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Background: Crohn’s disease (CD) is a persistent inflammatory condition that impacts the gastrointestinal system and is character-
ized by a multifaceted pathogenesis involving genetic, immune, and environmental components. This study primarily investigates the 
relationship between gene expression and immune cell infiltration in CD, focusing on disulfidptosis—a novel form of cell death caused 
by abnormal disulfide accumulation—and its impact on various immune cell populations. By identifying key disulfidptosis-related 
genes (DRGs) and exploring their association with distinct gene expression subtypes, this research aims to enhance our understanding 
of CD and potentially other autoimmune diseases.
Methods: Gene expression data from intestinal biopsy samples were collected from both individuals with CD and healthy controls, 
and these data were retrieved from the GEO database. Through gene expression level comparisons, various differentially expressed 
genes (DEGs) were identified. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses 
were performed to reveal the biological processes and pathways linked to these DEGs. Later, immune cell infiltration was evaluated. 
Hub candidate DRGs were identified using machine learning algorithms. Validation of the expression of hub DRGs was carried out 
using quantitative real-time polymerase chain reaction. The hub DRGs were subjected to unsupervised hierarchical clustering to 
classify CD patients into subtypes. The characteristics of each subtype were then analyzed.
Results: Two hub DRGs (NDUFA11 and LRPPRC) were identified. NDUFA11 showed a significantly positive association with the 
abundance of Th17 cells. Conversely, higher expression levels of LRPPRC were associated with a reduced abundance of various 
immune cells, particularly monocytes. CD patients were classified into two disulfidptosis-related subtypes. Cluster B patients exhibited 
lower immune infiltration and milder clinical presentation.
Conclusion: LRPPRC and NDUFA11 are identified as hub DRGs in CD, with potential roles in disulfidptosis and immune regulation. 
The disulfidptosis subtypes provide new insights into disease progression.
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Background
Crohn’s disease (CD) is a chronic inflammatory condition that primarily affects the gastrointestinal tract, leading to 
inflammation and damage in this region. The etiology of CD is multifactorial, involving immune responses, genetics, 
dysbiosis of gut microflora, and impaired intestinal barrier function.1 CD has witnessed a concerning increase in 
incidence rates in emerging industrialized nations, leading to a significant disease burden.2 As a chronic condition, CD 
profoundly impacts clinical presentation, extraintestinal manifestations, and overall quality of life.3 Nevertheless, the 
precise mechanisms underlying CD remain elusive. Understanding the primary causal mechanisms may facilitate clinical 
diagnosis and treatment, ultimately resulting in enhanced clinical outcomes.
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Regulated cell death (RCD) is a common biological process, that is commonly triggered by specific molecules.4 Recently, 
various emerging RCD modalities have attracted significant attention in the scientific community. These modalities encom-
pass a diverse array of intriguing processes, including but not limited to autophagy-dependent cell death, reticulocyte death, 
basal prolapse, ferroptosis, necroptosis, lysosome-dependent cell death, cytoplasmic division, immunogenic cell death, 
apoptosis, cuproptosis, and endogenous cell death.4–6 In the pathogenesis and progression of CD, various forms of cell 
death have been reported to have significant implications. These include apoptosis, pyroptosis, necrosis, necroptosis, 
ferroptosis, and cuproptosis, all of which collectively contribute to the intricate mechanisms driving CD.7–9 Gaining insights 
into the involvement of these diverse cell death pathways is vital for comprehending the underlying pathophysiology and 
advancing therapeutic approaches to tackle this complex disease.

Disulfidptosis, a novel nonprogrammed cell death model entailed by disulfide, was identified by Xiaoguang Liu et al.10 

They found that glucose starvation leads to upregulated expression of solute carrier family 7 member 11 (SLC7A11) in kidney 
cancer cells, which, in turn, intensifies the utilization of nicotinamide adenine dinucleotide phosphate (NADPH). Under 
general conditions, NADPH participates in the reduction of disulfide. However, under glucose starvation, NADPH output 
declines substantially, and the absorption of cystine by SLC7A11 consumes more NADPH, resulting in its depletion and the 
buildup of disulfide molecules. Consequently, abnormal aggregation of disulfide molecules occurs, instigating destabilization 
of the filament network through the formation of actin-cytoskeletal protein disulfide bonds. Studies have shown that 
disulfidptosis occurs in lung adenocarcinoma, bladder cancer, liver cancer, renal cell carcinoma, and other diseases.11–17

While primarily focusing on disulfidptosis in Crohn’s disease, our findings also suggest potential implications for 
a range of autoimmune disorders like rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, all 
characterized by chronic inflammation and immune dysregulation. Understanding these connections could reveal new 
therapeutic targets and advance our comprehension of autoimmune mechanisms. However, disulfidptosis research is still 
in its infancy, and its significance in illness development is unknown.

High-throughput sequencing tools have provided invaluable insights into how genes influence disease mechanisms.18 To 
examine the distinct expression patterns of disulfidptosis-related genes (DRGs) in both healthy and CD intestinal mucosal 
tissues, we analyzed microarray data from the Gene Expression Omnibus (GEO) database. Using Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene Ontology (GO) analyses, we deciphered the molecular processes under-
lying CD. By employing multiple machine-learning algorithms and analyzing our own human samples, we successfully 
identified two hub genes, namely, Leucine Rich Pentatricopeptide Repeat Containing (LRPPRC) and NADH dehydrogenase 1 
alpha subcomplex subunit 11 (NDUFA11), which are central to the disulfidptosis-related processes in CD. A total of 410 CD 
patients were stratified into two distinct groups associated with disulfidptosis based on the expression patterns of hub genes. 
Subsequently, a comprehensive analysis of immune cell infiltration, enrichment pathways, and clinical characteristics was 
performed to identify the distinctions between these two groups. These discoveries imply that directing efforts toward 
disulfidptosis may offer a promising avenue for both diagnosis and treatment, offering novel insights into its underlying 
molecular mechanisms.

Materials and Methods
Dataset Acquisition and DRGs
In the pursuit of relevant gene expression data, two raw datasets, GSE112366 and GSE95095, were retrieved from the GEO 
database.19 These datasets contained gene expression profiles from intestinal biopsy samples of both CD patients and control 
subjects. Specifically, GSE112366 consists of 362 samples from individuals with CD and 26 samples from healthy individuals, 
whereas GSE95095 comprises 48 CD samples and 12 control samples. To mitigate batch effects and unify the GEO dataset, 
we applied Bioconductor “sva” R software.20 We derived the DRGs for this study from previous research.10

Detection of Differentially Expressed Genes (DEGs)
The analysis of DEGs was conducted using the R package “limma”21 DEGs between CD patients and healthy individuals 
in the merged dataset were determined using a significance threshold of P<0.05. Volcano plots and a heatmap were 
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employed to visually represent the differential gene expression data. Furthermore, GO and KEGG pathway analysis, 
facilitated by the “clusterProfiler” package, offered comprehensive insights into the biological functions of the DEGs.22

Evaluation of Immune Cell Infiltration
A comprehensive understanding of the immunological microenvironment, encompassing mesenchymal tissues, immune 
cells, cytokines, inflammatory cells, fibroblasts, and chemokines, is essential for comprehending the disease trajectory 
and therapeutic efficacy in the context of CD. To evaluate the immunological characteristics across all samples, we used 
the “GSVA” R package with the single-sample gene set enrichment analysis (ssGSEA) technique.23

Machine Learning
Through the intersection of DEGs and DisRGs, we identified a subset of genes, referred to as DEDRGs, that exhibited 
differential expression and association with disulfidptosis in the context of CD. To further refine the list of potential hub 
DRGs for CD diagnosis, three distinct machine-learning techniques were employed. The initial approach involved 
implementing least absolute shrinkage and selection operator (LASSO) regression, which aids in enhancing predictive 
accuracy and model interpretability by selecting pertinent variables.24 Subsequently, the powerful support vector machine 
(SVM) method was utilized to establish a threshold between two classes, enabling label prediction based on one or more 
feature vectors.25 Finally, to forecast continuous variables with minimal fluctuations, the random forest (RF) technique 
was adopted, offering the advantages of variable condition independence and improved accuracy, sensitivity, and 
specificity.26 These analyses were executed using the R packages “glmnet”,27 “kernlab”,28 and “randomForest”29 for 
LASSO regression, SVM, and RF, respectively. The genes identified through the intersection of these methods were 
considered hub disulfidptosis genes in CD.

Specimen Collection
From December 2021 to May 2022, Zhongnan Hospital, Wuhan University, China, enrolled a total of 12 individuals 
diagnosed with CD. The diagnosis was confirmed through examination of tissue samples. It is crucial to note that none of 
the patients were administered immunosuppressants, steroids, or biologic medications throughout the duration of the 
research. To establish a suitable control group, 12 healthy volunteers of similar age and gender were also included in the 
study. All collected tissue samples were promptly preserved using liquid nitrogen.

Quantitative Real-Time PCR (qRT‒PCR)
We extracted total RNA from the tissues using TRIzol reagent (Invitrogen, USA) and performed reverse transcription 
utilizing the TOYOBO ReverTra Ace kit (TOYOBO, Japan). Next, we quantified mRNA expression through qRT‒PCR 
on Biorad CFX (Biorad, USA), with GAPDH being utilized as the chosen housekeeping gene. The relative gene 
expression level was calculated using the formula Ratio = (Etarget)ΔCPtarget (control−sample)/(Eref)ΔCPref(control 
−sample), as previously described in the literature. The primers used in this study were designed and synthesized by 
TSINGKE Biological Technology (Wuhan, China) and were as Supplementary Table 1.

Subcluster Analysis with Hub DRGs
To perform subcluster analysis based on the hub DRGs, an unsupervised hierarchical clustering analysis was performed 
on the mRNA expression data obtained from 410 CD samples. This analysis was conducted employing the 
“ConsensusClusterPlus” R package.30 The input information for clustering comprised the expression levels of the two 
hub DRGs. The subclusters obtained were then visualized in a principal component analysis (PCA) plot, which revealed 
the geometric distance between them. To elucidate the functional differences among the disulfidptosis subclusters 
identified in the preceding clustering analysis, we conducted gene set variation analysis (GSVA).23 Subsequently, 
a heatmap was constructed to visualize the activity of pathways associated with the two subclusters. We defined the 
selection criteria for DEGs between the two disulfidptosis-related subclusters as an adjusted p value < 0.05 and |log2-fold 
change (FC)| > 0.5, indicating statistical significance. These DEGs were displayed using a volcano plot. Furthermore, to 
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evaluate the biological functions associated with the identified DEGs between the two disulfidptosis-related subclusters, 
we performed GO and KEGG analyses.22

Statistical Analysis
We performed data and statistical analysis using R version 4.2.2, employing the Wilcoxon test to evaluate significant 
differences between the two groups. Moreover, the correlation between the expression levels of genes related to hub 
disulfidptosis and immune cells was investigated using the Spearman correlation. For the statistical analysis of qRT‒PCR 
data, a t test was conducted, with a p value of 0.05 set as the threshold for statistical significance determination.

Results
Merging Dataset and Functional Analyses of DEGs
A dataset comprising 410 CD samples and 38 control samples was successfully integrated, and PCA confirmed the 
efficient removal of batch effects across the three datasets (Figures 1A and B). Through a volcano plot analysis, a total of 
2030 DEGs were displayed (Figure 1C). The heatmap provides a visual representation of the 20 most upregulated and 
downregulated genes among the DEGs (Figure 1D). In the biological process analysis, GO enrichment analysis revealed 
significant enrichments in pathways related to cytokine-mediated signaling, response to oxidative stress, lymphocyte 
differentiation, intrinsic apoptotic defense response, positive regulation of defense response, and response to interleukin- 
1. In the cellular component analysis, enrichment was found in focal adhesion, cytoplasmic vesicle lumen and cell- 
substrate junction. In the molecular function analysis, the DEGs showed enrichment in various functions, including 
CXCR chemokine receptor binding, chemokine activity, chemokine receptor binding, and DNA-binding transcription 
activator and repressor activity (Figure 1E). KEGG pathway enrichment analysis highlighted the enrichment of pathways 
such as MAPK signaling, TNF signaling, chemokine signaling, PI3-Akt signaling, and HIF-1 signaling (Figure 1F).

Evaluation of Immune Cell Infiltration
To further explore the immunological regulation of CD, an immune cell infiltration investigation was performed using the 
Merging Dataset. In the box plot, it was evident that the CD group showed higher levels of immune cell infiltration than 
the control group. Figure 2A presents the differences observed in the proportions of 12 kinds of immune cell subsets, 
including T helper type 17 (Th17) cells, CD56dim natural killer (NK) cells, immature dendritic cells (DCs), plasmacytoid 
DCs, activated DCs, gamma delta cells, immature B cells, mast cells, monocytes, NK cells, neutrophils, and T helper 
type 2 cells, which were found to be different between the CD and control groups. Notably, only the proportion of 
immature B cells decreased, while others were increased. However, the other 11 immune cell subsets did not show any 
statistically significant differences between the groups. The association analysis revealed robust correlations among most 
immune cells, except for Th17 cells or CD56dim NK cells, as depicted in Figure 2B. The unique infiltration patterns of 
diverse immune cells in CD patients once again prove the crucial role of immunity in CD pathogenesis.

Machine Learning-Based Identification of the Disulfidptosis Signature
After intersecting the 2021 DEGs with 15 DRGs (Figure 3A), a total of 9 DEDRGs were identified. Figure 3B demonstrates 
the visual depiction of the overall expression levels of these DEDRGs in CD samples in comparison to the normal samples, 
wherein a significant portion of the identified DEDRGs displayed increased expression levels in the CD cohort. 
Supplementary Figures 1A-C demonstrates the utilization of sophisticated machine learning algorithms to derive 
a disulfidptosis signature from gene expression data, essential for understanding the molecular mechanisms underpinning 
this unique form of cell death. Using Support Vector Machine (SVM), LASSO (Least Absolute Shrinkage and Selection 
Operator) Regression, and Random Forest algorithms, we meticulously analyzed the expression profiles to discern potential 
biomarkers critical for disulfidptosis. This comprehensive approach led to the identification of six key genes: DSTN, FLNA, 
LRPPRC, MYL6, NDUFA11, and SLC7A11, which collectively form the disulfidptosis signature (Supplementary Figure 1D). 
Subsequently, to specifically analyze the expression levels of these genes, qRT-PCR was performed on collected samples from 
individuals diagnosed with CD (Figures 4A-F). Finally, NDUFA11 and LRRPRC were defined as the two key DEDRGs.
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Figure 1 Integration of GEO datasets and identification of differentially expressed genes (DEGs). (A and B) illustrate principal component analysis demonstrating batch 
effects before and after de-batching the integrated datasets. (C) Depicts the volcano plot displaying DEGs related to Crohn’s disease. (D) Presents a clustered heatmap 
exhibiting expression levels of DEGs. (E) Shows enriched Gene Ontology (GO)analysis items. (F) Shows enriched items from the Kyoto encyclopedia of genes and genomes 
(KEGG) pathway analysis items; “BP”, biological processes; “MF”, molecular functions; “CC”, cellular component.
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Immune Characteristics and ssGSEA of Key DEDRGs
Considering the importance of multiple immune components in the diagnosis and pathological mechanism of CD, the 
interrelation between immune cell infiltration and hub DRGs was examined in the Merging Dataset. We found that 
NDUFA11 exhibited a positive relationship with the abundance of Th17 cells, CD56dim NK cells, neutrophils and NK 
cells and a negative relationship with activated CD4 T cells, T follicular helper cells, eosinophils, activated B cells, 
activated CD8 T cells, and immature B cells (Figure 5A). In contrast, a significant inverse association was observed 
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between LRPPRC and the majority of immune cells, where increased expression of this gene was consistently associated 
with lower abundances of these cells (Figure 5B). Figure 5C highlights NDUFA11’s involvement primarily in mitochon-
drial functions, evident from its association with mitochondrial translation and respiratory electron transport. 
Interestingly, there is a notable decrease in SUMOylation pathway enrichment, particularly impacting RNA binding 
and chromatin organization proteins. Figure 5D details LRPPRC’s significant roles in RNA metabolism and translation- 
related pathways, underscoring its fundamental contributions to cellular processes without significant enrichment in 
SUMOylation.
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Characteristics of Disulfidptosis-Related Clusters for CD
The analysis of consensus clustering, based on the two hub DRGs expression levels, yielded two distinct subclusters 
using data from CD patients in the merging dataset, showing the consensus matrix from k-means clustering analysis at 
k=2, where each element of the matrix represents the proportion of clustering iterations in which two samples were 
assigned to the same cluster. Darker blue signifies a higher consensus on sample pairing within the same cluster, 
demonstrating strong cluster stability and suggesting robust sub-group distinctions within the data. (Supplementary 
Figure 2A-C). The PCA further confirmed the distinct separation of patients within the two subclusters (Supplementary 
Figure 2D). Remarkably, Cluster B exhibited significantly elevated expression levels of LRPPRC in comparison to 
Cluster A (Supplementary Figure 2E). In total, 51 DEGs were identified, and the volcano plot effectively illustrated the 
disparities in gene expression (Figure 6A and Supplementary Table 2). The GO enrichment analysis revealed significant 
enrichment in pathways related to neutrophil migration, granulocyte migration, leukocyte migration, and signaling 
receptor activator activity (Figure 6B). The KEGG enrichment analysis indicated associations with graft-versus-host 
disease, cytokine‒cytokine receptor interaction, rheumatoid arthritis, and the IL17 signaling pathway (Figure 6C). Data 
collected from 253 CD patients in the GSE112366 dataset, according to the Simple Endoscopic Score for CD (SES-CD), 
revealed that patients in cluster B exhibited lower scores, indicating a milder clinical presentation (Figure 6D). Based on 
the analysis of immune cell infiltration, it became evident that individuals in Cluster B displayed considerably lower 
levels of most immune cells, except for eosinophils, T helper type 2 cells, and activated CD4 T cells, which did not 
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display significant differences (Figure 6E). This finding suggests heterogeneity between the subgroups, with Cluster 
B patients displaying lower immune infiltration and a milder clinical presentation.

Functional Differences Between DRGs-Clusters
A comparative investigation between Cluster A and Cluster B revealed distinctive findings regarding the KEGG activities 
associated with various signaling pathways in Helicobacter pylori infection. Specifically, Cluster B demonstrated 
noteworthy reductions in KEGG activities related to the MAPK signaling pathway, chemokine signaling pathway, 
epithelial cell signaling, and NK cell-mediated cytotoxicity. In contrast, Cluster B exhibited augmented activities in 
aminoacyl tRNA biosynthesis and RNA degradation pathways (Figure 7A). On the other hand, GSVA of the Reactome 
pathway revealed a significant enrichment of the anti-inflammatory response, favoring Leishmania parasite infection, 
other interleukin signaling, and signaling to Ras in Cluster A. In contrast, Cluster B exhibited enrichment in processes 
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Figure 5 Correlation analysis of immune infiltrating cells and gene set enrichment analysis with NDUFA11 and LRPPRC in merging GEO datasets (A–D).
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BA
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E

Figure 6 Characteristics of the disulfidptosis-related subtype. (A) Volcano plot showing DEGs. (B) Shows enriched GO analysis items. (C) Shows enriched KEGG analysis 
items. (D) Association between the disulfidptosis-related subtype and Simple Endoscopic Score for 253 CD patients (GSE112366). The shape of each violin plot indicates the 
density and distribution of scores within each subtype, with wider sections showing a higher density of data points. The box within each violin shows the interquartile range, 
and the line within the box indicates the median score. (E) Matrix depicting the correlation among all 23 immune cell subtypes within distinct clusters. “BP”, biological 
processes; “MF”, molecular functions; “ns” denotes no significance, while “*”, “**”, and “***” correspond to p-values of <0.05, <0.01, and <0.001, respectively.
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related to deadenylation of mRNA, tRNA aminoacylation, and tRNA processing (Figure 7B). Additionally, Cluster 
A showed decreased expression of hallmark pathways associated with oxidative phosphorylation. However, it displayed 
higher expression levels of pathways related to IL-2-STAT5 signaling, TNF-α signaling via NF-κB, apoptosis, IL6-JAK- 
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Figure 7 Gene set enrichment analysis based on the KEGG (A), Reactome (B) and HALLMARK (C) pathway.
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STAT3 signaling, epithelial-mesenchymal transition, and inflammatory response (Figure 7C). Notably, consistent with the 
findings from the immune infiltration analysis showing lower immune infiltration in Cluster B, the activity of immune- 
related pathways was also lower in this cluster.

Discussion
In this study, we utilized bioinformatics techniques to identify the key differential expression of DRGs, LRPPRC and 
NDUFA11, in CD. The expression patterns of these genes are closely associated with the clinical severity and immune 
cell infiltration profiles in CD, suggesting their potential as biomarkers for dissecting the heterogeneous immune 
responses in CD. Our data not only reveal the unique expression profiles of LRPPRC and NDUFA11 in CD but also 
demonstrate significant associations between their expression and the abundance of key immune cell subtypes. This is 
crucial for understanding their roles in the pathogenesis of CD. These findings provide a valuable foundation for further 
exploration of the biological roles of disulfidptosis in CD.

Our study corroborates established findings of significant immune cell infiltration in CD patients. Notably, the 
increased abundance of activated DCs, gamma delta cells, CD56 dim NK cells and natural killer cells was closely 
associated with CD activation. Through single-cell sequencing of intestinal mucosal tissues from CD patients, it was 
discovered that the mucosa of CD patients is abundant in IL-1β+ DCs.31 Furthermore, it has been observed that patients 
in CD remission displayed a notable increase in CD16+CD56dim NK cell numbers.32 Notably, CD16+CD56dim NK 
cells are known for their potent cytotoxicity capabilities.33 Additionally, gamma delta T cells emerged as potential 
markers for poor prognosis following CD diagnosis.34 Our study reinforces the pivotal role of immunity in CD.

Intestinal epithelial cell (IEC) death plays a crucial role in gut injury, and an imbalance between IEC death and 
regeneration can lead to increased intestinal permeability and compromised barrier function. This condition can make 
individuals more susceptible to a range of acute and chronic intestinal ailments, such as CD and necrotizing 
enterocolitis.7,35 Genome-wide association studies have provided evidence suggesting that anomalies in the epithelial 
barrier might constitute a fundamental mechanism in the pathogenesis of CD. These studies have pinpointed suscept-
ibility polymorphisms within genes encoding junctional proteins, including E-cadherin, Zonula occludens-1, and guanine 
nucleotide-binding protein alpha 12.36,37 These discoveries indicate the vital significance of these proteins in maintaining 
the integrity of the gut barrier and provide insights into their potential contribution to the susceptibility of CD.

It has been reported that different forms of cell death contribute to the pathogenesis and progression of CD.7–9 The gut 
epithelium is protected by a defensive mucus layer, formed by mucin polymers linked with disulfide bonds, which acts to 
restrict the exposure of epithelial cells to harmful toxins and bacteria. The potential manipulation of mucus integrity through 
the reduction of sulfide concentrations in the intestine presents a novel and promising therapeutic strategy for CD.38 A newly 
identified type of cell death known as disulfidptosis can be initiated by the abnormal accumulation of intracellular disulfides in 
SLC7A11high cells during glucose deprivation. This mechanism results in the disruption of actin cytoskeleton proteins and 
F-actin in a manner dependent on SLC7A11.10,39 Although the precise role of disulfidptosis in CD remains unclear, its 
emergence as a subject worthy of further investigation holds significant potential.

In the scope of our investigation, our aim was to delve into the association between DRGs and CD. Through the 
identification of overlapping genes between DEGs and DRGs, we employed machine learning techniques to pinpoint six 
candidate hub genes (DSTN, FLNA, MYL6, NDUFA11, LRPPRC, and SLC7A11). Subsequently, RT-qPCR was employed to 
verify these genes in clinical specimens, and LRPPRC and NDUFA11 were identified as the final two hub genes. NDUFA11, an 
adjunctive subunit within the mitochondrial membrane respiratory chain, assumes a vital role in the process of mitochondrial 
oxidative phosphorylation. It had been reported that the expression of NDUFA11 varies in different tumours.40,41 On the other 
hand, LRPPRC encodes a leucine-rich protein characterized by multiple pentatricopeptide repeats, and its precise function 
remains enigmatic. Investigative endeavors have indicated plausible involvement in various cellular processes, such as 
cytoskeletal organization, vesicular transport, and the regulation of nuclear and mitochondrial gene expression.42 Notably, 
mutations within this gene have been causatively linked to the French-Canadian subtype of Leigh syndrome.43 However, the 
specific roles of these two genes in CD require further investigation.

Furthermore, our investigation revealed a significant association between the expression of NDUFA11 and Th17 cells. 
Researchers have discovered that individuals with CD exhibited elevated levels of IL17-producing T cells.44 In several 

https://doi.org/10.2147/JIR.S458951                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 3666

Fu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


studies, elevated levels of IFNγ and IL17 have been observed in CD patients, which is attributed to the presence of Th1 
and Th17 cells.45 Conversely, LRPPRC showed a pronounced inverse association with the infiltration of numerous 
immune cells, with a particular emphasis on monocytes. Monocytes play a dual role in CD, as impaired monocyte 
function can trigger CD, while monocyte hyperactivation and adaptive immunity contribute to disease maintenance.46 

Overall, our study highlights a strong positive association between NDUFA11 and Th17 cells in CD. Additionally, 
LRPPRC exhibited a negative correlation with monocyte infiltration, suggesting its potential role in regulating monocyte 
activity in CD. These findings offer valuable insights into the complex immune mechanisms that underlie the pathogen-
esis of CD and may open avenues for targeted therapeutic strategies.

Traditionally, the CD has been systematically classified by employing the Montreal classification, which was devised in 
the year 1998 as a comprehensive refinement of the antecedent Vienna classification.47 However, recent multi-omics data suggest 
that CD is a heterogeneous disorder with distinct molecular subtypes.48–52 Relying solely on traditional typing is insufficient to 
accurately guide CD treatment and prognosis. We propose that more precise molecular subtype identification could enrich our 
comprehension of the heterogeneous molecular mechanisms underlying CD and aid in the development of personalized disease 
management and treatments through improved clinical trial design. In our study, unsupervised clustering methodology was 
deployed to partition patients into two distinct disulfidptosis subtypes, enabling the identification of new feature patterns for 
disease progression and potential treatment targets. Examining the correlation between disulfidptosis-related expression patterns 
and SES-CD, we found that patients in Cluster B exhibited reduced immune infiltration and a less severe clinical presentation. 
Subgroup analysis suggested that the identified expression pattern could predict disease severity in patients. In summary, our 
findings suggest the potential for a shift in the approach to managing CD, emphasizing the value of incorporating molecular 
subtype identification into clinical practice. This approach may enhance patient outcomes by supporting personalized disease 
management strategies and could help in designing more focused clinical trials. By considering molecular distinctions beyond 
traditional classification systems, we aim to contribute to a deeper understanding and more effective treatment strategies for CD, 
although further research is necessary to fully realize these possibilities.

However, our study does have certain limitations that should be addressed. Firstly, the data utilized in our analysis were 
sourced from public databases without direct access to the raw sequencing data. This situation could potentially introduce 
certain biases in our prediction results. Secondly, our verification of the two selected hub genes was limited to their mRNA 
expression levels, indicating the need for further in vivo or in vitro experiments to comprehensively elucidate their underlying 
mechanisms of action. Additionally, in the GSE112366 dataset, there are individuals who received Ustekinumab treatment, 
and its influence on gene expression remains unknown. Lastly, the presence of potential samples from the same individuals in 
GSE112366 raises concerns regarding the validity of our study’s findings and warrants careful consideration.

Conclusion
Overall, our study has unveiled the critical roles of two hub DRGs, LRPPRC and NDUFA11, suggesting their potential 
involvement in the development and immune cell infiltration of CD. Moreover, our study represents the pioneering effort 
in integrating the disulfidptosis subtype pattern with immune infiltration and SES-CD scores in CD patients. Our study’s 
findings offer valuable understanding into the molecular biology of DRGs in CD, potentially influencing their clinical 
management and treatment, while also paving the way for further research and targeted therapies that may lead to 
enhanced outcomes for patients with CD.
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