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ABSTRACT
Background: Humans have an evolutionary need for a well-preserved internal ‘clock’, 
adjusted to the 24-hour rotation period of our planet. This intrinsic circadian timing system 
enables the temporal organization of numerous physiologic processes, from gene expres-
sion to behaviour. The human circadian system is tightly and bidirectionally interconnected 
to the human stress system, as both systems regulate each other’s activity along the 
anticipated diurnal challenges. The understanding of the temporal relationship between 
stressors and stress responses is critical in the molecular pathophysiology of stress-and 
trauma-related diseases, such as posttraumatic stress disorder (PTSD).
Objectives/Methods: In this narrative review, we present the functional components of the 
stress and circadian system and their multilevel interactions and discuss how traumatic 
stress can affect the harmonious interplay between the two systems.
Results: Circadian dysregulation after trauma exposure (posttraumatic chronodisruption) 
may represent a core feature of trauma-related disorders mediating enduring neurobiolo-
gical correlates of traumatic stress through a loss of the temporal order at different 
organizational levels. Posttraumatic chronodisruption may, thus, affect fundamental proper-
ties of neuroendocrine, immune and autonomic systems, leading to a breakdown of 
biobehavioral adaptive mechanisms with increased stress sensitivity and vulnerability. 
Given that many traumatic events occur in the late evening or night hours, we also describe 
how the time of day of trauma exposure can differentially affect the stress system and, 
finally, discuss potential chronotherapeutic interventions.
Conclusion: Understanding the stress-related mechanisms susceptible to chronodisruption 
and their role in PTSD could deliver new insights into stress pathophysiology, provide better 
psychochronobiological treatment alternatives and enhance preventive strategies in stress- 
exposed populations.

Estrés Traumático y el Sistema Circadiano: Neurobiología, 
Temporalidad y Tratamiento de la Cronodisrupción Postraumática
Antecedentes: Los seres humanos tenemos una necesidad evolutiva por un ‘reloj’ interno 
bien preservado, ajustado al periodo de rotación de 24 horas de nuestro planeta. Este 
sistema de sincronización circadiano intrínseco permite la organización temporal de numer-
osos procesos psicólogicos, desde la expresión génica al comportamiento. El sistema 
circadiano humano está estrecha y bidireccionalmente interconectado al sistema humano 
de estrés, dado que cada uno de ellos regula la actividad del otro a lo largo de los desafíos 
diurnos esperados. La comprensión de la relación temporal entre estresores y respuestas 
a estrés es crítica en la fisiopatología molecular de las enfermedades relacionadas al estrés 
y al trauma, como el trastorno de estrés postraumático (TEPT).
Objetivos/Métodos: En esta revsión narrativa, presentamos los componentes funcionales 
de los sistemas circadiano y de estrés junto a sus interacciones multinivel, y discutimos 
cómo el estrés traumático puede afectar a la interacción armoniosa entre los dos sistemas.
Resultados: La disregulación circadiana luego de la exposición al trauma (cronodisrupción 
postraumática) puede representar una característica central de los trastornos relacionados al 
trauma, mediando correlatos neurobiológicos duraderos del estrés traumático a través de 
una pérdida del órden temporal a diferentes niveles organizacionales. La cronodisrupción 
postraumática puede, por lo tanto, afectar a propiedades fundamentales de los sistemas 
neuroendocrino, inmune y autonómico, llevando a un quiebre de los mecanismos adapta-
tivos biocomportamentales con un incremento de la sensibilidad y vulnerabilidad al estrés. 
Dado que muchos eventos traumáticos ocurren en altas horas de la tarde o la noche, 
describimos también cómo la hora de la exposición al trauma puede afectar diferentemente 
al sistema de estrés y, finalmente, discutimos potenciales intrevenciones cronoterapéuticas.
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HIGHLIGHTS 
• The human circadian and 
stress system are both 
essential for biobehavioural 
regulation with numerous 
reciprocal interaction.  
• Posttraumatic 
chronodisruption (i.e., 
circadian dysregulation after 
trauma) represents a core 
feature of PTSD, mediating 
neurobiological correlates of 
trauma through multilevel 
temporal order loss.
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Conclusiones: La comprensión de los mecanismos relacionados al estrés suceptibles de 
cronodisrupción y su rol en el TEPT podría ofrecer nuevas perspectivas a la fisiopatología del 
estrés, entregar mejores alternativas de tratamiento psicocronobiológicas y mejorar la 
estrategias preventivas en las poblaciones expuestas a estrés.

创伤性应激与昼夜节律系统:创伤后计时失调的神经生物学, 时间性和治疗
背景: 人类对保存完好, 适应我们星球24小时旋转周期的内部‘时钟’有进化的需求。这种内 
在的昼夜节律计时系统使从基因表达到行为的许多生理过程得到时间上的组织。人类昼 
夜节律系统与人类应激系统紧密且双向互连, 因为这两个系统都将根据预期的日间挑战来 
调节彼此的活动。了解应激源和应激反应之间的时间关系对于应激和如创伤后应激障碍 
(PTSD) 的创伤相关疾病的分子病理生理学至关重要。
目的/方法: 在本篇叙事性综述中, 我们介绍了应激和昼夜节律系统的功能构成以及它们之 
间的多水平交互作用, 并讨论了创伤性应激如何影响两个系统之间的协调交互作用。
结果: 创伤暴露后的昼夜节律失调 (创伤后计时失调) 可能代表了创伤相关疾病的一个核心 
特征, 通过在不同组织水平上时间顺序的丢失来调节创伤性应激相关神经生物学机制的维 
持。因此, 创伤后计时失调可能会影响神经内分泌, 免疫和自主神经系统的基本特性, 从而 
增强应激敏感性和易感性, 导致生物行为适应机制的崩溃。鉴于许多创伤事件发生在傍晚 
或夜间, 我们还描述了一天中创伤暴露的时间如何可以不同地影响应激系统, 最后讨论了 
潜在的计时疗法。
结论: 了解计时失调易感的应激相关机制及其在PTSD中的作用可以为应激病理生理学带来 
新见解, 提供更好的时间性生物心理治疗替代方法, 并提高在创伤暴露人群中的预防策略。

1. Introduction

The earth’s rotation around its own axis has created 
a geophysical evolutionary need for internal adjust-
ment to the dramatic energy demand fluctuations 
between night and day across phylogeny. This need 
resulted in a highly conserved and sophisticated 
internal time keeping system, creating a strict tem-
poral organization and an endogenous rhythmicity 
adjusted to the earth’s 24-hour rotation (Ko & 
Takahashi, 2006; Panda, Hogenesch, & Kay, 2002; 
Paranjpe & Sharma, 2005). This intrinsic circadian 
(lat. circa diem – around a day) timing system, creates 
an internal representation of the external Zeitraum 
(germ. time-space) in order to synchronize homoeo-
static mechanisms (Hastings, Maywood, & 
Brancaccio, 2018; Hastings, O’Neill, & Maywood, 
2007) and create a dynamic ‘internal milieu’ that 
oscillates with a 24-h rhythm. The circadian system, 
thus prepares living organisms for the expected cyclic 
challenges, from gene expression to behaviour 
(Dibner, Schibler, & Albrecht, 2010; Moore, 2013; 
Saper, 2013; Takahashi et al., 2008).

Thereby, the interaction of the circadian system with 
another fundamental system, the stress response system, 
is vital. The stress response system has per se a baseline, 
circadian activity (Buijs, van Eden, Goncharuk, & 
Kalsbeek, 2003), which, however, is affected by numer-
ous cognitive, emotional, neurosensory, humoral, 
immune, blood-borne, digestive, thermostatic, limbic 
and peripheral somatic signals through different path-
ways. When stressors exceed a certain severity or tem-
poral threshold, stressor-related information initiates 
a complex stress response to induce remarkably consis-
tent acute, normally adaptive and time-limited micro-, 
meso- and macrophysiologic compensatory responses, 

redirecting energy according to the current needs 
(Chrousos, 2009; Elenkov & Chrousos, 2006; 
Nicolaides, Kyratzi, Lamprokostopoulou, Chrousos, & 
Charmandari, 2015; Ulrich-Lai & Herman, 2009). 
Together, these responses through different stress effec-
tor tissues produce an orchestrated ‘symphony’ enabling 
a fine-tuned response to challenge (Joels & Baram, 
2009).

Thus, the circadian and the stress response system 
are both essential for survival and regulate each other’s 
activity, through multiple reciprocal interactions 
(Morris, Aeschbach, & Scheer, 2012a; Nader, 
Chrousos, & Kino, 2010). An intact communication 
between the circadian and the stress system is a vital 
premise for preserving homeodynamic balance and 
enhancing environmental adaptation (i.e., resilience) 
(Buijs, Escobar, & Swaab, 2013, Koch, Leinweber, 
Drengberg, Blaum, & Oster, 2017; Tsang, Barclay, & 
Oster, 2014). Investigating the interactions between the 
two systems is critical for the understanding of patho-
physiological trajectories mediating risk for disease 
(Helfrich-Forster, 2017). However, during the last dec-
ades, technological advances and new social norms 
have cultivated a new, round-the-clock lifestyle, which 
enhances a temporal misalignment between internal 
and geophysical/social circadian cycles and may lead 
to an altered homeodynamic state (dyshomeostasis/ 
allostasis, or more accurately, cacostasis) with accumu-
lated allostatic load (cacostatic load) with higher stress 
sensitivity and vulnerability for stress-related disorders. 
Understanding the pathways susceptible to circadian 
dysregulation following stress and their role in stress- 
related disorders could deliver new insights into patho-
physiology of associated disease mechanisms (Germain, 
Buysse, & Nofzinger, 2008; Roenneberg & Merrow, 
2003; Takahashi, Shimomura, & Kumar, 2008).
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In this review, following a general overview of 
the human circadian and stress system and their 
multilevel interactions, we discuss how excessive 
(i.e., traumatic) stress can affect this interplay 
and lead to a reversible or sustained circadian 
dysregulation in the paradigm of posttraumatic 
stress disorder (PTSD). At the final part of this 
review we also address possible chronotherapeutic 
interventions for the prevention and treatment of 
PTSD.

2. The human stress and circadian system

2.1. The human stress system

The human stress system is crucial for adaptive 
responses to external and internal stressors and com-
prises of central and peripheral components 
(Charmandari, Tsigos, & Chrousos, 2005; Chrousos, 
2009; Chrousos & Gold, 1992; Tsigos & Chrousos, 
2002; Ulrich-Lai & Herman, 2009) (cf. Figure S1). 
The peripheral components of the human stress sys-
tem include: a) the hypothalamic-pituitary-adrenal 
(HPA) axis and b) the limbs of the autonomic ner-
vous system (ANS) i.e., i) the sympathetic nervous 
(SNS) and sympatho-adrenomedullary (SAM) system 
and ii) the parasympathetic nervous system (PNS), 
which all exert complementary actions throughout 
the body (Agorastos et al., 2020). The principal per-
ipheral effector molecules are catecholamines (CAs; 
norepinephrine and epinephrine) for the SAM, acet-
ylcholine (Ach) for the PNS and glucocorticoids 
(GCs; i.e., cortisol in humans) for the HPA axis. 
GCs influence countless physiologic actions through 
genomic, nongenomic and mitochondrial actions of 
the intracellular cognate glucocorticoid and minera-
locorticoid receptors (GR, MR) and are essential for 
activating, maintaining and downregulating the stress 
response (Chrousos, Charmandari, & Kino, 2004; 
Chrousos & Kino, 2009, Nicolaides, Galata, Kino, 
Chrousos, & Charmandari, 2010; Nicolaides et al., 
2015). Upon ligand-binding, the receptors translocate 
to the nucleus and bind to specific DNA response 
elements in the regulatory regions of responsive 
genes, leading to their transactivation or transrepres-
sion (Chrousos & Kino, 2009; Nicolaides et al., 2010; 
Oakley & Cidlowski, 2013). Altered GC-signalling, 
through dysregulations at different levels of the 
HPA axis, may have deleterious effects for the organ-
ism (Chrousos & Kino, 2009; Rohleder, Wolf, & 
Wolf, 2010).

2.2. The human circadian system

The mammalian circadian system represents an exten-
sive network of time-keeping machineries that gener-
ate and preserve a cellular and systemic rhythmicity, 

through temporal organization and coordination of 
countless transcriptional oscillating processes through-
out all structural levels in the organism (i.e., hormonal 
fluctuations, sleep/wakefulness, immune activity, ther-
moregulation, energy household, gene expression) 
(Dibner et al., 2010; Hastings et al., 2018; Moore, 
2013; Saper, 2013). The circadian system is organized 
in a hierarchical manner with a central, pacemaking 
“master clock“ in the central nervous system (CNS) 
and a peripheral, subordinated and adaptive multi- 
oscillator system (‘slave clocks’) (cf. Figure S2). The 
suprachiasmatic nucleus (SCN) is the integrative ‘mas-
ter clock’ of the organism with a distinct intrinsic 
molecular pacemaker activity based on a main and 
an auxiliary transcriptional/translational feedback 
loop (TTFL) of a core set of clock genes (e.g., circadian 
locomotor output cycle kaput, CLOCK; brain-muscle- 
ARNT-like protein 1, BMAL-1; period 1–3, PER1-3; 
cryptochrome 1–2, CRY1-2; reverse viral erythroblas-
tosis oncogene product α/β, REV-ERBα/β; retinoic 
acid receptor-related orphan receptorα, RORα) main-
taining an approximately 24-hour oscillation (cf. 
Figure S3). All peripheral ‘slave clocks’ show also 
a tissue-specific and cell-autonomous molecular 
rhythm generation, which, however, is kept synchro-
nized by the main integrative SCN rhythm via differ-
ent pathways (cf. Figure S2). This orchestration of all 
diverging tissue-specific peripheral oscillations into 
a main rhythmic symphony is of vital importance for 
the promotion of homoeostasis and adaptation in 
higher organisms.

2.3. Circadian properties of the stress system

The circadian system upregulates the stress system 
before the organism’s active phase and downregulates 
it again for the resting and restorative phase. (Gamble, 
Berry, Frank, & Young, 2014). HPA axis and ANS 
activity both show a distinct circadian pattern at rest. 
Circulating GCs (i.e., cortisol, CORT) levels exhibit 
a robust diurnal fluctuation, with a sharp rise in the 
middle of the biological night, peaking in the early 
morning, and a nadir preceding the habitual inactive 
phase (Dickmeis, 2009; Gan & Quinton, 2010; Nader 
et al., 2010; Qian, Droste, Lightman, Reul, & Linthorst, 
2012). Similarly, major human autonomic markers, 
such as heart rate, blood pressure, baroreflex, heart 
rate variability, plasma epinephrine and norepinephr-
ine levels also show robust circadian variations with 
a distinct peak of SNS activity and nadir of PNS 
activity in the morning hours (Portaluppi et al., 2012; 
Scheer, Van Doornen, & Buijs, 2004; Vandewalle et al., 
2007). By doing so, HPA axis and ANS prepare the 
organism for the higher energetic demand of the wak-
ing phase (Gamble et al., 2014).

The circadian system orchestrates the circadian 
activity and reactivity of the HPA axis through both 
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hormonal and neuronal pathways (cf. Figure 2). 
Apart from the negative feedback regulation of adre-
nocorticotropic hormone (ACTH) release through 
GC systemic levels (Jacobson, 2005), there are 
another five main pathways of circadian influence 
on the HPA axis, all five involved in the steroidogenic 
pathway and the ACTH-dependent transduction cas-
cade in the zona glomerulosa and zona fasciculata of 
the adrenal gland: i) direct influence on HPA axis 
through neuronal SCN projections at the hypothala-
mic level (i.e., subparaventricular area, subPMV; dor-
somedial nucleus of the hypothalamus, DMH) 
modulating corticotropin releasing hormone and 
arginine-vasopressin (CRH/AVP) secretion from par-
vocellular paraventricular nucleus (PVN) neurons, ii) 
direct SCN influence on the adrenal glands through 
multisynaptic autonomic innervation of the adrenal 
medulla and from there through CAs of the cortex, 
modulating diurnal ACTH sensitivity of the cortex 
and stimulating the GC circadian release through an 
HPA axis-independent manner, iii) intrinsic periph-
eral rhythms of local adrenal clocks gene expression, 
iv) direct melatonergic influence of adrenal GC pro-
duction and release through ACTH adrenal response 
prevention and the melatonin (MLT) receptor 1 
(MT1)-related inhibition of CORT production 
through the 3β-hydroxysteroid dehydrogenase (3β - 
HSD) enzyme and v) direct melatonergic modulation 
of GR acetylation rhythm, GR translocation to the 
nuclei and GR-related transcriptional activity through 
MTs (Agorastos et al., 2020). Jointly, this illustrates 
a multi-level circadian ‘gating’ control on the physio-
logical GC secretion rhythm through SCN, HPA axis 
and ANS activity, GC and MLT levels and the robust 
intrinsic rhythm of the adrenal gland itself, involving 
clock gene expression in the metabolism and secre-
tion of GCs (Buijs et al., 2003; Dickmeis, 2009; Oster 
et al., 2006).

These neurohumoral circadian influences on the 
stress system have further molecular underpinnings at 
the cellular level, with the GR playing a fundamental 
role. For example, CLOCK/BMAL1 heterodimer 
behaves as a reverse-phase negative regulator of GR 
reducing GR’s affinity to its cognate GC response ele-
ments (GREs) and decreasing GR-induced transcrip-
tional activity of GC-responsive genes through 
acetylation at multiple lysine residues in the ligand- 
binding domain of the GR (Charmandari et al., 2011; 
Han, Lee, Kim, Kim, & Cho, 2014, Kino & Chrousos, 
2011; Nader, Chrousos, & Kino, 2009). This leads to 
a circadian fluctuation in the GR transactivational activ-
ity in reverse phase with CLOCK/BMAL1 mRNA 
expression (Nader et al., 2009) with higher GR acetyla-
tion and decreased tissue GC sensitivity in the morning, 
mirroring the circadian pattern of serum GC concen-
trations (Charmandari et al., 2011).

3. Stress and circadian dysregulation

3.1. Defining chronodisruption

Biologically relevant disruption of circadian rhythms 
(chronodisturbance) are likely to occur over time 
depending on several intrinsic and extrinsic factors, 
but this process is being constantly physiologically com-
pensated by the organism. However, when chronodis-
turbance exceeds a certain homoeostatic threshold to 
chronicity, phase or amplitude, the misalignment of the 
circadian rhythm leads to a critical loss of the harmo-
nious biological temporal order throughout different 
organizational levels and is defined as chronodisruption 
(Erren & Reiter, 2009; Zelinski, Deibel, & McDonald, 
2014). Chronodisruption, represents a breakdown and 
dissociation of mutual entrainment and temporal rela-
tionship among different oscillatory subsystems and 
may gradually change the fundamental properties of 
brain systems regulating neuroendocrine, immune 
metabolic and autonomic function, as well as restora-
tive processes (Smolensky, Hermida, Reinberg, Sackett- 
Lundeen, & Portaluppi, 2016). Hereby, chronodisrup-
tion may, thus, alter biobehavioral adaptations to stres-
sors, including gene expression, with increased stress 
sensitivity and vulnerability to stress-related disorders 
through various pathways (see above and Figure 2) 
(McEwen & Karatsoreos, 2015; Meerlo, Sgoifo, & 
Suchecki, 2008; Morris, Aeschbach, & Scheer, 2012b). 
Chronodisruption-related cacostatic load with short- 
and long-term pathophysiologic and epigenetic conse-
quences (Orozco-Solis & Sassone-Corsi, 2014; Zelinski 
et al., 2014) can lead to a wide range of biological 
consequences in the organism (Karatsoreos, 2011; 
McEwen & Karatsoreos, 2015; Scheer, Hilton, 
Mantzoros, & Shea, 2009; Zelinski et al., 2014).

3.2. Sleep and circadian system

In clinical human research, the relationship between 
circadian system and sleep regulatory processes is of 
particular importance as both greatly influence 
a plethora of central and downstream physiologic 
processes in diurnal fashion (Panda et al., 2002). 
For example, the sleep/wake cycle is often considered 
the most overt manifestation of the circadian system 
(Paranjpe & Sharma, 2005). Indeed, despite some 
findings suggesting an independence of sleep and 
circadian regulatory processes (Ko & Takahashi, 
2006), mounting evidence supports rather a very 
close, interdependent and reciprocal interaction of 
both systems throughout several functional levels 
(Hastings et al., 2018, 2007; Paranjpe & Sharma, 
2005), regularly relating to brain areas also involved 
in the neurocircuitry of the central stress system 
(Dibner et al., 2010; Hastings et al., 2018; Takahashi 
et al., 2008).
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Sleep is regulated by both a homoeostatic and 
a circadian process (Paranjpe & Sharma, 2005). 
These two processes jointly influence most proper-
ties of soporific and alerting homoeostatic neurocir-
cuitry. This two-process model posits that the main 
aspects of sleep regulation rely on the interaction of 
a homoeostatic process (process S – defined by the 
prior amount of sleep and waking), with a circadian 
process controlled by the SCN (process C) (Buijs 
et al., 2003; Moore, 2013; Saper, 2013). Although 
during the years, additional sleep regulation models 
emerged, the concept of two processes influencing 
sleep physiology and behaviour is generally accepted.

Arousal and wakefulness are maintained through 
a dorsal cholinergic pathway from the pontine teg-
mentum to the thalamus and a ventral aminergic 
pathway from the locus coeruleus and raphe nuclei 
to the lateral hypothalamus (LH) and cerebral cortex, 
where orexin plays a major role (Hastings et al., 
2018). On the other hand, sleep promotion and 
maintenance is sustained by neurons of the ventro-
lateral preoptic area (VLPOA) affecting hypothala-
mic and brainstem arousal centres through γ- 
aminobutyric acid (GABA)-ergic and galanininergic 
transmission (Hastings et al., 2018). The central cir-
cadian system is able to influence those sleep and 
wake pathways through indirect connections of the 
SCN to several hypothalamic nuclei and the VLPO, 
and vice versa (Paranjpe & Sharma, 2005; Ulrich-Lai 
& Herman, 2009). In addition, MLT, the core hor-
monal output of the circadian system, is considered 
to be greatly implicated in sleep regulation and have 
sleep-gating and soporific properties by muting 
wakefulness mechanisms through MT1 and MT2 
receptors and, thus, mediate a closer interaction 
between the circadian system and sleep/wake neuro-
circuitry (Chrousos, 2009; Elenkov & Chrousos, 
2006; Nicolaides et al., 2015).

Sleep deprivation and forced desynchrony experi-
ments in the 1990s offered strong in-vivo evidence of 
objective and subjective measures being influenced by 
both endogenous clock phase and duration of prior 
sleep and waking (for a review, please see (Paranjpe & 
Sharma, 2005)). In particular, those experiments con-
firmed a strong influence of several objective and 
subjective sleep parameters on clock functioning, as 
well as the fact that circadian clock phase is less 
susceptible phase change during high sleep pressure 
(Paranjpe & Sharma, 2005). Interestingly, solid evi-
dence of genetic studies confirms that clock genes 
play a major role in sleep homoeostasis (Joels & 
Baram, 2009).

Respectively, SD and circadian dysregulation are 
very hard to functionally separate and regularly co- 
occur in clinical populations (Buijs et al., 2013; 
Helfrich-Forster, 2017; Koch et al., 2017; Morris 
et al., 2012a; Nader et al., 2010; Paranjpe & Sharma, 

2005; Tsang et al., 2014). Circadian disruption is 
closely associated with sleep pattern changes and 
vice versa (Buijs et al., 2013; Helfrich-Forster, 2017; 
Koch et al., 2017; Morris et al., 2012a; Tsang et al., 
2014). Interestingly, even circadian clock polymorph-
isms and clock gene expression regularly manifest 
behaviourally as SD (Roenneberg & Merrow, 2003; 
Takahashi et al., 2008), while conversely, SD can alter 
clock gene expression (Charmandari et al., 2005; 
Germain et al., 2008). Thus, the terms chronodisrup-
tion and SD in human clinical research are closely 
associated and usually find use interchangeably on 
the practical level for the assessment of circadian 
rhythmicity and the description of the diurnal timing 
phenomenology especially in clinical populations 
(e.g., affective, neurodegenerative, neurodevelopmen-
tal disorders) (Agorastos et al., 2020; Buijs et al., 2013; 
Chrousos & Gold, 1992; Helfrich-Forster, 2017; 
Nicolaides et al., 2010; Paranjpe & Sharma, 2005; 
Tsigos & Chrousos, 2002).

3.3. Chronodisruption-related findings in clinical 
human research

Chronodisruption is a disturbance of biological timing, 
which can occur at different organizational levels and/ 
or between different organizational levels, ranging from 
molecular rhythms in individual cells to misalignment 
of behavioural cycles with environmental changes and 
not restricted to the central circadian rhythm (circadian 
misalignment/desynchrony). Assessing the endogenous 
circadian rhythm in humans, requires elaborated 
experimental protocols in specialized facilities (e.g. 
forced desynchrony protocols) and are therefore 
labour-intensive, time-consuming, costly and non- 
comfortable for participants, while they do not take 
usual environmental factors into consideration nor the 
adaptive and integrative function of the circadian sys-
tem. Applied, in-vivo human research therefore rather 
uses other objective proxy parameters for the assess-
ment of the circadian system activity (e.g., sleep/wake 
timing, sleep stages, diurnal endocrine measures – espe-
cially melatonin and cortisol, physiological monitoring, 
locomotor activity, core body temperature) in semi- 
controlled or normal-life conditions (Bedrosian, 
Fonken, & Nelson, 2016; Novakova & Sumova, 2014; 
Smolensky et al., 2016; Vetter, 2020). These parameters 
are considered valid assessments of circadian output in 
humans (Germain & Kupfer, 2008; Walker et al., 2020). 
Chronodisruption, thus, represents a broader term, 
which includes more specific pathophysiological phe-
nomena like, for example, sleep disturbances (SD), dis-
rupted endocrine, activity and social rhythms (Walker 
et al., 2020).

Various SD in humans have been associated with 
alterations of the physiologic oscillations of clock gene 
expression (Ackermann et al., 2013; Moller-Levet et al., 
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2013), HPA axis dysregulation (e.g., flattened CORT 
rhythm amplitude, blunted CORT awakening response 
(CAR), increased but also decreased diurnal CORT 
levels, higher CRH levels, attenuated pituitary ACTH 
response, increased adrenocortical ACTH sensitivity) 
(Backhaus, Junghanns, & Hohagen, 2004; Buckley & 
Schatzberg, 2005; Meerlo et al., 2008; Rodenbeck & 
Hajak, 2001, Vgontzas et al., 2001; Wright, 
Valdimarsdottir, Erblich, & Bovbjerg, 2007) and altered 
autonomic regulation (i.e., increased SAM and reduced 
PNS activity and blunting of cardiovascular autonomic 
rhythmicity and responsiveness) (Meerlo et al., 2008; 
Mullington, Haack, Toth, Serrador, & Meier-Ewert, 
2009, Ruger & Scheer, 2009). Accordingly, SD in 
humans has been also associated with increased risk 
for cardiovascular morbidity, metabolic consequences, 
inflammation, immune dysregulation, psychiatric dis-
orders and even elevated cancer risk (Albrecht, 2017; 
Fujino et al., 2006; Savvidis & Koutsilieris, 2012; 
Sookoian et al., 2007; Stevens et al., 2011). The particu-
lar association between SD/chronodisruption and psy-
chopathology was first officially noted by Emil 
Kreapelin in 1883 (Kraeplin, 1883) and has evolved 
since then through the years by numerous biological 
findings (Wulff, Gatti, Wettstein, & Foster, 2010). In the 
last years, a close association between specific clock 
gene polymorphisms, circadian phase and vulnerability 
to chronodisruption has emerged (Chellappa et al., 
2014; Maire et al., 2014; Reichert et al., 2014), suggesting 
that clock gene polymorphisms and circadian gene 
expression may play a crucial role in the individual 
risk for stress-related disorders (Liberman, Halitjaha, 
Ay, & Ingram, 2018).

3.4. Posttraumatic chronodisruption

Apart from other Zeitgebers that can influence and 
potentially dysregulate circadian rhythms (e.g., SD, nutri-
tion, light), physical, psychological, inflammatory or 
metabolic stress can also lead to acute/reversible or sus-
tained chronodisruption. These stress-related effects on 
biological rhythms have enhanced a recent research 
interest on the potential causal role of SD and chrono-
disruption in the pathophysiology of trauma-related dis-
orders, suggesting that dysregulation of circadian 
rhythmicity may be implicated in the acute pathophy-
siology and development of these disorders (Agorastos 
et al., 2020, 2018; Agorastos, Kellner, Baker, & Otte, 2014; 
Germain, 2013, Germain et al., 2008; Mellman & 
Hipolito, 2006). Traumatic stress exposure may cause 
both immediate and long-lasting SD/chronodisruption 
(cf. Figure 1) (Lavie, 2001; Philbert et al., 2011), which 
may represent a core, rather than a secondary pathway 
mediating the long-term effects and enduring neurobio-
logical correlates of trauma (Germain et al., 2008; Lavie, 
2001; Mellman, Bustamante, Fins, Pigeon, & Nolan, 

2002; Mellman & Hipolito, 2006, Mellman, Knorr, 
Pigeon, Leiter, & Akay, 2004, Spoormaker & 
Montgomery, 2008). Accordingly, several human cohort 
studies have associated early-life traumatic stress expo-
sure with adult SD years later (Agorastos et al., 2019, 
Baiden, Fallon, den Dunnen, & Boateng, 2015, 
Greenfield, Lee, Friedman, & Springer, 2011, Kajeepeta, 
Gelaye, Jackson, & Williams, 2015, Lind, Aggen, Kendler, 
York, & Amstadter, 2016). Posttraumatic chronodisrup-
tion could negatively influence the traumatic memory 
encoding and consolidation (Henckens, Hermans, Pu, 
Joels, & Fernandez, 2009, Sopp, Brueckner, Schäfer, Lass- 
Hennemann, & Michael, 2019) and at the same time 
enhance maladaptive neuroendocrine, immune, meta-
bolic and autonomic stress regulation, resulting in the 
extensive symptomatology and comorbidity of trauma- 
related disorders (Agorastos et al., 2020, 2018, 2019; 
Agorastos, 2017; Agorastos et al., 2014, 2014; Boscarino, 
2004; Entringer et al., 2012; Pervanidou, Agorastos, 
Kolaitis, & Chrousos, 2017).

The close and probably causal association between 
traumatic stress and chronodisruption becomes more 
obvious in posttraumatic stress disorder (PTSD), the 
model disorder following traumatic stress (American 
Psychiatric Association, 2013). Even though there is 
very limited research using laboratory methodology 
to assess circadian rhythms, mounting evidence of 
circadian dysregulation in PTSD mostly originates 
indirectly from sleep, physiological/activity monitor-
ing and neuroendocrine research findings.

According to DSM-5, SD represents prominent clin-
ical feature of the disorder with very high prevalence 
(American Psychiatric Association, 2013; Germain et al., 
2008; Spoormaker & Montgomery, 2008), and is often 
closely related to severity of overall PTSD symptoms 
(Clum, Nishith, & Resick, 2001; Nishith, Resick, & 
Mueser, 2001) and resistant to first-line treatments 
(Belleville, Guay, & Marchand, 2011; Schoenfeld, 
Deviva, & Manber, 2012; Zayfert & DeViva, 2004). SD 
observed in PTSD are associated with sleep-related arou-
sal regulation (Mellman, 1997) and include insomnia, 
nightmares, hyperarousal states, sleep terrors and noc-
turnal anxiety attacks, body-movement and breathing- 
related sleep disorders (Harvey, Jones, & Schmidt, 2003; 
Maher, Rego, & Asnis, 2006; Mellman & Hipolito, 2006; 
Pillar, Malhotra, & Lavie, 2000; Spoormaker & 
Montgomery, 2008; Westermeyer et al., 2010), with 
heightened sympathovagal tone during rapid-eye- 
movement (REM) sleep, fragmented REM sleep pat-
terns, reduced REM theta activity (Cowdin, Kobayashi, 
& Mellman, 2014; Germain, 2013; Germain et al., 2008; 
Kobayashi, Boarts, & Delahanty, 2007; Lamarche & De 
Koninck, 2007; Mellman et al., 2002; Mellman & 
Hipolito, 2006) and altered EEG spectral topology (de 
Boer et al., 2019). Interestingly, SD (e.g., disrupted REM 
sleep, self-reported insomnia and general sleep quality 
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problems) immediately after (Koren, Arnon, Lavie, & 
Klein, 2002; Luik, Iyadurai, Gebhardt, & Holmes, 2019; 
Mellman et al., 2002, Mellman & Hipolito, 2006), as well 
as prior to trauma exposure could both increase the risk 
of PTSD development (Acheson et al., 2019, Bryant, 
Creamer, O’Donnell, Silove, & McFarlane, 2010, Koffel, 
Polusny, Arbisi, & Erbes, 2013). Self-reported SD prior 
to trauma, in particular, has been associated with 
a 2.5-fold increased risk of PTSD 3 months later in 
both general population or deployed military troops 

(Bryant et al., 2010; Koffel et al., 2013). SD and chron-
odisruption after trauma, thus, represent core rather 
than secondary features of PTSD (Germain et al., 2008; 
Lavie, 2001; Mellman & Hipolito, 2006; Spoormaker & 
Montgomery, 2008) and may be both a precipitating and 
perpetuating factor of the disorder (Ticlea, Bajor, & 
Osser, 2013; van Liempt, 2012). Similarly, disrupted 
MLT levels in the first 48 h after trauma have been 
associated with a higher future PTSD risk (McFarlane, 
Barton, Briggs, & Kennaway, 2010).

Figure 1. Schematic model of posttraumatic chronodisruption as underlying biological pathway leading to PTSD.
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Further indirect evidence of chronodisruption in 
PTSD originates from findings on blunted neu-
roendocrine, autonomic and immune rhythmicity. 
Neuroendocrine PTSD findings consistently 
demonstrate altered HPA axis reactivity with 
enhanced negative feedback inhibition and blunted 
circadian CORT rhythm and CAR, while some 
studies – but not all – have shown decreased cir-
culating concentrations of CORT (Heim & 
Nemeroff, 2009; Pitman et al., 2012; Raison & 
Miller, 2003; Thomas et al., 2012; van Liempt 
et al., 2013; Yehuda, 2002; Yehuda, Golier, & 
Kaufman, 2005). Interestingly, a recent study 
showed also blunted nocturnal MLT secretion pro-
files in military-related PTSD (Paul et al., 2019). 
These findings are similar to many human SD 
studies, suggesting that the HPA axis- and GC- 
signalling-specific alterations in PTSD may be par-
tially mediated by sleep and circadian disruption 
(Chrousos & Kino, 2009; Germain et al., 2008; Otte 
et al., 2005). Similarly, PTSD patients show 
increased autonomic reactivity, elevated central 
and peripheral norepinephrine concentrations, 
higher basal heart rate, increased sympathovagal 
balance, blunted salivary alpha-amylase awakening 

response and, most importantly, blunted auto-
nomic differences between day and night-time 
measures (Agorastos et al., 2013; Pole, 2007; 
Thoma, Joksimovic, Kirschbaum, Wolf, & 
Rohleder, 2012; Ulmer, Calhoun, Bosworth, 
Dennis, & Beckham, 2013; van Liempt et al., 
2013, Woodward et al., 2009), suggesting central 
neuroautonomic dysregulation, very similar to 
human SD studies (Meerlo et al., 2008; Ruger & 
Scheer, 2009). Additionally, as immune system 
activity tightly follows circadian rhythms imposed 
by the circadian system and sleep synchronization 
(Bryant, Trinder, & Curtis, 2004; Cermakian et al., 
2013; Coogan & Wyse, 2008; Irwin, 2002; Lorton 
et al., 2006), the recent first report on the loss of 
the typical peripheral biphasic rhythm of IL-6 in 
combat stress exposed individuals (Agorastos et al., 
2018) is of particular importance. Recently, candi-
date-gene and genome-wide association studies 
have involved two core clock genes (adenylate 
cyclase-activating polypeptide, PACAP and reti-
noid-related orphan receptor alpha, RORA-α, 
respectively) as candidate risk genes for PTSD, 
although these findings have not been replicated. 
PACAP is involved in phase resetting in response 

Figure 2. Schematic model of multilevel interactions between the human stress and circadian system.
3β-HSD: 3β-Hydroxysteroid dehydrogenase; ANS: autonomic nervous system; ACTH: adrenocorticotropic hormone; APG: anterior pituitary 
gland; AVP: arginine vasopressin; CA: catecholamines; CAN: central autonomic network; CRH: corticotropin releasing hormone; HPA: hypotha-
lamus-pituitary-adrenal axis; HT: hypothalamus; GC: glucocorticoids; GR: glucocorticoid receptor; MLT: melatonin; MT: MLT receptor; MR: 
mineralocorticoid receptor; PGL: pineal gland; PVN: paraventricular nucleus; RHT: retinohypothalamic tract; RNcl: raphe nucleus; SCG: superior 
cervical ganglia; SCN: suprachiasmatic nucleus. 
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to light (Dias & Ressler, 2013; Ressler et al., 2011), 
while RORA-α regulates BMAL activity (Amstadter 
et al., 2013; Logue et al., 2013).

4. Neurobiology of stress-related 
chronodisruption

4.1. Physiological stress system influence on 
circadian rhythms

The stress system is unquestionably at the heart of 
circadian biology. In addition to other Zeitgebers, the 
diurnal stress system activity and, in particular, the 
peripheral GC level fluctuations also exert a dynamic 
and crucial synchronizing effect on the central and 
peripheral circadian system (cf. Figure 2) (Koch et al., 
2017; Nader et al., 2010; Stratmann & Schibler, 2006). 
Diurnally circulating GCs’ synchronizing effects 
mainly involve peripheral GR-related phase adjust-
ment of clock gene expression (Balsalobre, 2000; 
Nader et al., 2010; Pezuk, Mohawk, Wang, & 
Menaker, 2012). Activated GRs in peripheral clocks 
translocate into the nucleus and bind to the func-
tional GREs in the promoter regions of several clock 
genes (e.g., PER1/2), thus modulating their transcrip-
tional activity, while transrepressing genes expressing 
transcription factors of the auxiliary TTFL (e.g., Rev- 
ERBα, RORα) (cf. Figure S3) (Cheon, Park, Cho, & 
Kim, 2013, Conway-Campbell et al., 2010; Landgraf, 
McCarthy, & Welsh, 2014; So, Bernal, Pillsbury, 
Yamamoto, & Feldman, 2009; Surjit et al., 2011; 
Torra et al., 2000). A genetical, functional (e.g., adre-
nalectomy) or pharmacological (i.e. externally admi-
nistered corticosteroids) attenuation of GC 
rhythmicity leads also to abolished or shifted clock 
gene (e.g., PER1/2) expression in several peripheral 
tissues (e.g., liver, preadipocytes, kidney, bronchial 
epithelial cells, pancreas, bone tissue, cornea, fibro-
blasts cardiac muscle tissue), despite the presence of 
an intact molecular oscillator (Balsalobre, 2000; 
Fujihara, Kondo, Noguchi, & Togari, 2014; 
Koyanagi et al., 2006; Pezuk et al., 2012). However, 
GC signalling also modulates periodic clock gene 
expression in vital CNS regions (apart from the 
SCN) (Lamont, Robinson, Stewart, & Amir, 2005), 
such as PER2 expression in the amygdala (Segall, 
Milet, Tronche, & Amir, 2009, Segall, Perrin, 
Walker, Stewart, & Amir, 2006). On the other hand, 
GC level alterations related with adrenalectomy are 
shown to increase PER gene expression in the PMV, 
bed nucleus of stria terminalis (BNST) and other 
limbic areas (Amir, 2004; Conway-Campbell et al., 
2010; Su et al., 2015; Takahashi et al., 2001). 
Interestingly, GC can be also indirectly involved in 
the crucial SCN entrainment (Buijs & Escobar, 2007), 
as serotonergic projections of the raphe nucleus to 
the SCN responsible for light entrainment (Sage et al., 

2004) show a GC-dependent circadian transcription 
of tryptophan hydroxylase-2 (TH-2), an enzyme 
involved in serotonin synthesis (Malek, Sage, Pévet, 
& Raison, 2007). GCs are, thus, not just 
a downstream hormonal output of the circadian sys-
tem, but can also influence the circadian system itself 
and interact with peripheral clocks towards 
a circadian symphony (Balsalobre, 2000; Dickmeis, 
2009). Even externally applied GCs can alter circa-
dian gene oscillation in peripheral clocks (Kamagata 
et al., 2017; Pezuk et al., 2012) and are able to even 
speed up or slow down circadian adaptation to a new 
extrenal nyctohemeral rhythm (Kiessling, Eichele, & 
Oster, 2010). GC rhythm alterations can, thus, affect 
the central and peripheral circadian system and vice 
versa (Koyanagi et al., 2006; Son et al., 2008).

4.2. How stress overrides the circadian system

As stated above, the stress system efficiently adjusts 
the central and peripheral circadian activity to appro-
priately respond to stressors, providing stress resili-
ence and counteracting uncoordinated circadian 
shifts (Koch et al., 2017). Normally, sub-acute and 
time-restricted stress system activation can transi-
ently override peripheral circadian rhythms through 
a GR-related phase shift of clock-gene expression, 
creating a temporary uncoupling of the central and 
peripheral circadian system (Balsalobre, 2000; 
Kiessling et al., 2010; Le Minh, 2001; Nader et al., 
2009; Nicolaides, Charmandari, Kino, & Chrousos, 
2017; So et al., 2009; Tahara, Aoyama, & Shibata, 
2017; Torra et al., 2000; Yamamoto et al., 2005). 
However, the ‘master clock’ in the is able to SCN 
can maintain its central pacemaker rhythm, as it 
does not express GRs (Balsalobre, 2000; Bartlang & 
Lundkvist, 2017). The SCN can, therefore, and 
restore the regular rhythm in the periphery after 
termination of the stress system activation (Bartlang 
et al., 2014; Meerlo, van den Hoofdakker, Koolhaas, 
& Daan, 1997; Tahara et al., 2017, 2015).

On the other hand, extensive acute or chronic 
stress exposure can also affect the SCN ‘master 
clock’ stability and lead to sustained chronodisrup-
tion (cf. Figure 1) (Helfrich-Forster, 2017). For exam-
ple, a social defeat animal research model showed 
that single stress exposure advances only the adrenal 
peripheral clock, while chronic stress affects also the 
central circadian system (Razzoli, Karsten, Yoder, 
Bartolomucci, & Engeland, 2014). Further animal 
research repeatedly shows that chronic stress disrupts 
circadian gene expression not only in several periph-
eral (Razzoli et al., 2014; Takahashi et al., 2013), but 
also in vital CNS tissues (e.g., hippocampus, amyg-
dala, PFC) (Koresh et al., 2012; Logan et al., 2015; 
Tahara et al., 2015, Weber, Johnson, Yamamoto, & 
Gudelsky, 2014) including the SCN (Bartlang et al., 
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2014; Jiang et al., 2011; Kinoshita, Miyazaki, & Ishida, 
2012; Tahara et al., 2017). Moreover, numerous 
human and animal findings show that severe acute 
or chronic stress can both affect key sleep centres in 
the CNS and alter sleep physiology, leading to both 
immediate and long-lasting SD and chronodisruption 
(Couto-Moraes, Palermo-Neto, & Markus, 2009; 
Koresh et al., 2012; Lavie, 2001; Philbert et al., 2011; 
Touma et al., 2009; Weber et al., 2014). As the CNS 
does not express GR, such affection of the ‘master 
clock’ in the SCN through extensive acute or chronic 
stress must implicate alternative indirect pathways 
within the CNS. For example, serotonergic projec-
tions of the raphe nucleus to the SCN involved in 
light entrainment (Sage et al., 2004) show circadian 
activity (Malek et al., 2007). In addition, GCs and 
CRH are suggested to directly influence PGL activity 
and stimulate MLT synthesis, interfering in the daily 
adjustment of the light/dark cycle (Campino, 2011; 
Couto-Moraes et al., 2009; Kellner et al., 1997; 
Mazzoccoli et al., 2011; Steiger, 2007). Subsequently, 
a sharp GC rise through acute stress exposure or 
exogenous GC application has been shown to 
enhance AVP and vasoactive intestinal peptide 
(VIP) mRNA expression as well as upregulation of 
Per1 and Per2 protein expression in the SCN 
(Engelmann, Ebner, Landgraf, & Wotjak, 1998; 
Koresh et al., 2012; Larsen et al., 1994).

4.3. Timing of stress effects on circadian system

Occupational, social and recreational routines follow 
temporal patterns, as does the onset of certain acute 
medical diseases and injuries. Time of day is one of 
the factors that shows the highest variation in motor 
vehicle accident trauma incidence (Pape-Kohler, 
Simanski, Nienaber, & Lefering, 2014), but also in 
ambulance demand and severe trauma admissions 
in hospitals (Cantwell, 2013; Stonko et al., 2018), 
with injuries between midnight and early morning 
exhibiting higher level of severity compared to those 
occurring at other times of day (Chen et al., 2016). 
Likewise, there is a similar clear pattern in intentional 
injury and violence victim admissions, with a greater 
proportion of intentional injuries occur during the 
night, while unintentional injury peaks late in the 
afternoon (Schuurman et al., 2015). Accordingly, sex-
ual assaults (i.e., rape, etc.), the trauma type with the 
most distinct impact on humans, also show an epi-
demiological peak between midnight and early morn-
ing (Perkins et al., 1996). Thus, given that acute 
traumatic events in humans usually take place 
between late evening early morning hours (e.g., bar 
fights, sexual violence, car accidents, accidents or 
stressors during shift work) (Pape-Kohler et al., 
2014; Schuurman et al., 2015; Stonko et al., 2018), 
the time of day of traumatic exposure could be of 

vital importance for the stress system responsiveness 
and psychological sequel of trauma.

Apart from stress system activity, stress system 
reactivity also follows diurnal sensitivity through 
connectivity variations between the SCN and other 
stress system-related CNS areas (Atkinson, Wood, 
Kershaw, Bate, & Lightman, 2006; Kalsbeek et al., 
2006, 2012). Accordingly, stress exposure at differ-
ent time zones can differentially affect circadian 
rhythmicity (cf. Figure 3). Acute psychological 
stress, involving higher brain areas and the limbic 
system, as well as acute physical external stress (i.e., 
restraint/immobilization, foot shock, shaking stress) 
exert the largest stress response during the rest 
phase (Bernatova, Key, Lucot, & Morris, 2002, 
Cohen et al., 2015; Gattermann & Weinandy, 
1996), when the HPA axis is less responsive. 
Inversely, acute physiological internal stress (i.e., 
oxidative stress, hypoglycaemia, haemorrhage), 
relayed to the PVN and brainstem, exert the largest 
stress response at the beginning of the activity phase 
(Antoch, Kondratov, & Takahashi, 2005; Fanjul- 
Moles & Lopez-Riquelme, 2016), when the HPA 
axis is most sensitive to stimulation (Jacobson, 
2005). This appears reasonable, as internal physio-
logical stress represents a greater threat during the 
active phase of animals, while acute external physical 
stress (e.g., predator attack) during the inactive 
phase, when animals sleep. Interestingly, additional 
animal research findings suggest that repeated exter-
nal stress exposure (i.e., chronic physical stress) is 
more likely to lead to chronodisruption when 
applied during the inactive phase, (Aslani, 2014; 
Bartlang, Oster, & Helfrich-Forster, 2015; Bartlang 
et al., 2014; Fonken et al., 2016; Rybkin et al., 1997), 
while chronic psychosocial stress (i.e. social-defeat 
paradigm) during the active phase (Bartlang et al., 
2015; Koch, 2016). These results jointly suggest that 
the effect of a stressor depends not only on the 
circadian phase of exposure, but also on the inter-
action of the circadian phase with the stressor type, 
as well as with the chronicity of the stressor 
(Helfrich-Forster, 2017; Kalsbeek, Ruiter, la Fleur, 
Van Heijningen, & Buijs, 2003). For example, both 
physical and psychological stress at the beginning of 
the light phase leads to a phase advance, while at the 
beginning of the dark phase to a phase delay of 
PER2 expression in mice (Tahara et al., 2015).

5. Chronotherapeutic implications for 
posttraumatic chronodisruption

Current state of knowledge suggests that SD and 
chronodisruption play a causal role in PTSD patho-
physiology (Agorastos et al., 2014), while their effec-
tive treatment can lead to substantial improvement of 
overall PTSD symptom severity (Germain, 2007; 
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Germain et al., 2008; Krakow et al., 2001; Raskind 
et al., 2003). Although research has offered substan-
tial findings on the importance of SD in PTSD, this 
issue is yet still often assessed and treated as second-
ary PTSD symptom only in everyday clinical routine 
practice. Careful assessment and management of SD 
and chronodisruption should therefore be fundamen-
tal in PTSD treatment and prevention (Bajor, Ticlea, 
& Osser, 2011; Lamarche & De Koninck, 2007; 
Schoenfeld et al., 2012; Ticlea et al., 2013; van 
Liempt, 2012).

5.1. Pharmacological interventions

Specific pharmacological treatments for PTSD-related 
SD have emerged through the years. For example, the 
α1 adrenoreceptor antagonist prazosin and α2 adrenor-
eceptor agonist clonidine and the multi-modal antide-
pressant trazodone (i.e., serotonin-reuptake inhibitor, 5- 
HT2A receptor agonist, histamine H1 receptor antagonist, 
α1 and α2 adrenoreceptor antagonist) have all been 
shown to be effective pharmacological approaches for 
PTSD-related sleep disturbances, with prazosin targeting 
specifically PTSD- and trauma-related nightmares (Alao, 
Selvarajah, & Razi, 2012; Aurora et al., 2010; Raskind 

et al., 2013; Warner, Dorn, & Peabody, 2001). 
Interestingly, also eszopiclone, a positive allosteric mod-
ulator of GABAA receptors, used as sleep medication in 
insomnia, has been found not only to improve sleep 
quality, but also overall PTSD symptom severity in 
a randomized, placebo-controlled clinical trial (Pollack, 
2011). However, symptomatic pharmacological PTSD 
sleep management may effectively address sleep quality 
and quantity, but often fails to improve daytime func-
tioning and sufficiently restore circadian rhythms 
(Pollack, 2011; Zisapel, 2007).

Hence, there is a need for the introduction and 
clinical investigation of novel chronobiological inter-
ventions, capable of effectively restoring posttrau-
matic chronodisruption by influencing the interplay 
between stress and circadian system and herethrough 
counteracting sustained, PTSD-related CNS neurocir-
cuitry changes (Comai & Gobbi, 2014; Marshall & 
Garakani, 2002; Mendlewicz, 2009; Pilorz et al., 
2014). Newest findings implicate serotonergic, mela-
tonergic, opioidergic, γ-amino butyric acid (GABA)- 
ergic, cannabinoidergic and glucocorticoid signalling, 
as well as 3,4-Methylenedioxymethamphetamine 
(MDMA) as potential new treatment strategies (cf. 
Chapter S1).

Figure 3. Acute and chronic time-of-day dependent effects of stress on circadian rhythmicity.
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5.2. Non-pharmacological interventions

Cognitive-behavioural sleep management constitutes 
a widely acknowledge, acceptable and durably effec-
tive treatment option in PTSD (Epstein, Babcock- 
Parziale, Haynes, & Herb, 2012; Margolies et al., 
2013; Schoenfeld et al., 2012; Talbot et al., 2014). In 
addition, cognitive-behavioural social rhythm group 
therapy have been also found to have positive effects 
on SD in veterans with PTSD (Haynes et al., 2016), 
supporting the importance of circadian synchroniza-
tion in the treatment of the disorder. Interestingly, 
a recent placebo-controlled pilot study assessing 
morning bright light treatment in PTSD through 
a wearable device has also demonstrated efficacy in 
reducing PTSD symptoms (Zalta, Bravo, Valdespino- 
Hayden, Pollack, & Burgess, 2019). Finally, there are 
some reports that posttraumatic sleep deprivation in 
the immediate aftermath (i.e., first night) of the 
trauma, can lead to reduced stress responses in the 
future, possibly by re-synchronizing the circadian and 
stress system (Cohen, Kaplan, Zohar, & Cohen, 2017, 
Cohen et al., 2012).

5.3. Prevention strategies

Given that stress exposure at different time zones 
(i.e., rest vs. activity phase) can differentially affect 
circadian rhythmicity due to circadian differences in 
HPA axis responsivity, sleep and circadian regulation 
through forced intrinsic or extrinsic circadian 
entrainment in the time before or immediately after 
traumatic stress exposure (e.g., behavioural circadian 
adaptation, sleep hygiene, pharmacologic treatment) 
could influence the long-term effects of traumatic 
stress and play a central role in the prevention and 
of PTSD. For example, as SD prior to traumatic stress 
exposure can result in an up to 2.5-fold increased risk 
of fulfiling PTSD criteria 3 months after a trauma, 
proper assessment and treatment of SD in advance 
and avoidance of night-time activities, might posi-
tively affect adaptive mechanisms and be very impor-
tant in specific populations (e.g., military personnel). 
Similarly, acute interventions in the first night after 
traumatic stress exposure targeting REM sleep dis-
ruption associated with sympathetic activation and 
impaired trauma memory consolidation, might be 
able to moderate traumatic impact and the course 
of PTSD development.

6. Conclusion

Posttraumatic chronodisruption fundamentally affects 
the neuroendocrine, immune and autonomic system 
and may play a causal role in the development of stress- 
related disorders and PTSD in particular. Understanding 
the pathways susceptible to chronodisruption following 

traumatic stress and their role in a chronically chrono-
disrupted neurobiology in stress-related disorders could 
deliver new insights into pathophysiology of associated 
disorders. Novel state-of-the-art methods of chronodis-
ruption assessment and treatment are needed to bridge 
the gap between clinical significance and limited under-
standing of the relationship between traumatic stress, 
sleep and circadian system.
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