C6	122.5 (3)	C4A - C5A - C6A	120 3 (3)
C_{2} C_{1} C_{6}	118 1 (3)	C4A - C5A - H5AA	119.9
C_{2}^{-} C_{1}^{-} C_{1}^{-}	1201(2)	C6A - C5A - H5AA	119.9
C_{3} C_{2} C_{1} C_{2} C_{1}	120.1(2) 121.5(3)	$C_{5} - C_{6} - C_{7}$	119.9 120.0(3)
C_{1} C_{2} N_{2}	121.5(3) 1184(3)	$C_{5A} = C_{6A} = C_{7A}$	120.0 (5)
$C_1 = C_2 = N_2$	110.4(3)	C7A C6A H6AA	120.0
$C_{4} = C_{5} = C_{2}$	121.1 (5)	$C_{A} = C_{A} = C_{A}$	120.0
$C_4 - C_5 - H_5 A$	119.5	$C_{2A} = C_{7A} = C_{6A}$	121.3 (3)
C2—C3—H3A	119.5	$C_{A} = C_{A} = H_{A}$	119.4
C_{3}	118.9 (3)	$C_{0}A - C_{1}A - H_{1}AA$	119.4
С5—С4—Н4А	120.5	N3—CIB—N2	115.0 (2)
С3—С4—Н4А	120.5	N3—C1B—C2B	121.4 (3)
C4—C5—C6	121.1 (3)	N2C1BC2B	123.7 (3)
С4—С5—Н5А	119.4	C3B—C2B—C1B	119.3 (3)
С6—С5—Н5А	119.4	C3B—C2B—H2BA	120.4
C5—C6—C1	120.6 (3)	C1B—C2B—H2BA	120.4
С5—С6—Н6А	119.7	C2B—C3B—C4B	119.8 (3)
С1—С6—Н6А	119.7	С2В—С3В—НЗВА	120.1
N1—C1A—C2A	115.7 (3)	C4B—C3B—H3BA	120.1
N1—C1A—H1AA	108.4	C5B—C4B—C3B	117.5 (3)
C2A—C1A—H1AA	108.4	C5B—C4B—H4BA	121.2
N1—C1A—H1AB	108.4	C3B—C4B—H4BA	121.2
C2A—C1A—H1AB	108.4	N3—C5B—C4B	124.5 (3)
H1AA—C1A—H1AB	107.4	N3—C5B—H5BA	117.8
C7A—C2A—C3A	116.8 (2)	C4B—C5B—H5BA	117.8
C1A—N1—C1—C2	-162.8 (3)	C7A—C2A—C3A—Br	179.0 (2)
C1A—N1—C1—C6	18.9 (4)	C1A—C2A—C3A—Br	-1.2 (3)
N1—C1—C2—C3	179.5 (2)	C2A—C3A—C4A—C5A	-1.0 (5)
C6—C1—C2—C3	-2.0 (4)	Br—C3A—C4A—C5A	-179.2 (2)
N1—C1—C2—N2	-0.4 (4)	C3A—C4A—C5A—C6A	0.8 (5)
C6—C1—C2—N2	178.0 (2)	C4A—C5A—C6A—C7A	-0.6 (5)
C1B—N2—C2—C3	-52.3 (4)	C3A—C2A—C7A—C6A	-0.6 (4)
C1B—N2—C2—C1	127.6 (3)	C1A—C2A—C7A—C6A	179.6 (3)
C1—C2—C3—C4	-0.2 (4)	C5A—C6A—C7A—C2A	0.4 (5)
N2—C2—C3—C4	179.7 (3)	C5B—N3—C1B—N2	178.6 (2)
C2—C3—C4—C5	2.1 (4)	C5B—N3—C1B—C2B	0.2 (4)
	× /		· · ·

C3—C4—C5—C6	-1.8 (5)	C2—N2—C1B—N3	167.2 (2)
C4—C5—C6—C1	-0.4 (5)	C2—N2—C1B—C2B	-14.5 (4)
N1—C1—C6—C5	-179.3 (3)	N3—C1B—C2B—C3B	0.5 (4)
C2—C1—C6—C5	2.3 (4)	N2-C1B-C2B-C3B	-177.8 (3)
C1—N1—C1A—C2A	68.9 (3)	C1B—C2B—C3B—C4B	-1.1 (5)
N1—C1A—C2A—C7A	-0.8 (4)	C2B—C3B—C4B—C5B	1.0 (5)
N1—C1A—C2A—C3A	179.4 (2)	C1B—N3—C5B—C4B	-0.3 (4)
C7A—C2A—C3A—C4A	0.9 (4)	C3B—C4B—C5B—N3	-0.3 (5)
C1A—C2A—C3A—C4A	-179.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A···N3 ⁱ	0.88	2.08	2.952 (3)	175
Symmetry codes: (i) $-x+1, -y, -z$.				

Reagents and conditions: (A) n-BuLi, Te, THF, -78 °C; (B) Na2Te2, THF, KO^tBu; (C) KO^tBu, Te,THF.