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Abstract

Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt
tolerant species. In this study we focused on the genetic and genomic diversity of Acacia
mesorhizobia symbionts from diverse origins in Senegal and investigated possible correla-
tions between the genetic diversity of the strains, their soil of origin, and their tolerance to sa-
linity. We first performed a multi-locus sequence analysis on five markers gene fragments on
a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the
strains (60%) clustered with the M. plurifarium type strain ORS 10327, while the others form
four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four
in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032"), one in MSP1
(STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities be-
tween these genomes together with the MLSA analysis reveal three new species of Mesorhi-
zobium. A great variability of salt tolerance was found among the strains with a lack of
correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils
samples characteristics. A putative geographical pattern of A. senegal symbionts between
the dryland north part and the center of Senegal was found, reflecting adaptations to specific
local conditions such as the water regime. However, the presence of salt does not seem to be
an important structuring factor of Mesorhizobium species.
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Introduction

Soil salinization, which might occur naturally or as a consequence of mismanaged irrigation, is
a major and growing environmental problem, especially in arid and semi-arid areas of the
world. Approximately 800 million hectares of land worldwide is affected by salt [1]. In Senegal,
6% of lands, mainly in coastal areas are affected by the phenomenon of salinization [2].

Salinization is a desertification factor causing degradation of biological, chemical and physi-
cal properties of soils [3]. A consequence of this degradation of soil properties is a decrease in
fertility, which leads to a reduction in crop yields, land abandonment, and the loss of natural
vegetation replaced by huge expanses of saline areas commonly called “fanne” in Senegal.
Thus, the supply of services from natural forests becomes insufficient to meet demand, while
poverty increases in rural areas.

Reclamation of large areas of saline land through the world seems difficult due to economic
and climatic constraints. However, salty soil reclamation could be done using bioremediation
method through planting halophyte plants which can absorb salt from soil and enhance the
bioproductivity [4,5]. In salted areas of Senegal, despite the disappearance of vegetation islands
of legume species with moderate salt tolerance such as Acacia, Prosopis and Sesbania species
can be found.

The Acacia genus offers several species adapted to degraded environments, particularly in
salt affected areas. A. seyal Del. and A. senegal (L.) Willd. are indigenous woody legumes with
important socio-economic roles. First they are widely used in reforestation processes [6] but
also for producing gum arabic which is a very important source of income in the Sahel [7,8].
The ability of these species to establish in poor and degraded soils might be due to their
aptitude to contract associations with nitrogen-fixing bacteria (rhizobia) and arbuscular my-
corrhizal fungi that occur naturally in their rhizosphere [9]. Indeed, symbioses with microor-
ganisms are powerful factors of plant adaptation to adverse environmental conditions,
including the lack of major nutrients (nitrogen, phosphorus), biotic (pathogens, phytopha-
gous) and abiotic (drought, salinity) stresses (for review [10]).

Rhizobial populations are known to vary in their tolerance to major environmental factors
[11]. It has been reported that salt stress decreases legume growth and nitrogen fixation activity
of nodules (for review see [10]). However, inoculation with salt-tolerant strains of rhizobia can
enhance the nodulation and nitrogen-fixing ability of the leguminous plants growing under sa-
line conditions, for example in Acacia [12-14]. Furthermore, the ability of legume hosts to
grow and survive in saline soils was also shown to improve when they were inoculated with
salt-tolerant strains of rhizobia [15-17].

Strains of the genus Mesorhizobium can establish nitrogen-fixing symbiosis with legume
species from temperate, tropical, sub-tropical and arctic areas [18], or associate endophytically
with legume plants [19]. Strains isolated from root nodules of the non-legume genus Paraspo-
nia [20] and different tropical tree legumes, such as Acacia, Leucaena, Prosopis, Chamaecrista
and Lotus in West Africa (Senegal), East Africa (Kenya, Sudan), South America (Mexico,
Brazil) and Europe (the Canary island), were described as Mesorhizobium plurifarium [21-30].
The large distribution suggests their adaptation to several eco-climatic conditions [31,32]. In
a phenotypic comparative study, the M. plurifarium type strain was found more tolerant to
heat and salt than other type strains of Mesorhizobium species [31].

Studies based on the sequencing of the 16S rRNA gene and the 165-23S intergenic spacer of
rhizobial strains associated to A. seyal from diverse agro-ecological zones in Senegal reported
the predominance of Mesorhizobium genomic groups closely related to Mesorhizobium pluri-
farium with putatively several new species that remain to be defined [22,33]. Inferring diversity
in the Mesorhizobium genus proved to be difficult when using only the 16S rRNA ribosomal
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taxonomic marker due to its high conservation across Mesorhizobium species [34]. The use of
alternative phylogenetic markers is thus very important for species definition within this
genus, since some species (e.g. M. mediterraneum and M. temperatum or M. metallidurans and
M. gobiense) cannot be distinguished by their 16S rRNA sequence alone [32,35]. A Multi Locus
Sequence Analysis (MLSA) with different core genes has been used previously for phylogenetic
purposes in the Mesorhizobium genus [35-40].

The average nucleotide identity (ANI) of whole genomes has been recently proposed as an
alternative to DNA-DNA hybridizations (DDH) to infer bacterial species affiliation with values
of ANT >95% on 69% of conserved DNA matching with the 70% species cut-off of DDH usual-
ly kept in taxonomic studies of bacteria [41,42]. The rapid development of bacterial genome se-
quencing at low cost coupled with comparative genomics software development (using either
Blast or Mummer algorithms) as jSpecies [43] or MUMIi [44] give opportunities to use such
correlations to infer rapidly the species of a given strain.

It is often difficult to correlate the genetic diversity of rhizobia and their tolerance to several
stresses as salinity. Several studies have underlined the lack of correlation between the sampling
sites characteristics, the genetic diversity of rhizobia and their tolerance to salinity [33,45,46],
while others authors could link the origin of the soil with the salt tolerance of rhizobia [47].

In this study we analysed the genetic and genomic diversity of A. senegal and A. seyal mesor-
hizobia symbionts from diverse origins in Senegal and investigated possible correlations be-
tween the genetic diversity of the strains, their soil of origin (being under salt-stress or not),
and their tolerance to salinity. We first studied at a fine scale the genetic diversity of a collection
of mesorhizobia (using Multi Locus Sequence Analysis and genomic fingerprints), inferred
their species affiliation using draft genome sequencing and ANI values, and then compared the
diversity patterns with salt-tolerance phenotypes and the geographical origin of isolates.

Materials and Methods
Bacterial culture and maintenance

The strains used in this study are listed in Table 1. They originate either from previous studies
(See reference in Table 1) or were isolated for this study from nodules on the roots of Acacia sene-
gal or A. seyal growing in pots on soils collected from the field (rhizospheric soil of Acacia). A total
of 8 locations (under salt-stress or not, see Fig. 1 and Table 1 for electrical conductivity of soils and
gps coordinates), and 36 strains from A. senegal and 11 from A. seyal, were studied. No specific
permissions were required for the sampling locations. All strains were kept in 20% (v/v) glycerol
at -80°C and cultured either in TY [48] or YEM [49] media in a shaking incubator at 28°C.

Phenotypic tests

Tolerance to sodium chloride (NaCl) of rhizobia was tested in 96 well microplates (Nunc Micro-
well) in broth TY medium [48]. Microplates containing medium supplemented with increasing
amounts of NaCl (0 to 600 mM) were inoculated with pure rhizobial culture suspensions (inocula-
tion with 10 pl at optical density (OD) of 1 in a final volume of 200 pl per well, to reach OD 0.05)
and incubated on a rotary shaker (160 rpm) at 28°C. Growth was monitored during 72 h by mea-
suring the OD at 600 nm using a microplate spectrophotometer (TECAN-Infinite M200).

Molecular methods

DNA extraction, PCR and sequencing. DNA extraction was performed using a K proteinase
lysis protocol as previously described [50]. All PCR amplifications were performed with Go-
Taq polymerase (Promega) following manufacturer instructions. The primers used for PCR
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Table 1. Bacterial collection of Acacia symbionts used in this study.

Species/ Other Rep-PCR  Tolerance Host Geographical Ecogeographical Climatic Soil Soil Référence
strain names profile to salt £ plant origin® zone zone* pH EC*
number
Mesorhizobium plurifarium
ORS1032" LMG11892"T 21 400 A. senegal Senegal ND Sud ND ND [25]
ORS3302 20 200 A. seyal Ndiafate 2 Groundnut Basin Sud 6,3 1160 [22]
ORS3356 7 300 A. seyal Vélor 2 Groundnut Basin Sud 6,2 200 [22]
ORS3357 16 200 A. seyal Nonane 1 Groundnut Basin Sud 5,83 4580* [22]
ORS3365 10 300 A. seyal Foundiougne 5  Groundnut Basin Sud 6,9 805 [22]
ORS3369 17 300 A. seyal Vélor 1 Groundnut Basin Sud 6,14 220 [22]
ORS3397 19 300 A. seyal Ndiafate 1 Groundnut Basin Sud 6,3 1160 [22]
ORS3399 6 300 A. seyal Ngane 1 Groundnut Basin Sud 4.3 43900* [22]
ORS3400 ND 300 A. seyal Ngane 1 Groundnut Basin Sud 4,3 43900* [22]
ORS3404 8 200 A. seyal Vélor 1 Groundnut Basin Sud 6,14 220 [22]
ORS3588 18 200 A. senegal Goudiry Senegal Oriental Sud 596 ND [23]
ORS3593 3 200 A. senegal Goudiry Senegal Oriental Sud 596 ND [23]
ORS3596 9 200 A. senegal Goudiry Senegal Oriental Sud 596 ND [23]
ORS3598 ND 200 A. senegal Goudiry Senegal Oriental Sud 5,96 ND [23]
ORS3600 15 200 A. senegal Goudiry Senegal Oriental Sud 596 ND [23]
ORS3610 1 200 A. senegal Goudiry Senegal Oriental Sud 596 ND [23]
STM8760 K16 14 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8770 Dj16 4 300 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8771 Dj17 12 ND A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8773 Dj20 1 500 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8775 Sd4 6 300 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8777 Sdi1 4 400 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8791 Sod14 1 400 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8797 Nd20 4 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8799 Da8 2 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8805 Ka2 11 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8813 Tch9 5 300 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8818 Tch17 5 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
Mesorhizobium sp. MSP1
ORS3416 31 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3423 32 300 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3437 23 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3443 28 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3447 26 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3448 30 300 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3450 30 300 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3452 22 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3573 27 200 A. senegal Dahra Sylvo-pastoral Sah 597 ND [23]
ORS3578 25 200 A. senegal Dahra Sylvo-pastoral Sah 5,97 ND [23]
STM8768 Dj14 29 200 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8782 B17 33 300 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8789"  Sod10" 28 500 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
STM8792 Sod15 24 400 A. senegal Bambey Groundnut Basin Sud 6,5 148 This study
Mesorhizobium sp. MSP2

(Continued)
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Table 1. (Continued)

Species/ Other Rep-PCR  Tolerance  Host Geographical Ecogeographical Climatic Soil Sail Référence
strain names profile to salt £ plant origin® zone zone* pH  EC*

number

ORS3359" STM7562" 34 100 A. seyal Nonane 3 Groundnut Basin Sud 6,29 951 [22]
Mesorhizobium sp. MSP3

ORS3324" STM7563" 35 0 A. seyal Bambey Groundnut Basin Sud 6,5 148 [22]
Mesorhizobium sp. MSP4

ORS3428 37 200 A. senegal Kamb Sylvo-pastoral Sah 529 494 [24]
ORS3628 36 400 A. senegal Dahra Sylvo-pastoral Sah 597 ND [23]

Strains in bold indicate strain which genome was sequenced in draft. STM, culture collection of Laboratoire des Symbioses Tropicales et
Méditerranéennes Montpellier, France. ORS, culture collection of the Laboratoire Commun de Microbiologie IRD/ISRA/UCAD Dakar, Senegal.

£: Tolerance to salt in mM as estimated in this study: the number indicates the concentration of salt tested at which the strain still grows.

&: Sud: Sudano-sahelian zone with 500-900 mm of annual rainfall; Sah: Sahelian zone with 300500 mm of annual rainfall.

#: Soil ElectroConductivity (EC) in uS cm™.

* indicated salted soil according to FAO (>4000 puS cm-1.).

$: Site with numbers corresponds to sites in [22].

GPS coordinates: Ndiafate 1: 14°03 753'N, 16°11 239'W; Ndiafate2: 14°03 914’N, 16°11 200°'W; Velor1: 14°03 467°N, 16°11 243'W; Velor2: 14°03 466'N,
16°11 176'W; Nonane1: 14°18 187'N, 16°21 340'W; Nonane3: 14° 18 144’N, 16°21 163'W; Foundiougne5: 14°11 935'N, 16°26 836'W; Ngane1: 14°35 N,
16°42 W), Goudiry: 14°11N, 12°43W, Bambey: 14 42’N, 16 28'W; Kamb: 15 31'N, 15 25'W; Dahra: 15°21N, 15°29W. See [23—-24] for detailed description
of sampling sites.

doi:10.1371/journal.pone.0117667.t001

and sequencing are described in Table 2. The 16S ribosomal DNA (rDNA) was amplified using
the universal eubacterial primers FGPS6 and FGPS1509 [51]. The 16S rDNA amplification was
carried out as previously described [52]. Fragments of the house-keeping genes atpD, dna],
gyrB, and recA were amplified as described before [35,39]. The glnA gene was amplified using
either GSI3-58F and GSI2-1143R [53] primers or glnA572F and glnA1143R [54]. PCR prod-
ucts were purified and sequenced by Genoscreen Inc.

Draft genome sequencing and assembly. For whole genome sequencing, strains were grown
in 50 ml of broth Yeast-mannitol medium and DNA isolation was performed using a CTAB
(Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method. DNA quality
and quantity was evaluated on a Nanodrop spectrophotometer. The draft genome of 7 strains
was produced using Illumina Hiseq technology at Montpellier Genomix platform (MGX), with
paired-end sequencing on 700 bp fragments, read length of 100 bp, at 2000X coverage (1/3 Illu-
mina lane per bacteria, around 60 million reads per strain). Sequences were assembled on CLC
Genomic workbench v5, and contigs were filtered on size (>500 bp) and reads coverage (mini-
mum of 200X, average cover at 2000X). Genomes were automatically annotated using the Micro-
scope platform [55]. The comparative genomic study of the 7 strains is part of a separate article.

Rep PCR amplification. Repetitive extragenic palindromic PCR (Rep-PCR) genomic fin-
gerprinting was generated with primers REP1R and REP21, as previously reported [56]. PCR
mix and conditions were as described by Mishra et al [57]. Rep PCR amplification product
were electrophoresed in a 1% agarose gel in TAE 1X buffer and 0.5 pg of ethidium bromide per
ml and photographed under UV light.

Phylogenetic analyses

Gene fragments sequences were corrected with Chromas Pro v1.33 software (Technelysium) and
aligned using either ClustalX [58] or muscle as implemented in MEGAG6 [59]. Alignments were
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Fig 1. Localization of sampling sites in Senegal. Sampling sites are indicated in blue (D = Dahra, K = Kamb, B = Bambey, F = Foundiougne, Ng = Ngane,
V = Vélor, Nd = Ndiafate, No = Nonane, G = Goudiry). The red color indicates salt affected soils (Electroconductivity >4000 uS cm™). Background colors
indicate the different climatic zones of Senegal: light yellow = Sahelian zone (annual rainfall 250-500 mm), Dark yellow = Sudano-Sahelian zone (annual
rainfall 500-900 mm), light green = Sudanean zone (annual rainfall 900—-1100 mm), dark green = Guinean zone (annual rainfall > 1100 mm).

doi:10.1371/journal.pone.0117667.9001

corrected manually under Genedoc software [60] when necessary, and recombination in the data-
sets was evaluated using the Recombination Detection Program (RDP) v4.35 [61]. Recombination
was inferred as true when at least two programs of RDP (RDP, Geneconv, Bootscan, MaxChi, Chi-
maera, Siscan or 3Seq) could detect the same event. Single marker phylogenies were built with
MEGAG6 using either Neighbor-Joining (with Kimura 2 distance correction method [62] or Maxi-
mum likelihood analyses with 1000 bootstrap replicates. A Bayesian phylogenetic tree was built
from the concatenate of all 5 gene fragment alignments, using a Markov chain Monte-Carlo
(MCMC) analysis. The priors used for the MCMC analysis were based on a GTR+I+G model with
6 types of substitutions, with parameters estimated by maximum likelihood with Modeltest 3.6 [63].

Average nucleotide identities of whole genomes

Whole genome comparisons using Average Nucleotide Identities (ANI) between genome se-
quences were produced using jSpecies [43] that use both Blast and Mummer alignments to
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Table 2. Primers used in this study for PCR and Sanger sequencing.

Targets
16S rDNA

atpD

dnad

glnA

gyrB

recA

Rep PCR

Primers

FSGP6
FGPS1509
atpD-F
atpD-R
dnaK-F
dnaJ-R
gInA572F
ginA1142R
GSI3-58F
GSI2-1143R
gyrB-fornew
gyrB-revnew
recA-F
recA-R
Rep1R-1
Rep2-1

doi:10.1371/journal.pone.0117667.t002

5’-3’ sequences Product (bp) Reference
GGAGAGTTAGATCTTGGCTCAG 1500 [51]
AAGGAGGGGATCCAGCCGCA

ATCGGCGAGCCGGTCGACGA 470 [35]
GCCGACACTTCCGAACCNGCCTG

CAGATCGAGGTSACCTTCGAC 1600 [39]
CGTCRYCATMGAGATCGGCAC

GGACATGCGYTCYGARATGC 530 [54]
TGGAKCTTGTTCTTGATGCCG

GAYCTGCGYTTYACCGACC 1085 [53]
GTCGAGACCGGCCATCAGCA

TGCTGCTCACCTTCTTCTTCCG 695 [39]
CCYTTGTAGCGCTGCATGGT

ATCGAGCGGTCGTTCGGCAAGGG 440 [35]
TTGCGCAGCGCCTGGCTCAT

INICGICGICATCIGGC 200-5000 [56]
ICGICTTATCIGGCCTAC

evaluate whole genome homologies. A blast approach on 1000 bp windows was preferred due
to the draft status of genomes. Available genomes of Mesorhizobium were included in the anal-
ysis (see Table 3 for Accession numbers). Cut-offs for species delineation were 95% ANI on
69% of conserved DNA according to Goris et al. [41].

Statistical analysis

Basic statistics as well as multiple correspondence analyses (MCA) were conducted in R v3.1.0
software using Ade4 and FactoMineR modules. Quantitative variables (soil pH, soil electro-
conductivity and strain tolerance to salinity were transformed into qualitative variables (using
different classes). We tested for significant differentiation of populations (in terms of species
proportion) between the two sahelian and sudanian climatic zones, and among the three
groups of salt tolerance that contained at least three individuals (200, 300 and 400 mM). Unbi-
ased P values were estimated with an exact G tests implemented in Genepop [64].

Accession numbers

The sequences determined in this study have been deposited in the GenBank database and ac-
cession numbers are indicated in S1 Table: 16S rRNA (KJ609577-K]J609603); atpD (KJ648182-
KJ648227); dna] (KJ648228-KJ648270); glnA (KJ883298-KJ883340); gyrB (KJ648271-
KJ648315); recA (KJ609604-KJ609649). Genome assemblies produced in this study have

been deposited in the European Nucleotide Archive under Project numbers PRJEB6721 to
PRJEB726 and accession numbers ERP006359 to ERP006364.

Results

Multi-Locus Sequence Analysis of the Mesorhizobium collection isolated
from two Acacia species from salt-contrasted soils

We first sequenced 1000 bp of the 16S rRNA marker (encompassing its variable part) in all
strains (except those already sequenced) and produced a 16S rRNA phylogeny presented in
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Table 3. Genome characteristics of strains sequenced as part of this study as well as reference genomes used for average nucleotide identities
calculations (ANI).

Bacterial strain Other GOLD id®/ Project AN in EBI®/Study ID NCBI Contig Estimated Gene
names Genbank or Genbank AN Taxon IDS  Count Size (in Kb) Count
Sequenced in this study
M. plurifarium ORS1032" Gb0028550 PRJEB6720/ERS517733 69974 52 7108 7293
M. plurifarium STM 8773 DJ20 Gb0091368 PRJEB6723/ERP006361 69974 46 7144 7425
M. plurifarium ORS 3356 STM 8724 Gb0091369 PRJEB6721/ERP006359 408182 76 7646 8097
M. plurifarium ORS 3365 STM 8727 Gb0091371 PRJEB6722/ERP006360 408185 67 7240 7618
MSP1 STM 8789 Sod10 Gb0091370 PRJEB6724/ERP006362 68287 61 6515 6766
MSP2 ORS 3359 STM 7563 Gb0091372 PRJEB6726/ERP006364 408184 214 6885 7191
MSP3 ORS 3324 STM 7562 Gb0091373 PRJEB6725/ERP006363 408180 242 6585 7012
Reference genomes used for ANI
M. loti USDA34717 NzP2213 Gb0010058 NZ_AXAE00000000.1 935547 3 6529 6375
M. huakuii MAFF3030997 Gb0000748 NC_002678.2 266835 3 7596 7334
M. opportunistum WSM2075" LMG 24607 Gb0003955 NC_015675.1 536019 89 6884 6747
M. ciceri WSM1271 Gb0003892 NC_014923.1 765698 2 6690 6532
M. australicum WSM2073" LMG 24608 Gb0003957 NC_019973.1 754035 19 6200 6076
M. amorphae CCNWGS0123 Gb0014286 NZ_AGSN00000000.1 1082933 274 7293 7136
M. alhagi CCNWXJ12—-2" Gb0020563 NZ_AHAMO00000000.1 1107882 375 6968 7244

£: Gold id refers to the Genome on-line database (http:/www.genomesonline.org/);

s, Project id at EBI (http://www.ebi.ac.uk/); genomes were submitted to the European Nucleotide Archive database under this project ID.
§: NCBI taxon number at http://www.ncbi.nim.nih.gov/taxonomy.

%: Strain MAFF303099 was assigned to the M. huakuii species in previous reports [65,66]. AN: Accession Number.

doi:10.1371/journal.pone.0117667.t003

Fig. 2. The 16S-derived phylogeny was not well resolved within the Mesorhizobium plurifarium
clade, with poor bootstrap values at mostly all branch nodes, and long branches for several
strains indicating nucleotide divergence.

In order to better resolve the genetic diversity of the collection, we produced a multi locus
sequence analysis on five house-keeping gene fragments (recA, gyrB, glnA, dnaJ, atpD). Gene
markers were chosen according to their use and performance in previous Mesorhizobium
diversity studies. The vast majority of gene fragments could be amplified and sequenced in al-
most all strains using methods and primer sets listed in Mat&Methods and Table 2, respective-
ly. Aligned partitions of each gene were built, including reference strains (either type strains of
Mesorhizobium species and available genomes). The list of reference strains used is presented
in S1 Table. Recombination within datasets was assessed to remove sequences displaying hori-
zontal gene transfer (see Mat&Methods for details). Recombination was detected in gyrB of
ORS3369, glnA of ORS3404, and dna] of ORS3448. These sequences were removed from the
datasets to avoid conflicting phylogenetic signals.

The alignments of all genes were concatenated to produce a global alignment of 2637 bp,
with atpD (1-421 bp), dnaJ (422-1195 bp), ginA (1196-1606 bp), gyrB (1607-2237 bp) and
recA (2238-2637 bp). A Bayesian phylogeny was then built using the prior (estimated by ML)
and run parameters as shown on Fig. 3A, and a consensus tree was built. Bootstraps from 1000
replicates obtained from another analysis by maximum likelihood (the ML model being the
same than used for the priors of the Bayesian study on all markers) were added to the tree
nodes on Fig. 3A. The phylogenetic tree obtained was much more resolved than the 16S rRNA
tree, with Mesorhizobium strains from A. senegal and A. seyal being splitted in five clades
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supported by high posterior probabilities and bootstraps from the Bayesian and ML analyses,
respectively. These clades were named M. plurifarium (MP) for clade I, and MSP1 to MSP4 for
the others clades as they did not include any known type strain of Mesorhizobium species. The
first clade includes the highest number of strains (29) from the collection together with the
type strain of Mesorhizobium plurifarium ORS 1032". This clade includes both strains isolated
from A. seyal (9 strains) and A. senegal (20 strains), unlike other clades which contain only
strains isolated from A. senegal (MSP1, MSP4) or A. seyal (MSP2, MSP3). The clade MSP1 in-
cludes 14 strains, while MSP2 to MSP4 were rare as they comprise one to two strains.

Genomic diversity of bacteria assessed by Rep-PCR fingerprints

Molecular typing of Mesorhizobium strains by Rep-PCR amplification generated multiple am-
plification products ranging in size from 200 bp to 5000 bp (Fig. 3B). The results show a high
intraspecific variability in the Mesorhizobium clades, with very few identical genome finger-
prints among strains. This result mirrors the high number of sampling sites and species diversi-
ty and the almost absence of clonal isolates in our collection.

Genome sequencing of representative strains & Average Nucleotide
identities

Draft genomes of strains were produced in order to evaluate the genomic diversity of M. pluri-
farium strains nodulating A. seyal and A. senegal as well as to determine if several species were
present in the collection. Whole genome of four strains of M. plurifarium (including the type
strain ORS1032") and three strains of Mesorhizobium sp. belonging to clade MSP1 to MSP3
were sequenced. No genome was chosen in clade MSP4 as our preliminary analyses did not de-
tect this new clade, and our criteria included also the salt tolerance and strains in this group did
not exhibit interesting phenotypes. Information on the sequencing method is given in the
Mat&Method section, and descriptive information on the genomes can be found in Table 3.

Average nucleotide identities (ANI) were calculated to evaluate species affiliation of strains
which genomes were sequenced. According to Richter and Rossello-Mora [43] there is a corre-
lation between the percentage of average nucleotide identity (ANI %) and the percentage of
DNA-DNA hybridization, which is a major criteria in bacterial species delineation. The
Table 4 contain the matrix of nucleotide identities between whole genomes calculated under
jSpecies [43] by the blast method on windows of 1000 bp in size. We colored in gray the ANI%
value of strains which genomes identities exhibit the criteria of belonging to the same species as
defined by Goris et al [41]. The latter article reported that when strains share an ANI % > 95%
on more than 69% of conserved DNA, they would belong to the same species. According to
these criteria, ORS3356, ORS3365 and DJ20 share more than 95% ANI with the type strain of
M. plurifarium ORS1032", and are classified in clade MP in the MLSA tree. The strains
STM8789, ORS3359 and ORS3324, respectively belonging to MSP1, MSP2 and MSP3, did not
share these criteria with any Mesorhizobium species included in the analysis.

% of ANI were calculated using blastn on 1000 bp windows of the genomes, with jSpecies
(see Math&Methods). In bold are indicated ANI matching with the species affiliation cut-off:
>95%, with the % of conserved DNA indicated between parentheses (>69%), as defined by
Goris et al. and Konstantinidis & Tiedje [41,42].

Tolerance to salinity of the collection

Salt tolerance test of all strains (in triplicates) were conducted in microplate in TY broth medium
supplemented with 0 to 600 mM of NaCl. Our aim was to establish putative correlations between
the salt tolerance phenotype, the species affiliation and/or geographical origin of the isolates. We
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Fig 2. Phylogeny of the 16S rRNA marker of the Mesorhizobium collection, built by neighbor joining from a distance matrix corrected by the
Kimura-2 method. The scale bar indicates the number of substitutions per site. Numbers at tree nodes indicate % of bootstrap replicates.

doi:10.1371/journal.pone.0117667.g002

considered that tolerance of a given strain to a particular concentration of salt was true when the
bacteria could still grow at 50% compared to its growth in the same medium without salt (con-
sidered as the 100% of growth). As the collection was quite high in number with tests in 7 differ-
ent concentrations (0, 100, 200, 300, 400, 500 mM) and 3 OD sampling times (24, 41 and

68 hours), we chose to represent the data of the OD growth of the strain at 41h post inoculation
of the medium, using a radar graphic, shown in Fig. 4. The same radar at 24h and 68h is pre-
sented in S1 Fig., and histograms of growth% compared to the unsalted control with standard de-
viation are given for every strain in S2 Fig. For M. plurifarium (MP) and MSP1 species, half of
the strains were highly impacted in their growth at 300 mM (growth <50% compared to control)
and most could not grow (OD not exceeding 0.3) at 400 mM of salt in the medium. Some strains
exhibited a better tolerance to salinity and could still grow up to 400 mM (ORS1032, Dj20, Sd11,
Sod14, Sod10 and Sod15). Some strains could even grow at 500 mM of salt: Dj16 and Dj20 for
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Fig 3. Bayesian phylogeny of the 5 markers alignment (atpD-dnadJ-ginA-gyrB-recA) (A) and rep-PCR fingerprints (B) of the Mesorhizobium
collection. The priors (estimated by ML) and run parameters for the Bayesian phylogeny are indicated on the left side of the tree. The tree shown is

a 50% majrule consensus of all trees produced by the 4 Markov chains. Posterior probabilities (upper number) and bootstraps from 1000 replicates from

a ML phylogeny (below number) are indicated at each tree nodes (/ indicate that there is no bootstrap available because the tree node was not common
between the Bayesian tree and the ML tree). The scale bar indicates the number of substitutions per site. For the rep-PCR fingerprints (B), see the
Mat&Methods section. Each profile was numbered on the right side of the gel. Rep-PCR profiles were not obtained for ORS3400, ORS3598 and ORS1032.

doi:10.1371/journal.pone.0117667.g003
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MP, Sod10 for MSP1. The few strains of MSP2, MSP3 and MSP4 were poorly tolerant to salt
(even at 200 mM), and strains of MSP4 did not even grew well at low salt concentrations, proba-
bly due to the growth conditions that might be unadapted to this species.

Correspondence Analyses between salt responses, genetic typing and
the origin of strains

We performed a multivariate correspondence analysis (MCA) in order to study the distribu-
tion of our strains according to the following parameters: tolerance of strains, species, plant
host, and pedoclimatic conditions of the sampling sites (soil pH and electro-conductivity (EC),
geographical origin, eco-geographical and climatic zones). Quantitative variables were trans-
formed in qualitative variable using different classes with biological relevance (pH, tolerance to
salinity, EC). The results are presented as a MCA plot in S3 Fig. (A) and factors from the MCA
are represented individually in S3 Fig. (B). As observed, there was no correlation between the
distribution of strains and their salt tolerance, their species affiliation, and/or their geographical
or soil of origin (being salted or not). We tested for significant differentiation of populations
(in terms of species proportion) between the two sSahelian and Sudano-sahelian climatic
zones, and among the three groups of salt tolerance that contained at least three individuals
(200, 300 and 400 mM). There was no significant difference among the three groups of salt tol-
erance (all pairs of population, p values from 0.45 to 1). Conversely, the two climatic zones
(marked by different annual rainfall amounts) were significantly differentiated (p = 0), reflect-
ing a different composition of species between them. Indeed the MP, MSP2 and MSP3 species
were only detected in the Sudano-Sahelien zone, while MSP1 was detected in both Sudano-
Sahelian and Sahelian zones, and MSP4 was only found in the Sahelian zone. However the spe-
cies MSP2, MSP3 and MSP4 contain very few strains and thus we cannot conclude about their
geographical pattern (though we can conclude that these species are quite rare compared to
MSP1 and MP). For MP and MSP1 the geographical pattern seems to be clear and thus related
to the eco-climatic zones (rainfall) rather than the salinity of the soils.

Discussion

Mesorhizobium strains of Acacia seyal and A. senegal belong mainly to
M. plurifarium but also to at least three new species

The MLSA phylogeny based on 5 housekeeping genes showed a higher species diversity of
Mesorhizobium strains nodulating A. seyal and A. senegal than previously expected. Most of
the strains (60%) clustered with the M. plurifarium type strain ORS 10327, as previously re-
ported for some of them [22-25,27]. The rest of the strains were distributed in four new clades,
which happen to be new species for at least 3 of them (MSP1 to MSP3) according to the average
nucleotide identities of genomes of representative strains in each clade. Unfortunately we did
not sequence a representative strain of MSP4 as we did not initially expect this clade in the first
results of the single markers phylogenies. The ANT has been proposed as an alternative to
DNA-DNA hybridizations (DDH) to infer bacterial species affiliation ([41,42]. If we apply the
cut-offs of species delineation as previously published (ANI>95% on 69% of conserved DNA),
then the MLSA phylogeny of Acacia mesorhizobia fits perfectly with the ANI-based species af-
filiation. The use of ANI seems to be a good species assessment in the Mesorhizobium genus, as
there was also no conflict of ANI values between known Mesorhizobium species (Table 4, all
known species comparison gave ANI <95%). The ANI between reference strains also confirms
the belonging of the strain MAFF303099 to a separate species from M. loti (89.35% ANI with
M. loti USDA34717") as suggested by Turner et al. [65] and Wang et al. [66]. Our study also
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at 41h post-inoculation with 0.05 OD as a starting point. Radars at 24h and 68h are presented in S1 Fig., and
histograms of growth for each strain at 41h are presented in S2 Fig.

doi:10.1371/journal.pone.0117667.9004

confirms the good performance of the 5 markers used (atpD, dnaJ, gyrB, recA and glnA) in
Mesorhizobium diversity studies as previously reported for rhizobia [28,35-37,39,53,67].

Our results thus suggest three new species of Mesorhizobium nodulating both Acacia species.
Two of the new clades were anticipated to be separate species from MP as they clustered separately
in the IGS spacer phylogeny (as ORS3359 and ORS3324) of the Diouf et al. [22] study, though not
in their 16S rDNA phylogeny (this study, [22], [24]). It is interesting to note that MSP1 was only
detected in A. senegal nodules, while MP was found in the nodules of both Acacia species. A recent
analysis of nodulation genes clustered Mesorhizobium strains (MP, MSP2, MSP3) according to
their host of origin: strains from the MSP1 clade (all from A. senegal) were clustered with M. pluri-
farium strains from A. senegal in their nodA, nodC and nifH phylogenies (Bakhoum et al., Micro-
bial Ecology, in press). In the case of A. seyal strains, these are all grouped together in the nodA
and nodC phylogenies [33]. The only exception of this latter study was the #n0dC of ORS3324 that
grouped with the nodC of the Ensifer arboris type strain. As we sequenced the full genome of
ORS3324, we analyzed its nodC in the genome data and found out that it grouped together with
the other A. seyal mesorhizobia (ORS3359 and ORS3324 sharing 100% nucleotide on nodA and
nodC), thus the nodC fragment published in Diouf et al. [33] shall be considered as an error.

The nodulation ability of strains was assessed on A. seyal and A. senegal and all strains were able
to nodulate both species, whatever their species affiliation or their nodA allele. Such ability is corre-
lated with previous articles showing that strains of the large M. plurifarium clade (also described as
Cluster U in previous studies) share similar nodulation host range on Acacia, Prosopis and Leu-
caena species [25,68], and thus their host range shall not explain their geographical distribution.

The tolerance to NaCl is highly variable among M. plurifarium and MSP1
species—whatever their geographical and pedoclimatic origin

A great variability of response to salt of Acacia mesorhizobia from MP and MSP1 was found.
Conversely, strains of MSP2 to MSP4 did not exhibit high salt tolerance, but given the low
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number of strains in each of these species it is difficult to conclude to a species effect. Taken al-
together, the mesorhizobia strains were mostly salt tolerant at 200 mM (i.e. with a growth at
least of 50% compared to the control without salt), as 95% and 43% of strains could still grow
at 200 mM and 300 mM of NaCl, respectively. For the species MP, 100% of strains could grow
at 200 mM, while 48% and 14% of strains tolerate 300 mM and 400 mM of NaCl, respectively,
and one (STM8773) tolerate 500 mM. It has been previously shown that the M. plurifarium
type strain ORS1032" was more tolerant to heat and salt than several other type strains of
Mesorhizobium species [31]. In our study, ORS1032" tolerate 400 mM of salt, together with
others strains. The MP species could thus be more tolerant than others Mesorhizobium species,
but a larger study including many strains from the different species is required to infer this
question. Another species detected in this study, MSP1, seems well adapted to salt tolerance.
The ability of some symbiotically effective strains to tolerate high salinity is promising with re-
gard to improving host plant reestablishment in salt affected soils [46,69].

We investigated possible links between the genetic diversity of mesorhizobia, their salt toler-
ance and the soils samples characteristics. However, we found a total lack of correlation be-
tween these parameters. The most salt-tolerant strains (up to 500 mM, as STM8773 and
STM8789) were isolated from non-saline areas. These results are similar to previous studies of
Thrall et al. [46] who found also salt-tolerant strains (up to 400 mM) from nodules of Acacia
decurrens in non-saline sites. Several studies have underlined the lack of correlation between
the sampling sites characteristics, the genetic diversity of rhizobia and the tolerance to salinity
of rhizobial isolates ([33,45,46]. In Senegal, Diouf et al [22] found a weak influence of soil char-
acteristics (pH and salt) on the distribution of rhizobial populations of A. seyal in the Ground-
nut Basin, as observed in our study at a larger scale. A possible explanation for this lack of
correlation could be that the soil is not homogeneous as shown by van Asten et al. [70] who
found large differences in salinity and alkalinity levels at short distances in salt affected areas.
Such conditions would allow the persistence of various phenotypic traits among rhizobial pop-
ulations. Rhizobia might also be protected in the nodules, explaining why non-tolerant strains
can be detected in highly saline soils. The accumulation of certain compounds, including
osmoprotectants (as trehalose and Poly B-hydroxybutyrate) and compatible solutes, may also
increase the osmotic tolerance of rhizobia [71-73].

On the other hand, we found a putative geographical pattern of A. senegal symbionts be-
tween the dryland north part and the center of Senegal. The MSP1 strains were found both in
the center and north part of the country while MSP4 and M. plurifarium species were found
only in the north and the center part of the country, respectively. Such specific distribution of
Mesorhizobium species has also been observed on Caragana spp. symbionts in three eco-
regions of China [74]. The geographical pattern of symbionts observed in our study could be
linked to the annual rainfall characteristics of each site, as observed for Vigna unguiculata sym-
bionts in Senegal [75]. Indeed, the M. plurifarium strains were only found in the center of the
Sudano-Sahelian zone where annual rainfall is between 500 and 900 mm, while no strain of
this clade was found in the Kamb and Dahra sites, located in the arid regions of the sahelian
zone where annual rainfall varied between 250 and 500 mm (Fig. 1). This result implies that
M. plurifarium strains would not be well adapted to dryland conditions. On the other hand,
the MSP1 strains from the Kamb soil were shown to be tolerant to water stress when testing
their growth with different concentrations of polyethylene glycol [24]. Wade et al [75] found
also an eco-geographical diversity of cowpea bradyrhizobia in Senegal marked by the domi-
nance of two genetic types depending on annual rainfall. These authors concluded a possible
role of the water regime and the pH in shaping the cowpea bradyrhizobia genotypic distribu-
tion, noticing that strains isolated from the northern region were, generally, more adapted to
water stress and slightly alkaline soils. The observed geographical distribution of Acacia
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mesorhizobia could thus reflect particular adaptations of each species to specific local condi-
tions as the water regime, but the presence of salt does not seem to be an important structuring
factor of Mesorhizobium species.
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