Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N-(2-Bromobenzyl)- N^{\prime}-(2-pyridyl)-benzene-1,2-diamine

Sudesh T. Manjare, ${ }^{\text {a }}$ Harkesh B. Singh ${ }^{\text {a* }}$ and Ray J. Butcher ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: chhbsia@chem.iitb.ac.in
Received 24 September 2009; accepted 26 September 2009
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.039 ; w R$ factor $=0.092$; data-to-parameter ratio $=16.3$.

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}$, molecules are linked into dimers by co-operative intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. Only one $\mathrm{N}-\mathrm{H}$ group is involved in hydrogen bonding. The planes of the pyridine and bromophenyl rings are twisted by 61.49 (3) and 79.11 (8) ${ }^{\circ}$, respectively, from the plane of the central phenyl ring.

Related literature

The title compound was isolated as part of a project to further investigate the chemistry of chalcogen-carbene compounds (Dutton et al., 2007). The stability of imidazole-based carbenes depends very much on the nature of the substituents attached to the imidazole nitrogen atoms, see: Huynh et al. (2006); Kuhn et al. (1993). For bond lengths in analogous compounds, see: Albéniz et al. (2002); Denk et al. (2001). For details of the synthesis, see: Hahn et al. (2007).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3} & \text { Triclinic, } P \overline{1} \\
M_{r}=354.25 & a=7.9429(5) \AA
\end{array}
$$

$$
\begin{aligned}
& b=9.5314(8) \AA \\
& c=11.0606(8) \AA \\
& \alpha=98.741(6)^{\circ} \\
& \beta=90.727(6)^{\circ} \\
& \gamma=103.581(6)^{\circ} \\
& V=803.48(10) \AA^{3}
\end{aligned}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=2.56 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.51 \times 0.43 \times 0.16 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini R diffractometer
Absorption correction: multi-scan
(CrysAlis Pro; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.553, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.89$
3249 reflections

8461 measured reflections 3249 independent reflections 2038 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

199 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.88	2.08	$2.952(3)$	175

Symmetry code: (i) $-x+1,-y,-z$.
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

HSB is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. STM thanks the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5071).

References

Albéniz, A. C., Espinet, P., Manrique, R. \& Pérez-Mateo, A. (2002). Angew. Chem. Int. Ed. 41, 2363-2366.
Denk, M. K., Rodezno, J. M., Gupta, S. \& Lough, L. J. (2001). J. Organomet. Chem. 617, 242-253.
Dutton, J. L., Tabeshi, R., Jennings, M. C., Logh, A. J. \& Ragogna, P. J. (2007). Inorg. Chem. 46, 8594-8602.
Hahn, F. E., Jahnke, M. C. \& Pape, T. (2007). Organometallics, 26, 150-154.
Huynh, H. V., Han, Y., Ho, J. H. H. \& Tan, G. K. (2006). Organometallics, 25, 3267-3274.
Kuhn, N., Henkel, G. \& Kratz, T. (1993). Chem. Ber. 126, 2047-2049.
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

N-(2-Bromobenzyl)- N^{\prime}-(2-pyridyl)benzene-1,2-diamine

S. T. Manjare, H. B. Singh and R. J. Butcher

Comment

The structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}$, (2), is shown below. Dimensions are available in the archived CIF.

Carbene compounds sometimes show unpredictable reactivity patterns and are subject to hydrolysis (Denk et al. 2001; Albéniz et al., 2002). The stability of imidazole based carbenes depends very much on the nature of the substituents attached to the imidazole nitrogen atoms (Hahn et al., 2007; Huynh et al. 2006).

The title compound was isolated as part of a project to further investigate the chemistry of chalcogen-carbene compounds (Dutton et al., 2007), in particular tellurium-carbene chemistry with pyridine as a substituent on the nitrogen of the benzimidazole ring. However, in contrast with electron donating substituents such as n-butyl, and i-propyl, which lead to tellurium carbene formation, electron withdrawing groups such as phenyl and pyridyl result in hydrolysed products, such as the title compound. A repeated attempt to synthesize the pyridine substituted tellurone compound gave the title compound whose structure is reported here.

In (2) the bonds are in the usual ranges found for analogous compounds (Albéniz et al. 2002; Denk et al. 2001)).

The molecules are linked into dimers by cooperative intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. The two $\mathrm{N}-\mathrm{H}$ moieties adopt different conformations with respect to the phenyl ring to which they are both attached. $\mathrm{N} 1-\mathrm{H}$ is only twisted by $18.0(2)^{\circ}$ from this plane. As a result of this coplanarity the hydrogen attached to N1 does not form any hydrogen bonds. $\mathrm{N} 2-\mathrm{H}$, however, is twisted by $51.8(2)^{\circ}$ from this plane so as to participate in the intermolecular hydrogen bonding mentioned above. The planes of the pyridine and bromo-phenyl rings are twisted by $61.49(3)^{\circ}$ and $79.11(8)^{\circ}$ from the plane of the central phenyl ring.

The cleavage of carbene carbon from benzimidazole ring in the title compound may be due to: 1) destabilization of $\mathrm{C}=\mathrm{Te}$ by the electron withdrawing group present on the benzimidazolium nitrogen, 2) crowding near to the carbene carbon. The exact mechanism is under investigation. This structural study has confirmed the cleavage of the carbene carbon.

Experimental

In all cases, the starting benzylimidazoylium salt, 1 , shown in scheme (1) was prepared using standard methods (Hahn et al. 2007). With the appropriate salt, the title compound could be made by three different methods: (a). In a round bottom flask the benzylimidazoylium salt $1(1.0 \mathrm{mmol})$ was taken in THF $(40 \mathrm{~mL})$ under nitrogen atmosphere and of $n-\operatorname{BuLi}(2.0$ mmol) was added at $-78^{\circ} \mathrm{C}$, reaction mixture was stirred for $1-2 \mathrm{~h}$. Then Te powder was added to the reaction mixture at room temperature, and stirred for $8-10 \mathrm{~h}$. After completion of reaction, water (30 mL) was added and extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue obtained was dissolved in toluene and small amount of petroleum ether was added to separate the residue from the solution. The solution was filtered, evaporated and the residue was dissolved in diethyl ether and a small amount of petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)$ to afford the pure colorless product in 45\% yield.

supplementary materials

(b) The benzylimidazoylium salt $1(1.0 \mathrm{mmol})$ was added to a brown solution of $\mathrm{Na}_{2} \mathrm{Te}_{2}(2.0 \mathrm{mmol})$ at room temperature under nitrogen atmosphere and the reaction mixture was stirred for $6-10 \mathrm{~h}$ at room temperature. Then $\mathrm{KO}^{t} \mathrm{Bu}(1.0 \mathrm{mmol})$ was added to the reaction mixture and stirred further for 5-7 h. After completion of reaction, the reaction was quenched by adding water (50 mL), and extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue obtained was dissolved in toluene and small amount of petroleum ether was added to separate the residue from the solution. The solution was filtered and evaporated; the residue was dissolved in diethyl ether and a small amount of petroleum ether $\left(60-80{ }^{\circ} \mathrm{C}\right)$ to afford the pure crystalline product.
(c) In a round bottom flask the benzylimidazoylium salt $1(1.0 \mathrm{mmol})$ was taken in THF (40 mL) under nitrogen atmosphere and Te metal powder $(1.0 \mathrm{mmol})$ was added, then $\mathrm{KO}^{t} \mathrm{Bu}(2.0 \mathrm{mmol})$ was added to the reaction mixture at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for $5-6 \mathrm{~h}$. Then the reaction was quenched by adding water (50 mL), and extracted with dichloromethane, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue obtained was dissolved in toluene and some petroleum ether was added to separate the residue from the solution. The solution was filtered and evaporated; the residue was dissolved in diethyl ether and small amount of petroleum ether $\left(60-80^{\circ} \mathrm{C}\right)$ to afford the pure product.
$\mathrm{Mp} 156-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.15\left(\mathrm{~m},{ }^{1} \mathrm{H}\right), 7.54\left(\mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz},{ }^{1} \mathrm{H}\right), 7.43\left(\mathrm{~m},{ }^{1} \mathrm{H}\right)$,
$7.32\left(\mathrm{~m},{ }^{1} \mathrm{H}\right), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H}), 6.61\left(\mathrm{dd}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz},{ }^{1} \mathrm{H}\right), 6.40\left(\mathrm{~m},{ }^{1} \mathrm{H}\right), 6.15\left(\mathrm{~s},{ }^{1} \mathrm{H}\right), 4.83$
$\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz},{ }^{1} \mathrm{H}\right), 4.41(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 158.4,148.4,144.5,138.1,132.9,128.9$,
$128.8,127.8,127.6,127.4,125.7,123.4,117.7,114.6,111.7,107.4,48.2 . \mathrm{MS}: \mathrm{m} / \mathrm{z} 353[\mathrm{M}]^{+}, 355[\mathrm{M}+2]^{+}$. Anal. Calcd.
for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}(\%): \mathrm{C}, 61.03 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.86$. Found: C, $60.85 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.40$.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C} — \mathrm{H}$ distances of 0.95 and $0.99 \AA U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H attached to N was idealized with a distance of $0.88 \AA$.

Figures

Fig. 1. The molecular structure of $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}$ the showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2. The molecular packing for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}$ viewed down the a axis. The hydrogen bonding between $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ is shown by dashed lines.

Fig. 3. The formation of the title compound.

N-(2-Bromobenzyl)- N^{1}-(2-pyridyl)benzene-1,2-diamine

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3}$
$M_{r}=354.25$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=7.9429$ (5) \AA
$b=9.5314(8) \AA$
$c=11.0606(8) \AA$
$\alpha=98.741$ (6) ${ }^{\circ}$
$\beta=90.727(6)^{\circ}$
$\gamma=103.581(6)^{\circ}$
$V=803.48(10) \AA^{3}$
$Z=2$
$F_{000}=360$
$D_{\mathrm{x}}=1.464 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3047 reflections
$\theta=4.7-34.8^{\circ}$
$\mu=2.56 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Irregular plate, colorless
$0.51 \times 0.43 \times 0.16 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini R
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Monochromator: graphite
Detector resolution: 10.5081 pixels mm^{-1}
$T=200 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(CrysAlis Pro; Oxford Diffraction, 2009)
$T_{\text {min }}=0.553, T_{\text {max }}=1.000$
8461 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.89$
3249 reflections
199 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.052 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br	$0.83487(5)$	$0.00876(4)$	$0.69232(3)$	$0.05856(16)$
N1	$0.7358(3)$	$0.1251(3)$	$0.31573(19)$	$0.0433(6)$
H1A	0.6776	0.0542	0.2595	0.052^{*}
N2	$0.5888(3)$	$0.1863(3)$	$0.1091(2)$	$0.0405(6)$
H2A	0.6118	0.1008	0.0849	0.049^{*}
N3	$0.3381(3)$	$0.0980(2)$	$-0.01114(19)$	$0.0326(5)$
C1	$0.7931(4)$	$0.2636(3)$	$0.2846(2)$	$0.0351(7)$
C2	$0.7198(4)$	$0.2970(3)$	$0.1804(2)$	$0.0348(7)$
C3	$0.7745(4)$	$0.4348(3)$	$0.1484(3)$	$0.0408(7)$
H3A	0.7240	0.4563	0.0772	0.049^{*}
C4	$0.9013(4)$	$0.5417(4)$	$0.2185(3)$	$0.0477(8)$
H4A	0.9353	0.6370	0.1975	0.057^{*}
C5	$0.9773(4)$	$0.5079(4)$	$0.3189(3)$	$0.0481(9)$
H5A	1.0669	0.5799	0.3661	0.058^{*}
C6	$0.9258(4)$	$0.3714(3)$	$0.3522(2)$	$0.0467(8)$
H6A	0.9807	0.3501	0.4217	0.056^{*}
C1A	$0.7671(4)$	$0.0915(3)$	$0.4359(2)$	$0.0386(7)$
H1AA	0.8930	0.1249	0.4575	0.046^{*}
H1AB	0.7348	-0.0160	0.4317	0.046^{*}
C2A	$0.6705(3)$	$0.1589(3)$	$0.5388(2)$	$0.0342(7)$
C3A	$0.6902(4)$	$0.1324(3)$	$0.6583(2)$	$0.0384(7)$
C4A	$0.6043(4)$	$0.1895(4)$	$0.7542(3)$	$0.0487(9)$
H4AA	0.6192	0.1680	0.8342	0.058^{*}
C5A	$0.4973(5)$	$0.2775(4)$	$0.7325(3)$	$0.0563(10)$
H5AA	0.4387	0.3185	0.7981	0.068^{*}
C6A	$0.4744(4)$	$0.3068(4)$	$0.6165(3)$	$0.0546(9)$
H6AA	0.3992	0.3672	0.6018	0.066^{*}
C7A	$0.5616(4)$	$0.2476(3)$	$0.5202(3)$	$0.0441(8)$
H7AA	0.5456	0.2690	0.4403	0.053^{*}
C1B	$0.4294(4)$	$0.2041(3)$	$0.0757(2)$	$0.0343(7)$
C2B	$0.3615(4)$	$0.3199(3)$	$0.1284(3)$	$0.0434(8)$
H2BA	0.4278	0.3943	0.1892	0.052^{*}
C3B	$0.1994(4)$	$0.3253(4)$	$0.0920(3)$	$0.0492(8)$

sup-4

H3BA	0.1509	0.4029	0.1282	0.059^{*}
C4B	$0.1052(4)$	$0.2177(4)$	$0.0020(3)$	$0.0495(8)$
H4BA	-0.0076	0.2202	-0.0258	0.059^{*}
C5B	$0.1800(4)$	$0.1081(4)$	$-0.0453(3)$	$0.0416(7)$
H5BA	0.1155	0.0336	-0.1068	0.050^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.0621(3)$	$0.0737(3)$	$0.0418(2)$	$0.01693(18)$	$-0.00365(15)$	$0.01454(16)$
N 1	$0.0608(17)$	$0.0325(16)$	$0.0236(12)$	$-0.0093(12)$	$-0.0039(11)$	$-0.0031(10)$
N 2	$0.0443(15)$	$0.0301(15)$	$0.0423(13)$	$0.0096(12)$	$-0.0114(12)$	$-0.0092(11)$
N 3	$0.0360(14)$	$0.0304(14)$	$0.0282(12)$	$0.0038(10)$	$-0.0026(10)$	$0.0016(10)$
C 1	$0.0394(17)$	$0.0335(18)$	$0.0242(14)$	$-0.0033(13)$	$0.0026(12)$	$-0.0020(12)$
C 2	$0.0414(17)$	$0.0313(18)$	$0.0255(14)$	$0.0038(13)$	$-0.0022(12)$	$-0.0071(12)$
C3	$0.0469(18)$	$0.037(2)$	$0.0376(16)$	$0.0091(15)$	$0.0018(14)$	$0.0042(14)$
C4	$0.056(2)$	$0.036(2)$	$0.0449(18)$	$0.0000(15)$	$0.0111(16)$	$0.0032(14)$
C5	$0.052(2)$	$0.042(2)$	$0.0337(16)$	$-0.0149(15)$	$0.0044(15)$	$-0.0058(14)$
C6	$0.052(2)$	$0.050(2)$	$0.0245(14)$	$-0.0113(16)$	$-0.0044(13)$	$-0.0005(14)$
C1A	$0.0429(18)$	$0.0388(19)$	$0.0280(14)$	$-0.0001(13)$	$0.0022(12)$	$0.0020(12)$
C2A	$0.0305(16)$	$0.0300(17)$	$0.0330(15)$	$-0.0077(13)$	$0.0005(12)$	$0.0001(12)$
C3A	$0.0389(17)$	$0.0340(18)$	$0.0325(15)$	$-0.0070(13)$	$0.0020(13)$	$0.0000(12)$
C4A	$0.055(2)$	$0.046(2)$	$0.0322(16)$	$-0.0092(17)$	$0.0068(15)$	$-0.0018(14)$
C5A	$0.060(2)$	$0.040(2)$	$0.060(2)$	$0.0016(18)$	$0.0256(18)$	$-0.0052(17)$
C6A	$0.051(2)$	$0.041(2)$	$0.072(2)$	$0.0117(16)$	$0.0156(18)$	$0.0075(17)$
C7A	$0.0418(18)$	$0.037(2)$	$0.0497(18)$	$0.0007(15)$	$0.0040(14)$	$0.0094(14)$
C1B	$0.0397(17)$	$0.0336(18)$	$0.0284(14)$	$0.0055(13)$	$0.0060(13)$	$0.0058(12)$
C2B	$0.052(2)$	$0.0335(19)$	$0.0420(17)$	$0.0080(15)$	$0.0057(15)$	$-0.0006(13)$
C3B	$0.054(2)$	$0.042(2)$	$0.058(2)$	$0.0196(17)$	$0.0179(17)$	$0.0119(16)$
C4B	$0.0390(18)$	$0.060(2)$	$0.054(2)$	$0.0136(17)$	$0.0071(16)$	$0.0197(17)$
C5B	$0.0356(18)$	$0.047(2)$	$0.0394(16)$	$0.0036(15)$	$-0.0004(14)$	$0.0095(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br}-\mathrm{C} 3 \mathrm{~A}$	$1.900(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.389(4)$
$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}$	$1.446(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8800
$\mathrm{~N} 2-\mathrm{C} 1 \mathrm{~B}$	$1.370(3)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.423(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8800
$\mathrm{~N} 3-\mathrm{C} 5 \mathrm{~B}$	$1.336(4)$
$\mathrm{N} 3-\mathrm{C} 1 \mathrm{~B}$	$1.347(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.397(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.401(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.384(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.383(4)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.372(4)$

C1A-H1AA	0.9900
C1A-H1AB	0.9900
C2A-C7A	$1.377(4)$
C2A-C3A	$1.396(4)$
C3A-C4A	$1.380(4)$
C4A-C5A	$1.369(5)$
C4A-H4AA	0.9500
C5A-C6A	$1.372(5)$
C5A-H5AA	0.9500
C6A-C7A	$1.398(4)$
C6A-H6AA	0.9500
C7A-H7AA	0.9500
C1B-C2B	$1.393(4)$
C2B-C3B	$1.359(4)$
C2B-H2BA	0.9500

C4-H4A	0.9500
C5-C6	1.377 (4)
C5-H5A	0.9500
C6-H6A	0.9500
C1A-C2A	1.526 (4)
C1-N1-C1A	123.2 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.4
C1A-N1-H1A	118.4
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2-\mathrm{C} 2$	124.4 (2)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	117.8
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	117.8
C5B-N3-C1B	117.5 (2)
N1-C1-C2	119.3 (2)
N1-C1-C6	122.5 (3)
C2-C1-C6	118.1 (3)
C3-C2-C1	120.1 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	121.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	118.4 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.1 (3)
C4-C3-H3A	119.5
C2-C3-H3A	119.5
C5-C4-C3	118.9 (3)
C5-C4-H4A	120.5
C3-C4-H4A	120.5
C4-C5-C6	121.1 (3)
C4-C5-H5A	119.4
C6-C5-H5A	119.4
C5-C6-C1	120.6 (3)
C5-C6-H6A	119.7
C1-C6-H6A	119.7
N1-C1A-C2A	115.7 (3)
N1-C1A-H1AA	108.4
C2A-C1A-H1AA	108.4
N1-C1A-H1AB	108.4
C2A-C1A-H1AB	108.4
H1AA-C1A-H1AB	107.4
C7A-C2A-C3A	116.8 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-162.8 (3)
C1A-N1-C1-C6	18.9 (4)
N1-C1-C2-C3	179.5 (2)
C6-C1-C2-C3	-2.0 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-0.4 (4)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	178.0 (2)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	-52.3 (4)
C1B-N2-C2-C1	127.6 (3)
C1-C2-C3-C4	-0.2 (4)
N2-C2-C3-C4	179.7 (3)
C2-C3-C4-C5	2.1 (4)

C3B-C4B	1.384 (5)
C3B-H3BA	0.9500
C4B-C5B	1.361 (4)
C4B-H4BA	0.9500
C5B-H5BA	0.9500
C7A-C2A-C1A	122.8 (3)
C3A-C2A-C1A	120.4 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	122.6 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br}$	117.6 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br}$	119.8 (2)
C5A-C4A-C3A	119.1 (3)
C5A-C4A-H4AA	120.4
C3A-C4A-H4AA	120.4
C4A-C5A-C6A	120.3 (3)
C4A-C5A-H5AA	119.9
C6A-C5A-H5AA	119.9
C5A-C6A-C7A	120.0 (3)
C5A-C6A-H6AA	120.0
C7A-C6A-H6AA	120.0
C2A-C7A-C6A	121.3 (3)
C2A-C7A-H7AA	119.4
C6A-C7A-H7AA	119.4
$\mathrm{N} 3-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2$	115.0 (2)
N3-C1B-C2B	121.4 (3)
$\mathrm{N} 2-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	123.7 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	119.3 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	120.4
C1B-C2B-H2BA	120.4
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	119.8 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	120.1
C4B-C3B-H3BA	120.1
C5B-C4B-C3B	117.5 (3)
C5B-C4B-H4BA	121.2
C3B-C4B-H4BA	121.2
N3-C5B-C4B	124.5 (3)
N3-C5B-H5BA	117.8
C4B-C5B-H5BA	117.8
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br}$	179.0 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br}$	-1.2 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	-1.0 (5)
$\mathrm{Br}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	-179.2 (2)
C3A-C4A-C5A-C6A	0.8 (5)
C4A-C5A-C6A-C7A	-0.6 (5)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	-0.6 (4)
C1A-C2A-C7A-C6A	179.6 (3)
C5A-C6A-C7A-C2A	0.4 (5)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 3-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2$	178.6 (2)
C5B-N3-C1B-C2B	0.2 (4)

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.8(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.4(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$2.3(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$68.9(3)$
$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$-0.8(4)$
$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$179.4(2)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$0.9(4)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-179.3(3)$

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 3$	$167.2(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$-14.5(4)$
$\mathrm{N} 3-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$0.5(4)$
$\mathrm{N} 2-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-177.8(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-1.1(5)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$1.0(5)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 3-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-0.3(4)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 3$	$-0.3(5)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.88	2.08	$2.952(3)$	175
Symmetry codes: $(\mathrm{i})-x+1,-y,-z$.				

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

Reagents and conditions: (A) n-BuLi, Te, THF, $-78^{\circ} \mathrm{C}$; (B) $\mathrm{Na} 2 \mathrm{Te} 2, \mathrm{THF}, \mathrm{KO}^{\dagger} \mathrm{Bu}$; (C) KOt${ }^{\dagger} \mathrm{Bu}, \mathrm{Te}, \mathrm{THF}$.

