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We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 
individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. 
We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being 
accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived 
fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs 
exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) 
are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions 
to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA 
identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated 
sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between 
sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in 
critical processes, including synaptic signaling, neurogenesis, memory, behavior, and 
cognition. 
 

 

INTRODUCTION 
Schizophrenia (SCZ) and bipolar disorder (BD) are complex neuropsychiatric disorders that 

significantly impact cognitive and emotional functioning. Transcriptomic studies of post-mortem 

brain tissues have been instrumental, highlighting alterations in gene expression in affected 

brains, particularly in pathways associated with synaptic signaling, neurogenesis, and 

neurotransmitter systems, thus providing insights into the molecular underpinnings of SCZ and 

BD [1, 2]. Additionally, genome-wide association studies (GWAS) have identified numerous risk 

loci associated with these disorders, underscoring the polygenic nature of their etiology [3]. 

Despite these advances, the heritability explained by GWAS is limited, suggesting the potential 

involvement of non-coding genes and other genomic regions. 

 

Small non-coding RNAs (sncRNAs) are regulatory in nature and represent a sizable component 

of an organism’s transcriptome [4]. Even though they outnumber protein-coding genes by two 

orders of magnitude, sncRNAs have remained largely uncharacterized outside the cancer context 

[5]. Among the various classes, the best-studied sncRNA species are microRNAs (miRNAs), 18-

22 nucleotides (nts) in length, that bind their mRNA or long non-coding RNA targets in a sequence-

dependent manner [4, 6].  
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Several previous efforts in the SCZ context relied on miRNA microarray or PCR array analyses 

to identify differentially abundant (DA) miRNAs between post-mortem brain samples of cases and 

controls [7-13]. For more information, the reader is referred to several excellent recent reviews on 

miRNAs in SCZ and other psychiatric disorders [14, 15]. The results of these studies showed 

limiter concordance, presumably resulting from combinations of factors known to affect differential 

miRNA expression analysis, including differences in miRNA profiling platforms [16], batch effects 

[17], differing clinical and demographic variables (e.g., ethnicity, sex, age) [18, 19], differences in 

the analyzed brain regions [20]. Nowadays, RNA-seq has superseded these earlier approaches, 

offering improved sensitivity, specificity, and the possibility of data-driven normalization [21-23]. 

Additionally, RNA-seq provides a unique opportunity for the unbiased characterization of 

sncRNAs in a sample.  

 

One of the early successes of RNA-seq was the discovery in 2008 of miRNA isoforms (isomiRs) 

[24]. IsomiRs are co-expressed mature miRNAs that arise from the same miRNA arm and have 

distinct sequences [4]. IsomiRs typically differ from one another and the “reference” sequences 

found in public databases, such as miRBase [25], by a few nts at either their 5´-end or 3´-end. 

IsomiRs whose sequences match the human genome exactly are categorized as “templated.” 

The primary source of templated isomiRs is the systematic and regulated heterogeneous 

cleavage of miRNA precursor hairpins by DROSHA and DICER enzymes [26]. The “non-

templated” isomiRs are another emerging rich category: these are produced through the post-

transcriptional addition of nucleotides to their 3´-ends [26, 27]. Sibling isomiRs that differ even by 

a single nucleotide, whether templated or non-templated, can target different genes [26, 28, 29] 

and exhibit different sub-cellular localization [30].  

 

The universe of regulatory sncRNAs includes additional molecular classes, namely, the tRNA-

derived fragments (tRFs), the rRNA-derived fragments (rRFs), and the Y RNA-derived fragments 

(yRFs) [4, 31]. We previously showed that the abundance levels of isomiRs, tRFs, rRFs, and yRFs 

depend on “context” (e.g., tissue type, disease) [31-33], as well as “personal attributes” (e.g., 

ancestry and sex) [18, 34, 35]. Despite their omnipresence, high abundance, and intriguing 

dependencies, tRFs, rRFs, and yRFs are less studied compared to miRNAs/isomiRs. 

 

In this study, we comprehensively characterized sncRNAs in post-mortem brain samples of SCZ 

and BD cases and controls. We also identified those sncRNAs that are DA between cases and 

controls and linked them through co-expression analysis to protein-coding genes from several 
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critical pathways. We ensured robustness by including 170 brain samples from two independent 

brain banks.  

 

MATERIALS AND METHODS 
Description of post-mortem brain samples 
Frozen brain tissue from the prefrontal cortex (PFC, Brodmann areas 9 and 46) was obtained 

from two brain banks, as detailed below. This cohort includes 170 SCZ, BD, and control subjects 

(n = 53, 40, and 77, respectively), selected based on strict inclusion/exclusion criteria. All subjects 

met the relevant DSM-IV diagnostic criteria, determined through consensus conferences involving 

a review of medical records, direct clinical assessments, and interviews with family members or 

caregivers. Tissue donors were sourced from the Icahn School of Medicine at Mount Sinai 

(MSSM) and the NIMH Human Brain Collection Core (HBCC). Supp. Table S1 provides sample-

level demographic information, including sex, age at death, post-mortem interval (PMI), and 

stratification by institution and diagnosis. All included subjects are of Caucasian ancestry. 

 

RNA isolation, library preparation, and sequencing 
We isolated RNA using miRNeasy kits (Qiagen) according to the manufacturer’s instructions. RNA 

integrity number (RIN) was assessed using a 2200 TapeStation (Agilent Technologies). All 

samples had RIN ≥ 6 (Supp. Table S1). We prepared sequencing libraries using NEBNext Small 

RNA Prep Set for Illumina (NEB #E7330) at the Jefferson Genomics Core Facility according to 

the standard kit protocols, which size-selected for sncRNAs. The NEBNext 3´-adapter used is 

AGATCGGAAGAGCACACGTCT. We sequenced all samples on the same Illumina NextSeq 500 

sequencing platform at 75 cycles. We used cutadapt v4.6 [36] to remove adapters and low-quality 

bases from the 3´ ends of sequenced reads, discarding reads that contained no adapter or were 

shorter than 16 nucleotides with (cutadapt --match-read-wildcards -q 15 -e 0.12 -a 

AGATCGGAAGAGCACACGTCT -m 16 --discard-untrimmed). 

 
SncRNA-seq read mapping 
We used IsoMiRmap [37] and MINTmap [38] to profile isomiRs and tRFs. We used the previously 

described exhaustive, brute-force search [31] to profile rRFs, yRFs, and other repetitive fragments 

(rpFs) by mapping the reads to the reference rRNAs [35, 39], Y RNAs [31], and other repetitive 

elements annotated by RepeatMasker [40], respectively. In all these steps, we required exact 

matching of reads to the universe of known isomiRs, tRFs, rRFs, yRFs, and rpFs, while providing 
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for the post-transcriptional addition of non-templated nucleotides to isomiRs (e.g., 3´ uridylation 

or adenylation) and tRFs (3´ addition of CCA to mature tRNAs). 

 

Next, for each sample, we identified unique reads that could not be mapped with the above 

process and identified those with Levenshtein distance (LD) ≤ 2 from at least one of the sample’s 

10,000 most abundant annotated sncRNAs (i.e., isomiRs, tRFs, rRFs, yRFs, and rpFs). The 

matching reads received the prefix “unk-” (unknown), and the links between these sequences and 

corresponding annotated sncRNAs with LD ≤ 2 were stored in a separate field. We sought LD 

matches using the polyleven Python package (https://github.com/fujimotos/polyleven). Finally, we 

used bowtie v1.3.1 [41] to place any remaining unmapped reads to the reference GRCh38.p14 

genome, allowing up to 1 replacement but no insertions or deletions (bowtie -v 1 -a --best --strata 

-S). We prefixed reads from this last group that matched with “bwt-” and annotated them by 

intersecting their coordinates with GENCODE v42’s basic annotation file using bedtools v2.30 

[42].  

 

We converted raw read counts to reads-per-million (RPM) units for filtering purposes. The 

analyses described below used only sncRNAs whose abundance was at least 10 RPM in at least 

25% of all (case and control) samples. 

 

Labeling of sncRNAs 
To uniformly label sncRNAs across these diverse molecule types, we used the “license plates” 

scheme that we originally introduced for tRFs [43, 44] and have since expanded to rRFs [35, 39], 

isomiRs [37], yRFs, and repetitive elements [31]. In a nutshell, the license plate of a sncRNA is a 

base-32 encoding of the sncRNA’s sequence prefixed by a three-letter abbreviation of the class 

to which the sncRNA belongs (e.g., “iso-,” “tRF-,” rRF-,” yRF-,” or “rpF-”). License plates have 

several desirable properties: (1) they are invertible (each sncRNA has a unique license plate and 

vice versa); (2)  they obviate the need for a centralized broker group or organization that issues 

labels – indeed, the codes for creating license plates and converting license plates to nucleotide 

sequences are publicly available; and (3) they are independent of genome/transcriptome 

assemblies, meaning the labels persist over time. 

 

mRNA-seq data 
We obtained transcript-level read count data for the same samples from the CommonMind 

Consortium [2]. We discarded samples whose RIN was less than 6, leaving us with 161 samples 
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for mRNA analysis. We summarized transcript-level counts at the gene level using GENCODE 

v30 annotation. We converted raw read counts to transcripts-per-million (TPM) units for filtering 

purposes. The analyses described below used only mRNAs whose abundance was at least 

1 TPM in at least 25% of all (case and control) samples. 
 
Differential abundance analysis 
We used DESeq2 v1.44 to identify sncRNAs and mRNAs that are differentially abundant (DA) 

between cases and controls [45]. We conducted separate analyses for the HBCC and MSSM 

brain banks because of the acute differences in the ages of the respective donors: age at death 

ranges from 13 to 83 years old in the HBCC (i.e., both younger and older individuals) and from 

47 to 96 in the MSSM (i.e., only older individuals). We separately normalized the counts from the 

HBCC and MSSM samples using standard DESeq2’s median of ratios algorithm. Then, we 

winsorized the normalized counts to the 5th and 95th percentiles of each molecule to avoid cases 

of outlier-driven DA results. 

 

Before covariate selection, we assessed correlations between clinical and demographic factors 

(Supp. Figure S1A-B). There are statistically significant, brain bank-specific correlations primarily 

associated with disease status, age at death, PMI, and RIN. This indicated the need to adjust for 

confounders in the DA analysis. In both brain banks, RIN is negatively correlated with PMI, as 

expected. However, multivariable regression analysis showed a negative association of RIN with 

SCZ/BD that is independent of PMI (Supp. Figure S1C-D). This mirrors a similar dependence that 

was previously reported for post-mortem brain samples from Alzheimer’s cases [46]. 

 

We first fit univariate models testing for associations of sncRNAs and mRNAs with different known 

variables: disease status, age, sex, and RIN. We selected an age cutoff of 45 years to maximize 

the balance between cases and controls and formed two age groups based on that cutoff. We 

also binarized samples based on their RIN using a standard threshold of 7.5 [47, 48]. These two 

binarizations helped avoid assuming a linear relationship between gene expression and age or 

RIN. Based on the results of univariate analysis, we included disease status, age, and RIN in the 

multivariable model for sncRNA-seq. In addition to these variables, we added sex in the mRNA-

seq model as we found DA of ~50 genes between males and females (predominantly encoded in 

X and Y chromosomes). 
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For the HBCC brain bank, we also fit a model with age-group-specific effects of SCZ by 

introducing a variable generated by concatenating the labels of the disease and age groups. To 

ensure comparability of disease vs. control comparisons in younger and older age groups, we 

randomly down-sampled the younger age group to match the sample size of the older group (we 

used 100 down-samplings with different random seed values). Similarly, to ensure comparability 

of older vs. younger age group comparisons between cases and controls, we conducted separate 

down-samplings of the control group to match the sample size of the disease group. 

 

We controlled for potential hidden confounding factors by estimating surrogate variables using 

the SVA v3.52 package [49] and adding them to the multivariable model. We generated DA results 

from standard contrasts (e.g., SCZ vs. control, BD vs. control) using the default Wald’s test. We 

also generated the DA results on the combined effect of disease (SCZ or BD) and the combined 

effect of disease and age (concatenated disease and age group labels) using the likelihood-ratio 

test. We controlled for a false discovery rate (FDR) using the Benjamini-Hochberg procedure. 

 

Enrichment analysis 
Unlike overrepresentation analysis, gene set enrichment analysis (GSEA) does not require setting 

fold change (FC) or statistical significance thresholds on the DA analysis results [50]. We ran 

GSEA on the DESeq2-ranked lists of sncRNAs and mRNAs using fgsea v1.30 package 

(https://bioconductor.org/packages/release/bioc/html/fgsea.html). We downloaded reference 

gene sets associated with Gene Ontology (GO) terms from MSigDB v2023.2 [51]. We also used 

the overrepresentation analysis available in the GSEApy v1.1.3 package [52] to characterize GO 

terms enriched in gene co-expression clusters and miRNA target gene sets. 

 

Co-expression analysis in the face of confounding variables 
Computing correlations between the abundances of two molecules (e.g., mRNA-mRNA or 

sncRNA-mRNA) can provide valuable insights into co-expression patterns and help form modules 

of co-expressed transcripts. While not commonly discussed, confounding variables can 

dramatically influence the correlation between pairs of transcripts [53]: that correlation may 

disappear or even change signs after confounding variables are accounted for. Supp. Figure S2 

shows one such example using two genes, KDM5D and RPS4Y1, located on the Y chromosome. 

When we consider all samples of the HBCC brain bank, independently of their sex, the correlation 

between these two genes equals 0.99. On the other hand, computing the correlation using only 
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the male samples results in a dramatically different value of -0.65: here, sex acts as a third variable 

and leads to an incorrect computation and a false positive call.  

 

To reduce the effect of confounding, we implemented a two-step procedure. In the first step, we 

started with log2-transformed normalized and winsorized counts and used multivariable linear 

regression to residualize the effects of known factors: disease status, age, sex, and RIN. In the 

second step, we applied a modified instance of Parsana et al. [53] to remove hidden confounders. 

We iteratively regressed out principal components (PCs) from the sncRNA and mRNA expression 

data in a way that maximized the enrichment of known pathways among the highly correlated 

molecule pairs. The selected residualized PCs were PC3, PC4, PC9, PC11, and PC13. 

 

The enrichment score was computed as follows. First, we labeled the top 5% of mRNA-mRNA 

pairs with the highest absolute Pearson correlations and the top 5% of isomiR-mRNA pairs with 

the most negative correlations as “highly correlated” pairs. Then, for each isomiR and mRNA, we 

computed a p-value (hypergeometric test) to determine whether “reference” pairs are 

overrepresented among the highly correlated pairs involving that specific isomiR or mRNA. We 

adjusted p-values using the Benjamini-Hochberg procedure and computed the global enrichment 

scores by averaging negative logarithms of adjusted p-values separately for isomiRs and mRNAs. 

 

In the mRNA-mRNA case, we labeled a pair as “reference” if the corresponding two genes share 

at least one “Canonical Pathway” or “GO term” from MSigDB v2023.2. In the isomiR-mRNA case, 

“reference” indicated that the mRNA is an experimentally validated or computationally predicted 

target of the corresponding canonical miRNA. We restricted the analysis to isomiRs with a 

canonical 5´-end, as the 5´-end sequence is the primary determinant of isomiR targets [4]. We 

obtained a list of experimentally validated miRNA-mRNA pairs from TarBase v9.0 [54] (the main 

portion of the data comes from CLIP experiments). We used RNA22 v2.0 [55] to predict miRNA 

binding sites across the whole span of target mRNAs. 

 

Statistical analysis and data visualization 
We used the SciPy v1.12 [56] Python module for routine statistical tests and procedures (Fisher’s 

exact test, Mann-Whitney’s U-test, correlation analysis, and linear regression analysis). We used 

the scikit-learn v1.4 (https://scikit-learn.org) Python module for PCA. We used the Seaborn v0.13 

(https://seaborn.pydata.org) and Matplotlib v3.8 (https://matplotlib.org) Python modules for data 

visualization. 
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RESULTS 
IsomiRs, tRFs, rRFs, yRFs, and other sncRNAs abound in the brains of cases and controls 
We generated sncRNA sequencing data from post-mortem brain samples across two independent 

brain banks, which included 53 SCZ cases, 40 BD cases, and 77 controls. Using a state-of-the-

art analytical pipeline (see Methods), we mapped and comprehensively annotated sequencing 

reads in 170 small RNA-seq datasets. First, we profiled isomiRs, tRFs, rRFs, yRFs, and rpFs, 

enforcing exact matching. Next, we identified those of the remaining reads with LD ≤ 2 from at 

least one of the sncRNAs that was annotated during the first step. Finally, we mapped all 

remaining reads to the human genome, allowing at most one replacement but no insertions or 

deletions.  

 

In this analysis, we considered only the 7,473 mapped sncRNAs whose abundance is at least 10 

RPM in at least 25% of the 170 samples. Figure 1A shows the distribution of the identified 

sncRNAs in each of the considered categories (an additional entry comprises unmapped 

molecules). Individual molecules within each sncRNA type are sorted by mean abundance, and 

their ranks are shown on the X-axis. The Y-axis shows the cumulative abundance (mean ± SD) 

of the ranked molecules. We analyzed all the samples together since the total abundance of each 

RNA class showed no statistically significant differences between cases and controls. 

 

As Figure 1A shows, by profiling isomiRs, tRFs, rRFs, yRFs, and rpFs, we can annotate 99.9% 

of all sncRNAs whose abundance is ≥ 10 RPM. IsomiRs are the most prevalent sncRNA type, 

capturing 60.6% of the sncRNA-ome. The isomiRs are followed by tRFs (17.8%), rRFs (11.4%), 

yRFs (8.3%), and other sncRNAs (1.7%). Figure 1B shows typical lengths for each molecule type. 

As expected, most isomiRs are centered around a single peak of 22 nts. Most abundant tRFs 

have a length of 30-36 nts, suggesting that many are tRNA halves [57]. yRFs follow a similar 

length pattern to tRFs, whereas rRFs fall into two groups, 16-25 and 43-45 nts. Other sncRNAs 

(rpFs and the remaining genomic mappings) follow a “flatter” length distribution. 

 

Non-canonical and non-templated isomiRs abound in the brains of cases and controls 
Consistently with our previous reports [31, 58], the 5´-ends of most isomiRs are canonical, i.e., 

they agree with the 5´ ends of the reference sequences found in public databases. Supp. Figure 

S3 shows detailed summary statistics on isomiR types found in the brain samples, separately for 

5p and 3p miRNA arms. Several highly abundant isomiRs are notable because they have shifted 
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“seed” regions. Since a miRNA’s/isomiR’s seed determines the identities of its targets, it follows 

that these isomiRs target different genes than the reference isomiR, as we showed previously 

[28]. Several of these isomiRs arise from the 3p arm of miR-126 and lack the first (5´-end) 

nucleotide of the reference sequence. The combined mean abundance of these isomiRs is high, 

exceeding 500 RPM. Also mirroring our previous findings, most non-canonical 5´-end isomiRs 

originate from the 3p arms of the miRNA precursors (Supp. Figure S3B), their 5´-ends 

corresponding to the point of cleavage by the DICER enzyme [31, 58]. 

 

On the other hand, more than half of all isomiRs have non-canonical 3´ termini, with ≥ 20% having 

non-templated nucleotide additions (Supp. Figure S3C-D). The frequencies of non-templated 

3´-end nucleotides acutely differ between 5p and 3p miRNA arms, with adenylation being most 

frequent among isomiRs from the 5p arm (Supp. Figure S3E) and uridylation among isomiRs from 

the 3p arm (Supp. Figure S3F). Surprisingly, the percentage of isomiRs whose 3´-end is 

guanylated is significantly higher in SCZ cases (multivariable regression p-value < 3.3e-05, Supp. 

Figure S3E-F). Below, we will revisit this observation in more detail. 

 

Many tRFs with sequence mismatches abound in the brains of cases and controls 
Figure 1A shows an unexpectedly high abundance of molecules with LD ≤ 2 from known tRFs 

(7.3% of total sncRNA-ome). In fact, this number is comparable with the abundance of known 

tRFs (10.5%). For simplicity of presentation, we analyzed in detail molecules with LD = 1, which 

constitute 84% of the LD ≤ 2 category total abundance (Supp. Table S2). 

 

Based on the types and locations of mismatches when compared to the wild-type (WT) tRFs, we 

classified LD = 1 tRFs into two categories that cover 90% of all LD = 1 reads. The first category 

(48% of all LD = 1 reads) comprises tRFs with a non-templated nucleotide attached to the 3´-end, 

mirroring the concept of non-templated isomiRs. These non-templated additions are preferentially 

added to the 5´-halves and 5´-tRFs (90% of all tRFs with 3´-end additions) and preferentially found 

in tRFs from tRNAGlyCCC/GlyGCC, tRNAGluCTC, tRNALysCTT, and tRNAHisGTG (92% of all tRFs with 3´-end 

additions). Supp. Figure S4A shows the frequencies of the non-templated nucleotides. Strikingly, 

the distribution closely resembled the distribution for 3p miRNA arms (Supp. Figure S3F), 

including the statistically significant elevation of guanylation rates in SCZ cases (p-value = 1.9e-

07), suggesting common processing mechanisms. 
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The second category is composed of extremely abundant 5´-halves and 5´-tRFs (some of them 

are > 1,000 RPM) from tRNAGluCTC and tRNAGlyCCC/GlyGCC with deletions or substitutions at position 

6 of the parental tRNA (Supp. Figure S4B). We do not know whether these molecules are real or 

the two tRNAs have uncharacterized chemical modifications at position 6 causing incorrect 

sequencing. 

 
The sncRNA-omes of SCZ and BD cases differ significantly from controls 
We begin the sncRNA-ome comparisons of cases and controls from the HBCC brain bank, as it 

contains both SCZ and BD cases and spans a wide age range. Using a multivariable DESeq2 

model adjusted for known and hidden confounding variables (see Methods), we found 1,127 

sncRNAs that differ significantly (FDR < 0.05) in abundance between SCZ cases and controls 

(Figure 2A-E, Supp. Table S3A). Consistently with the previous mRNA-level reports, most 

sncRNAs have modest FC values: median |log2 FC| across 1,127 DA sncRNAs is only 0.58, which 

is consistent with the polygenic inheritance of SCZ [59]. Considering an additional |log2 FC| 

threshold of 0.4 (filled markers in Figure 2A-E), the number of DA sncRNAs is 761. 

 

We found a weaker effect in BD: there are only 104 DA sncRNAs between BD and controls, with 

all FDR values ranging between 0.01 and 0.05 (Supp. Table S3B). We further ran DESeq2 with 

the likelihood-ratio test to find sncRNAs that are significantly associated either with SCZ or BD 

(Supp. Table S3C). For these sncRNAs, the FCs between SCZ and controls are highly correlated 

with the FCs in the BD vs. control comparison (Pearson’s r = 0.94, p-value < 1e-100, Figure 2F). 

At the same time, the absolute values of FCs in the BD case are systematically lower compared 

to SCZ (Figure 2F). 

 
Highly abundant miRNAs increase further in abundance in SCZ 
The effect of an isomiR on its target depends on the isomiR’s abundance. With that in mind, we 

focused on the DA isomiRs with exceptionally high abundance (median in SCZ or control samples 

≥ 1,000 RPM). The top part of Figure 2A shows 12 such isomiRs – all of them are upregulated in 

SCZ; Supp. Figure S5A shows box plots for these isomiRs in SCZ cases and controls. Only 2 out 

of 12 isomiRs have log2 FC above 0.4: miR-126-3p|0|0 and miR-451a|0|-1. Notably, the previously 

mentioned sister isomiR miR-126-3p|+1|0 with non-canonical 5´ terminus (and, thus, different 

target genes) is also upregulated (Figure 2A). 
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The remaining isomiRs originate from the let-7 family (let-7b-5p, let-7c-5p, let-7i-5p), miR-99a-5p, 

miR-125b-5p, and miR-29a-3p. Three of the arms producing these miRNAs (miR-99a-5p, let-7c-

5p, and miR-125b-5p) are clustered on chromosome 21 and are co-transcribed [60]. One of the 

two isomiRs from miR-29a-3p miRNA, miR-29a-3p|-1|-1, has a non-canonical 5´ terminus. These 

isomiRs are very abundant: thus, despite their modest FCs, a small change in their abundance 

could have considerable functional consequences. 

 

Differentially abundant tRFs, rRFs, and yRFs exhibit biases in the sign of their change 
The tRFs, rRFs, and yRFs we identified show strong DA signatures, evident biases in the sign of 

their change (Figure 2B-E), and generally exhibit stronger FCs than isomiRs. Figure 2B shows a 

volcano plot with DA tRFs; a subset of highly abundant DA tRFs (≥ 1,000 RPM) is separately 

depicted in Supp. Figure S5B.  

 

Despite the evident bias for decreased abundance in the SCZ samples, two clearly-defined 

groups of tRFs are upregulated in SCZ. The first group consists of highly abundant 5´-tRNA halves 

(three of them exceed 5,000 RPM in SCZ), including the above mentioned tRNAGluCTC 5´-tRNA 

halves with a deletion at position 6. The second group includes tRFs with non-templated 3´ 

guanylation that resembles the isomiRs’ pattern. In complete analogy with isomiRs, sibling tRFs 

that are produced from the same parental tRNA have opposite FC signs. For example, a 34-nt 5´-

tRNA half derived from tRNAGluCTC increases in abundance in SCZ (log2 FC = 0.72, FDR = 0.01), 

whereas a 28-nt 5´-tRF from the same tRNA is less abundant in SCZ compared to control samples 

(log2 FC = -1.09, FDR = 0.0014). Similarly, Figure 2C shows that DA rRFs are typically less 

abundant in SCZ, with several clearly defined exceptions. Namely, a group of i-rRFs that are 

produced from different regions of 28S rRNA are more abundant in SCZ samples, whereas 

several other 28S i-rRFs are less abundant in SCZ. This couples SCZ to the differential 

processing of tRNAs and rRNAs into fragments, suggesting underlying events that go beyond 

changes to transcription rates. 

 

Figure 2D shows that virtually all DA yRFs are depleted in SCZ. The most abundant yRFs 

originate from two parental Y RNA molecules: RNY1 and RNY4. Figure 2E depicts FCs and 

abundances of other sncRNAs that are not isomiRs, tRFs, rRFs, or yRFs. Of note, a 26-nt 

fragment of the 7SL signal recognition particle RNA (srpRNA) has the highest absolute FC across 

all sncRNAs (log2 FC = 2.23, FDR = 2e-05) albeit low average abundance (median across SCZ 

samples = 10.2 RPM).  
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GWAS-identified miR-137-3p and miR-2682-5p are upregulated in SCZ but low in 
abundance 
Several large-scale GWAS SCZ studies consistently found a strong, statistically significant group 

of SNPs proximal to miRNAs miR-137-3p and miR-2682-5p [3, 61]. Two isomiRs of miR-137-3p 

increase in SCZ (Figure 2A) but the effect size is limited: miR-137-3p|0|-1 (FDR = 0.041, log2 FC 

= 0.29) and miR-137-3p|0|0 (FDR = 0.082, log2 FC = 0.27). On the other hand, the much less 

studied miR-2682-5p increases statistically significantly and shows a greater magnitude of 

change (FDR = 0.0061, log2 FC = 0.45). Even when combining all DA isomiRs of miR-137-3p and 

miR-2682-5p, the resulting abundance is less than 50 RPM in each case. The low abundance 

levels and the small effect sizes of these two miRNAs suggest that their changes in SCZ are of 

little consequence in regard to the silencing of gene targets. 

 
Non-templated isomiRs differ between SCZ cases and controls  
By analyzing sets of DA isomiRs, we observed clear biases in the identity of the nucleotides that 

are post-transcriptionally added to the 3´ end of the non-templated isomiRs (Figure 2A). Figure 

3A shows the results of a GSEA analysis that assesses the enrichment of different non-templated 

nucleotides among differentially expressed sncRNAs. The plot's X-axis shows the ranked list of 

all sncRNAs at RPM ≥ 10. The top left panel shows running enrichment scores corresponding to 

different non-templated isomiRs. The middle left panel shows the type of the non-templated 

isomiR using tick marks at the corresponding positions of the ranked list. SncRNAs that are 

upregulated in SCZ are on the left side, and the most downregulated ones are on the right side 

(bottom left panel). IsomiRs with non-templated 3´ runs of cytosine (referred to as “WT+C” 

isomiRs, p-value = 8e-14) and uridine (referred to as “WT+T” isomiRs, p-value = 2e-03), 

respectively, are prevalent among the isomiRs whose abundance decreases in SCZ. In fact, 80% 

of the downregulated isomiRs with log2 FC ≤ -0.4 belong to these two groups. IsomiRs with non-

templated 3´ runs of guanine – we will refer to them as “WT+G” isomiRs – are particularly notable: 

they are prevalent among the isomiRs whose abundance increases in SCZ (p-value = 9e-27). In 

fact, 54% of all upregulated isomiRs with log2 FC ≥ 0.4 belong to the WT+G group. An additional 

24% of isomiRs end with a guanine, but it cannot be distinguished whether the guanine is the one 

present on the genomic template or a post-transcriptional addition to a shorter-by-one-nucleotide 

templated isomiR. 
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We also found several instances where the FC of two sister isomiRs from the same miRNA arm 

increases or decreases depending on the identity of their non-templated nucleotide addition. For 

example, miR-181a-5p|0|-1(+1G) increases in SCZ compared to controls (FDR = 0.0095, log2 FC 

= 0.46), whereas miR-181a-5p|0|-2(+1C) goes down in SCZ (FDR = 0.036, log2 FC = -0.42).  This 

example, together with Figure 3A, suggests that the observed DA of isomiRs can also result from 

differential processing of miRNAs, in addition to differential transcription. 

 

WT+G isomiRs in the neurological context were originally reported in a previous study that deep-

sequenced sncRNAs from nuclear and cytoplasmic fractions of rat cortical neurons and showed 

that they are enriched in the nuclear fractions [62]. Given our findings (Figure 3A), we re-analyzed 

the data of that study from the vantage point of isomiRs. Out of 55 miRNA arms that give rise to 

WT+G isomiRs with an abundance ≥ 10 RPM, 37 have identical sequences between humans and 

rats. 35 (94.6%) of these miRNA arms are expressed in rat neurons at an abundance of 10 RPM 

or higher (Supp. Table S4). Figure 3B shows the abundances of the non-templated rat isomiRs 

originating from these 35 miRNAs in the nuclear and cytoplasmic fractions. The WT+G rat isomiRs 

are highly enriched in the nuclear fraction (p-value = 2e-07), whereas the WT+C (p-value = 2e-

06) and WT+A (p-value = 2e-05) isomiRs are enriched in the cytoplasmic fraction. 

 

The changes of mRNAs in SCZ and BD mirror the changes of sncRNAs 
We also analyzed the mRNA sequencing data from the same samples that were previously 

reported [2]. We considered only the 15,414 mRNA genes whose abundance is at least 1 TPM in 

at least 25% of all (case and control) samples. There are 1,442 DA genes between SCZ and 

control, with only 155 genes having |log2 FC| ≥ 0.4 (Supp. Figure S6A, Supp. Table S5A). As in 

the case of sncRNAs, fold changes of SCZ- and BD-associated differences are highly correlated 

(Pearson’s r = 0.9, p-value < 1e-100), with the effects in BD being weaker on average (Supp. 

Figure S6B, Supp. Table S5B-C). To compare the changes with previously reported mRNA-level 

data, we applied GSEA with the reference list of DA genes generated by the PsychENCODE 

Consortium [1]. The analysis shows clear, highly statistically significant (p-value < 1e-200) 

enrichment with matching FC signs between our SCZ analysis and reference PsychENCODE 

SCZ data (Supp. Figure S6C). A similar highly significant concordance (p-value < 1e-60) exists 

between our BD FCs and PsychENCODE BD data. Gene Ontology (GO) term enrichment 

analysis with GSEA shows enrichment of pathways related to synaptic signaling, neuron and axon 

development among downregulated genes in SCZ, and translation-related pathways among 

upregulated genes (Supp. Figure S6D-E, Supp. Table S6). 
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The basic trends are replicated in the MSSM brain bank but with weaker effect sizes 
We independently ran DA tests on sncRNAs and mRNAs of the MSSM brain bank. We found only 

five sncRNAs (Supp. Table S3D) and one mRNA (Supp. Table S5D) whose FDR satisfied the 0.05 

threshold. To compare the sign of molecule changes between the two brain banks, we used GSEA 

on the MSSM-ranked sncRNAs list using statistically significant HBCC changes as a reference 

list (Supp. Figure S7A). Both brain banks show statistically significant concordance (p-value = 2e-

11), and their FCs signs generally agree (Supp. Figure S7A). All the trends with non-templated 

isomiRs also replicate at the level of GSEA, with WT+G isomiRs showing significantly increased 

abundance in SCZ and WT+A/WT+C/WT+T isomiRs showing significantly decreased abundance 

(Supp. Figure S7B). GSEA also shows statistically significant agreement between DA mRNA-seq 

results of MSSM and HBCC (Supp. Figure S7C) and between MSSM and PsychENCODE (Supp. 

Figure S7D). At the same time, enrichments for the PsychENCODE reference list are lower in the 

MSSM (Supp. Figure S7D) compared to the HBCC (Supp. Figure S6C). In summary, the MSSM 

brain bank replicates the HBCC-derived results but with weaker FCs.  

 

Both sncRNA and mRNA expression profiles suggest accelerated aging in SCZ and BD 
The differences in the strength of the DA signal between the HBCC and MSSM brain banks can 

be due to either or both of two reasons: differences in the age distribution (MSSM individuals are 

significantly older) or systematic batch effects (e.g., differences in sample collection and 

processing). Previous studies support the first option, showing that the mRNA DA signal between 

SCZ cases and controls vanishes in older people [63-65]. 

 

To test the interaction between disease status and age, we conducted separate DA analyses in 

groups of age < 45 years old and age ≥ 45 of the HBCC brain bank. We chose the cutoff point to 

balance the number of cases and controls in the age groups). We also used randomized down-

sampling (see Methods) to ensure that sample size does not affect the analysis (see Methods).  

 

In concordance with the previous studies, the younger group (age < 45) is responsible for the 

SCZ DA mRNA signal, whereas the older group (age ≥ 45) shows a total absence of DA mRNAs 

(Figure 4A, “horizontal” comparisons). Interestingly, hundreds of mRNAs are DA between younger 

and older controls, while there are almost no differences between younger and older SCZ cases 

(Figure 4A, “vertical” comparisons). The same observation holds for the BD cases (Supp Figure 

S8A). 
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Figure 4B shows the joint distribution of FCs from two contrasts of the same multivariable models: 

SCZ cases versus controls on the X-axis and age ≥ 45 versus age < 45 individuals on the Y-axis. 

Only mRNAs significantly associated with SCZ or age (likelihood-ratio test) are included (Supp. 

Table S5E-F). These two FCs show a striking positive correlation of 0.78 (p-value < 1e-100), 

suggesting protein-coding gene changes that are common to SCZ and natural aging. We 

observed the same striking correlation when conducting GSEA on the HBCC SCZ changes with 

a brain aging gene signature derived by a different group from the independent GTEx project [66] 

(p-value < 1e-16, Figure 4C). These observations explain the effects from Figure 4A and the weak 

effect sizes in the MSSM samples. Specifically, the effect of SCZ on the brain samples resembles 

the effect of natural aging, which minimizes the differences between SCZ and controls in older 

individuals. The high correlation between aging and disease FCs is also present when analyzing 

BD cases (Supp. Figure S8B-C). 

 

A more complex picture exists at the sncRNA level. Figure 4D shows the numbers of significant 

DA sncRNAs corresponding to the interaction term of SCZ status and age group. The sncRNA 

data lead to the same conclusions as the mRNA diagram of Figure 4A. However, the correlations 

between SCZ and age group FCs are weaker and follow more complex, molecule-type-specific 

patterns (Figure 4E-I, Supp. Table S3E-F). For example, there is a modest, statistically significant 

positive FC-FC correlation of isomiR (Figure 4E) and yRF levels (Figure 4H), whereas the FC-FC 

correlation for rRFs is negative (Figure 4G). Supp. Figure S8D-I is the BD counterpart of Figure 

4D-I, supporting very similar conclusions (the only exception is Supp. Figure S8D, showing almost 

no DA sncRNAs between BD and controls in the younger age group). 

 

Differentially abundant sncRNAs and mRNAs form distinct co-expression modules 
To gain insight into the interrelations of DA molecules, we computed Pearson correlations 

between sncRNAs and mRNAs in an all-vs-all fashion (correlations were computed across the 

union of HBCC case and control samples). To ensure that correlations are not driven by major 

“third variables,” we explicitly residualized known factors (disease status, sex, age, RIN) and 

hidden confounders represented by principal components from the expression data (see 

Methods). 

 

Figure 5 shows correlation heatmaps with hierarchical clustering of sncRNAs (Figure 5A) and 

mRNAs (Figure 5B). Even though we explicitly regressed out the disease status from the 
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expression values, and despite using an unsupervised clustering algorithm, the clusters agree 

exceptionally well with the SCZ FC signs. Moreover, clustering using only control samples results 

in very similar modules (Rand index = 0.9 for sncRNAs and 0.84 for sncRNAs). These 

observations mean that DA sncRNAs and mRNAs form clusters of “entangled” molecules, which 

in turn suggest shared regulation and orchestrated changes in disease. Supp. Table S7 lists 

sncRNAs and mRNAs comprising each cluster, and Supp. Table S8 lists pathway enrichments 

associated with each mRNA cluster. 

 

Most sncRNA clusters comprise characteristic molecule types (Figure 5A). The first cluster 

includes most sncRNAs whose abundance is lower in SCZ, i.e., virtually all yRFs, multiple tRFs, 

and rRFs predominantly derived from 5S rRNA. The second cluster is enriched in the non-

templated WT+G isomiRs and is rather unexpected, as these isomiRs are grouped together by 

their non-templated nucleotide identity but not miRNA identity or genomic locus of origin. Cluster 

3 comprises 5´-tRNA halves, whereas cluster 4 comprises various isomiRs upregulated in SCZ. 

Cluster 5 comprises i-rRFs derived from 28S rRNA. Lastly, clusters 6 and 7 comprise different 

isomiRs with increased and decreased abundance in SCZ, respectively. The structure of clusters 

once again highlights an additional layer of complexity independent of transcription – sncRNA 

processing from the precursor transcript. 

 

Five out of six identified mRNA clusters show clear and specific GO pathway enrichments (Figure 

5B). The most intriguing findings correspond to pathways with decreased abundance in SCZ 

samples (clusters 2, 3, 4). These include synaptic signaling, memory, behavior, cognition, 

neurogenesis, and ion transport. The other two clusters consist of genes upregulated in SCZ and 

include translation, stress response, response to Zn and Cu ions, response to cytokines, and 

regulation of cell death. 

 

SncRNA clusters are wired with specific mRNA clusters 
For each identified cluster (Figure 5), we computed an “eigen-molecule,” – the first principal 

component based on the expression of the cluster’s genes. To link sncRNA clusters with mRNA 

clusters, we then computed correlations between all possible eigen-molecules. 

 

Only four associations between sncRNA and mRNA clusters have absolute correlation values that 

exceed 0.5 – they are depicted by the arrows connecting the clusters between the two panels of  

Figure 5. The first sncRNA cluster (yRFs, tRFs, and rRFs that are downregulated in SCZ) is 
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positively correlated with mRNA cluster 2 (downregulated in SCZ; synaptic signaling, memory, 

behavior, cognition) and negatively correlated with mRNA cluster 6 (upregulated in SCZ; response 

to ions/cytokines). The third sncRNA cluster (5´-tRNA halves increased in SCZ) is negatively 

correlated with the mRNA cluster 4 (downregulated in SCZ; synaptic signaling, neurogenesis). 

Finally, the fifth sncRNA cluster (28S i-rRFs upregulated in SCZ) is positively correlated with the 

mRNA cluster 6 (upregulated in SCZ; response to ions/cytokines). 

 

Differential abundance of multiple isomiRs, including let-7 and miR-29 families, likely 
causes dysregulation of their target mRNAs in mRNA clusters 2-4 
While Figure 5 shows clear wirings between sncRNA and mRNA clusters, it does not answer 

whether sncRNAs cause mRNA changes or vice-versa. However, it is possible to generate strong 

evidence of causality for isomiRs by analyzing whether their predicted targets are enriched among 

anti-correlated mRNA that are also DA. We used two independent target prediction sources: 

TarBase [54] (experimentally validated targets, mainly from high-throughput CLIP data) and 

RNA22 [55] (purely sequence-based predictions). Since TarBase provides data only for reference 

miRNAs, we predicted targets with RNA22 only for isomiRs with the same mRNA-target-

determining “seed” region as the corresponding reference miRNAs. 

 

For 790 out of 1,501 expressed isomiRs (53%), we observed a statistically significant (FDR < 

0.05) overrepresentation of TarBase experimentally validated targets among the 5% of genes with 

the most negative correlations with the isomiR (Supp. Table S9). This includes all but one (miR-

451a) DA isomiRs expressed at ≥ 1,000 RPM (Figure 2A). For RNA22 predictions, this number is 

lower (480 out of 1,501 isomiRs, 32%), with weaker enrichments (p-value < 1e-46). We thus 

focused on TarBase-derived findings (790 isomiRs and their targets) for the downstream analysis. 

 

We next analyzed whether target mRNAs that are anticorrelated with DA isomiRs tend to change 

in the opposite direction in SCZ. For this analysis, we residualized the disease status from the 

expression values, and thus, the anticorrelation does not automatically imply the opposite polarity 

of changes in disease. For 45 DA isomiRs (41 upregulated and 4 downregulated in SCZ), the 

number of DA anti-correlated target genes that changed in the opposite direction significantly 

exceeds what is expected by chance (FDR < 0.05), while there is no enrichment for co-directional 

changes for the same isomiRs (Supp. Table S10A-B). The strongest enrichment signal pertains 

to 13 isomiRs from the let-7 family, including canonical let-7b-5p, let-7c-5p, and let-7i-5p miRNAs 

with abundance ≥ 1,000 RPM (Figure 2A). Another isomiR from the same extreme abundance 
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group, miR-29a-3p|0|-1, also shows statistically significant enrichment together with related 

isomiRs from the miR-29 family. 

 

The target genes of these isomiRs are non-uniformly distributed across the mRNA clusters 2-4 

containing genes with decreased expression in SCZ (Figure 5B, Supp. Table S10C). In 

concordance with the mRNA enrichments shown in Figure 5B, several critical pathways are highly 

enriched in the downregulated target gene sets, including synaptic signaling, neurogenesis, 

behavior, memory, cognition, and others (Supp. Table S10D). 

 

DISCUSSION 
We generated and analyzed the largest collection, to date, of small RNA-seq datasets from post-

mortem brain samples of SCZ and BD cases and controls. Using a state-of-the-art read mapping 

pipeline, we annotated virtually all sncRNAs with RPM ≥ 10. More than 98% of the sncRNAs 

belong to one of four classes (Figure 1A): isomiRs (60.6%), tRFs (17.8%), rRFs (11.4%), and 

yRFs (8.3%). Each sncRNA class has its own characteristic length distribution with notable peaks 

around multiples of 11 nts (Figure 1B): isomiRs at 22 nts, tRFs and yRFs at 33 nts, and rRFs at 

44 nts. 

 

The detailed analysis of the most abundant sncRNA type, isomiRs, revealed that most of them 

are non-canonical (Supp. Figure S3A-D), mirroring our previous observations from various cell 

types and tissues [18, 28, 31, 32, 58]. A relatively small portion of isomiRs has non-canonical 

5´-ends: because these isomiRs have shifted “seed” regions, they target different sets of genes 

compared to the canonical isomiR [28]. One notable miRNA with a non-canonical 5´-end isomiR 

is miR-126-3p. It has two sets of highly abundant isomiRs: one with the canonical 5´-end and one 

with the 5´-end lacking the first nucleotide. Interestingly, we recently found the same two isomiRs 

of miR-126-3p to be abundant in megakaryocytes and platelets [31]. 

 

We also identified many highly abundant unusual tRFs that were not reported in previous large-

scale analyses [44]. Nearly half of them are tRFs with a non-templated nucleotide attached to 

their 3´-ends (Supp. Figure S4A) and unrelated to the well-known CCA addition to mature tRNAs. 

The distribution of these added nucleotides mirrors the one observed at the 3p arm of isomiRs 

(Supp. Figure S3F). In most cases, these additions occur to 5´-tRNA halves and 5´-tRFs. A second 

type of unusual tRFs is characterized by a deletion at position 6 in tRNAGluCTC or by a 

deletion/substitution at the same position in tRNAGlyCCC/GlyGCC (Supp. Figure S4B). While it is 
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conceivable that these changes may result from sequencing errors of decorated tRNA bases, we 

are not aware of any known modifications at this position. tRFs belonging to this second type 

were recently reported to be DA in syncytiotrophoblast extracellular vesicles in preeclampsia [67]. 

 

When comparing SCZ cases with controls (HBCC samples), we found 1,127 sncRNAs (Figure 

2A-E) and 1,442 mRNAs (Supp. Figure S6A) with statistically significant differences in abundance 

(FDR < 0.05). The FCs in both cases are modest, in agreement with existing studies and the 

polygenic genetic architecture of SCZ [1, 59]. When comparing BD cases with controls we find 

the same sncRNAs and mRNAs having FCs highly similar to those in SCZ: correlation between 

SCZ-vs.-control and BD-vs.-control FCs exceeds 0.9 for both sncRNAs and mRNAs (Figure 2F, 

Supp. Figure S6B). This is also concordant with existing transcriptomic and genetic studies [1, 

68]. At the same time, the absolute values of FCs are, on average, lower in BD, resulting in only 

a few sncRNAs and mRNAs that satisfy the FDR threshold of 0.05. 

 

In addition to the HBCC, we compared SCZ cases with controls in the independent MSSM brain 

bank. The two brain banks show a statistically significant correlation of FCs both for sncRNAs 

(Supp. Figure S7A) and mRNAs (Supp. Figure S7C). However, only a handful of molecules 

passed the statistical significance criteria in the MSSM samples with very limited effect sizes. To 

determine whether the attenuated DA signal is explained by the much higher average age of the 

MSSM individuals, we dichotomized the HBCC into individuals < 45 and ≥ 45 years old. Strikingly, 

most disease DA signal comes from the younger age group (Figure 4A, 4D). Moreover, changes 

in mRNAs between SCZ cases and controls are highly correlated with changes associated with 

aging – this is true both for aging signatures derived from our cohort (Figure 4B) and independent 

GTEx data (Figure 4C). However, the same correlations computed over sncRNAs are not as high, 

and they depend on the sncRNA type (Figure 4E-I). These observations agree with the existing 

model of accelerated aging induced by SCZ and BD – an effect observed with different types of 

biomarkers [69], including the recent analyses of brain sample coding transcriptomes at bulk [63-

65] and single-nucleus [70] resolution. 

 

We are aware of three studies involving small RNA-seq analysis of post-mortem brain samples 

of SCZ cases. The study by Hu et al. has the largest sample size and compared miRNA profiles 

between the post-mortem dorsolateral prefrontal cortex of 34 SCZ cases and 102 controls [71]. 

This study found only two miRNAs with elevated expression in SCZ, miR-936 and miR-3162. 

However, it did not report baseline abundances of these miRNAs and did not explicitly mention 
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the use of abundance cutoffs. The study by Ragan et al. compared sncRNAs isolated from the 

post-mortem anterior cingulate cortex of 22 SCZ cases and 22 matched controls and found no 

DA molecules [72]. Finally, the study by Liu et al. compared post-mortem amygdala samples of 

13 cases and 14 controls and found 17 DA miRNAs, with only miR-451a being among our DA 

isomiRs [73]. One possible reason that these studies found few or no DA miRNAs may be that all 

included older controls, on average, than our HBCC controls. 

 

To shed light on dependencies between DA molecules, we computed correlations between 

expression levels of all sncRNAs and mRNAs in the HBCC brain bank. We found that both 

sncRNAs and mRNAs cluster into distinct co-expression modules, mainly containing molecules 

with the same SCZ FCs sign (Figure 5). This is notable because it emerged after our explicit 

residualization of disease status and other confounders from the expression data. We also 

observed a very similar clustering when we computed correlations using only the control samples. 

Thus, the differential abundance of some gene groups in SCZ could be explained by the fact that 

these genes are tightly co-expressed in control brains and thus change in disease together as a 

single module. 

 

IsomiRs are the only sncRNA species with a well-understood mechanism of gene expression 

regulation [4]. We thus analyzed those mRNAs that were significantly anti-correlated with 

isomiRs. In most cases, we found a strong and statistically significant overrepresentation of 

experimentally validated miRNA targets among these genes (Supp. Table S9). We also observed 

another highly statistically significant trend: experimentally validated target genes that are anti-

correlated with DA isomiRs tend to change in the opposite direction in SCZ (Supp. Table S10A). 
This observation is not a trivial implication of anti-correlation because prior to correlation 

computations, we eliminated the disease status from sncRNA and mRNA abundance values. 
These sets of DA isomiR target genes belong to critical processes, including synaptic signaling, 

neurogenesis, behavior, memory, cognition, and others (Supp. Table S10C-D). Taken together, 

this constitutes strong, albeit indirect, evidence that changes in the abundances of isomiRs in 

SCZ are tightly coupled to the opposite polarity changes in their target genes, the latter being 

involved in key brain pathways. 

 

Among the isomiRs with the strongest links to their target genes are four very abundant (≥ 1,000 

RPM) ones whose abundance increases further in SCZ: let-7b-5p, let-7c-5p, let-7i-5p, and miR-

29a-3p. Despite the respective FCs being modest (see upper-right part of Figure 2A), the 
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corresponding absolute changes are substantial because of high starting abundances. The 

largest miRNA microarray study of post-mortem brain samples of SCZ cases we are aware of 

also shows the upregulation of let-7 and miR-29 families in SCZ [8]. The let-7 family is also 

implicated in neurodegenerative disorders [74, 75]. Both let-7 and miR-29 family miRNAs are 

known to be essential regulators of nervous system development and function [76-78]. 

 

Notably, other sncRNA types, especially tRFs (Figure 2B) and yRFs (Figure 2D), have DA 

molecules with higher abundances and stronger effect sizes than isomiRs. Using rigorous co-

expression analysis, we found several strong associations between the clusters comprising 

tRFs/yRFs and mRNA clusters associated with the critical nervous system and other pathways 

(Figure 5). With a few exceptions, the mode of action of tRFs and yRFs is largely unknown. 

Consequently, we could not apply computational methods to untangle the directionality of 

interactions between these sncRNAs and protein-coding genes as we did in the case of miRNAs. 

Previous studies found associations between altered tRF abundances and neurodegenerative 

disorders and ischemic stroke response [79]. 

 

One of the strongest SCZ-associated genomic loci is proximal to clustered miRNAs miR-137-3p 

and miR-2682-5p [3, 61]. Interestingly, there is a statistically significant increase in the abundance 

of isomiRs originating from these two miRNAs in SCZ samples. However, both miRNAs have low 

abundance (< 50 RPM) and weak effect sizes (FCs ≤ 0.45), suggesting little to no impact on 

downstream mRNA targets. Concordantly, genes anti-correlated with both miRNAs are not 

enriched in experimentally validated targets from TarBase. We emphasize that miRNA targeting 

is cell-type dependent [80] and, thus, our remarks apply only to the analyzed brain regions; these 

miRNAs might still have an important function in SCZ in other brain regions or cell types. 

 

One of the most unexpected findings pertains to the rearrangement of the frequencies of non-

templated isomiR nucleotides in SCZ. The strongest signal comes from post-transcriptional 

guanylation of the isomiRs’ 3´ end, which is strikingly enriched among sncRNAs with elevated 

abundance in SCZ (Figure 3A). The effect is so consistent that it can also be observed when 

analyzing all isomiRs ending in non-templated guanine across all miRNA arms (Supp. Figure S3E-

F). Guanylated isomiRs form a separate co-expression cluster (Figure 5A), meaning that the effect 

of non-templated guanine addition outweighs the effect of common transcription of sister isomiRs. 

We illustrate this phenomenon using two isomiRs from different miRNA arms located on different 

chromosomes, miR-99a-5p|0|-2(+1G) and miR-26a-5p|0|-1(+1G) (Supp. Figure S9).  Both 
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isomiRs belong to the same cluster and are highly correlated (r = 0.79, p-value = 5.8e-23). At the 

same time, correlations of the expression levels of these isomiRs with their most abundant sister 

isomiRs are much lower: r = 0.58 (p-value = 1.3e-10) between miR-99a-5p|0|-1 and miR-99a-

5p|0|-2(+1G) and r = 0.59 (p-value = 8.1e-11) between miR-26a-5p|0|0 and miR-26a-5p|0|-

1(+1G).  

 

Khudayberdiev et al. generated deep sncRNA sequencing data from nuclear and cytoplasmic 

fractions of rat cortical neurons [62]. The authors reported an overrepresentation of guanine 

nucleotides at the 3´ termini of nuclearly-enriched isomiRs. We reanalyzed these data by focusing 

on miRNAs with perfect sequence conservation between humans and rats. All but two miRNAs 

with WT+G isomiRs in human samples are also abundant in the rat samples, demonstrating the 

comparability of the two data sources. Figure 3B shows a strong, almost 10-fold enrichment of 

guanylated isomiRs in the nuclear fraction, suggesting that changes in SCZ might affect both 

abundance and cellular localization of isomiRs. Interestingly, only 22% of the WT+G isomiRs 

show significant enrichment of experimentally validated targets of the WT miRNA among anti-

correlated mRNAs, suggesting a different mode of action for these isomiRs. 

 

There are at least two potential biogenesis pathways for guanylated isomiRs and tRFs: non-

templated nucleotide addition (also called tailing) and A-to-I RNA editing. The reports on isomiR 

tailing with guanine are very scarce. To the best of our knowledge, there is only one study that 

sheds light on potential proteins involved in that process: Yang et al. showed that TENT2 partially 

contributes to the guanylation of isomiRs [27]. At the same time, TENT2 also adenylates and 

uridylates isomiRs, which does not match the direction of change of WT+A and WT+T isomiRs 

we observed, suggesting the existence of other, perhaps neuron-specific, mechanisms involved 

in isomiR tailing. We think RNA editing is an unlikely cause for the observed WT+G isomiRs since 

the reads with A-to-G mismatches in the beginning/middle of isomiRs are an order of magnitude 

fewer, and the DA signal is observed only when the last nucleotide is affected. Also, Alon et al. 

reported only 19 statistically significant miRNA editing sites in the human brain [81], while we 

observed non-templated 3´-end guanines for virtually all highly abundant miRNAs. 

 

Our analysis of non-templated nucleotides uncovered an interesting phenomenon: two isomiRs 

originating from the same miRNA precursor could behave differently in disease, in some cases 

having opposite FC signs. For example, guanylated isomiR miR-181a-5p|0|-1(+1G) significantly 

increases in abundance in SCZ, while the cytosylated miR-181a-5p|0|-2(+1C) decreases. The 
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most commonly used approach for miRNA DA analysis, which consists of using miRNA-level read 

counts, would miss most of this DA signal since opposing changes would cancel out during the 

summation of sibling isomiRs. The same applies to microarray and standard PCR-based miRNA 

analyses that cannot distinguish between individual isomiRs [82]. Notably, all three 

aforementioned small RNA-seq studies of SCZ brain samples used this miRNA-level analysis 

strategy [71-73]. We and others have already reported the critical importance of isomiR-level DA 

in cancer, COVID-19, and other contexts [31, 32, 83, 84]. Notably, this concept extends from 

isomiRs to other sncRNA types: tRFs and rRFs. For example, the longer 34-nt 5´-tRNA half from 

tRNAGluCTC is upregulated in SCZ, whereas the shorter 28-nt 5´-tRF from the same tRNA is 

downregulated. Concordantly, these two tRFs are not correlated (r = -0.09, p-value = 0.4) and 

belong to different clusters (clusters 3 and 1, respectively). We recently reported the same 

behavior of tRNAGluCTC tRFs in colon and breast cancer tissues and cell lines [57]. 
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Data availability: Raw data (FASTQ files) and processed data (read count matrices, metadata) 

are available in Synapse under synID syn63862703.  
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FIGURE CAPTIONS 
Figure 1. The abundance of sncRNAs in brain samples. (A) Within each molecule type, sncRNAs 

are ranked by mean RPM across 170 samples (rank is shown on the X-axis), and cumulative 

mean (solid line) ± standard deviation (dashed line) is shown on the Y-axis. “Other” molecules 

include rpFs and additional genomic mappings (see Methods). (B) Histograms of sncRNA lengths 

for each molecule type (% values sum up to 100% within each molecule type). IsomiRs, tRFs, 

rRFs, and yRFs include both wild-type and LD ≤ 2 molecules. 

 

Figure 2. Differential abundance of sncRNAs between SCZ cases and controls in the HBCC brain 

bank. (A-E) Volcano plots for different sncRNA types. Significantly differentially abundant 

sncRNAs (FDR < 0.05) are highlighted with color and are filled if |log2 FC| ≥ 0.4. (F) Mutual 

distribution of FCs from SCZ vs. control and BD vs. control comparisons. The diagonal dotted line 

corresponds to equal FCs (Y = X). Only molecules associated with SCZ or BD (likelihood-ratio 

test FDR < 0.05) are shown. Markers are colored and/or filled if the same FDR and FC 

thresholding criteria are met in either of the two comparisons. IsomiRs, tRFs, rRFs, and yRFs 

include both wild-type and LD ≤ 2 molecules. “Other” molecules include rpFs and additional 

genomic mappings (see Methods). 

 

Figure 3. Enrichment analysis of non-templated isomiR nucleotide additions in SCZ. (A) GSEA 

plot for SCZ vs. control comparison in the HBCC brain bank. All abundant sncRNAs are ranked 

according to the log10 p-value multiplied by the fold change sign. Vertical bars on the middle panel 

indicate the presence of an isomiR with non-templated nucleotide addition. (B) Comparison of 

nuclear and cytoplasmic abundances of non-templated isomiRs in rat primary cortical neurons 

[62]. Non-templated isomiRs of 35 selected miRNA arms are shown (see main text for selection 

criteria). The X and Y axes show the ratio of the number of reads mapped to particular non-

templated isomiR and the whole miRNA arm. The dotted diagonal line corresponds to equal FCs 

(Y = X). 

 

Figure 4. Age-dependent differential mRNA and sncRNA abundance between SCZ cases and 

controls (HBCC brain bank). (A, D) The number of significantly differentially abundant 

mRNAs/sncRNAs (FDR < 0.05) between age-restricted SCZ vs. control comparisons (horizontal 

dimension) and condition-restricted age ≥ 45 vs. age < 45 comparisons (vertical dimension). To 

remove the effect of sample size on the reported numbers, we show median numbers of 

differentially abundant molecules derived from 100 random down-samplings (see Methods). (B, 
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E-I) Mutual distribution of FCs from SCZ vs. control and age ≥ 45 vs. age < 45 comparisons. The 

diagonal dotted line corresponds to equal FCs (Y = X). Only molecules associated with disease 

status or age group (likelihood-ratio test FDR < 0.05) are shown. Significantly differentially 

abundant mRNAs/sncRNAs are highlighted with color if FDR < 0.05 in either of the two 

comparisons. Highlighted markers are filled if |log2 FC| ≥ 0.4 in either of the two comparisons. 

IsomiRs, tRFs, rRFs, and yRFs include both wild-type and LD ≤ 2 molecules. “Other” molecules 

include rpFs and additional genomic mappings (see Methods). (C) GSEA of differentially 

abundant mRNAs in SCZ in the HBCC brain bank with the GTEx aging signature as a reference 

gene set. 

 

Figure 5. Co-expression analysis of differentially abundant sncRNAs (A) and mRNAs (B) between 

SCZ cases and controls in the HBCC brain bank. Correlations are computed over all HBCC 

samples with known and hidden confounders regressed out from the abundance levels (see 

Methods). Only significantly differentially abundant sncRNAs/mRNAs are included (FDR < 0.05). 

Annotations of mRNA clusters are based on Gene Ontology enrichment analysis. Hierarchical 

clustering is conducted with Ward’s linkage. Arrows between sncRNA and mRNA clusters show 

correlations between eigen-molecules below -0.5 or above 0.5. IsomiRs, tRFs, rRFs, and yRFs 

include both wild-type and LD ≤ 2 molecules. “Other” molecules include rpFs and additional 

genomic mappings (see Methods).  
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SUPPLEMENTAL FIGURE CAPTIONS 
Supp. Figure S1. The relationships between clinical and demographical variables. (A-B) 

Spearman’s correlation matrices for key variables in the HBCC and MSSM brain banks. * p-value 

≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001. For two binary variables (BD, SCZ, sex), p-values 

were computed using Fisher’s exact test. For two continuous variables (age, PMI, RIN sncRNA, 

RIN mRNA), p-values were computed using Spearman’s correlation test. For a binary and a 

continuous variable, p-values were computed using Mann-Whitney’s U-test. A positive correlation 

with sex means higher values among males. (C-D) Multivariable linear regression coefficients and 

95% confidence intervals with RIN as a dependent variable in the HBCC and MSSM brain banks. 

 

Supp. Figure S2. An illustration of how a confounder variable can lead to a false positive 

correlation. The plot shows the joint distribution of expression levels of two genes located on the 

Y chromosome (all samples from the HBCC brain bank). Sex variable creates a spurious positive 

correlation between expression levels, while the actual correlation across male samples is 

negative. 

 

Supp. Figure S3. Abundances of different isomiR types. (A-D) The percentage of canonical and 

non-canonical isomiRs is shown separately for the four cleavage positions of precursor miRNA 

hairpins by DROSHA and DICER. The percentages are computed over all isomiRs originating 

from 5p miRNA arms for panels (A, C) and from 3p miRNAs for panels (B, D). (E-F) The 

percentage of different non-templated nucleotides at 3´-ends of isomiRs. The shown p-values are 

computed from a multivariable linear regression model adjusting for sex, age, RIN, and brain 

bank. The miRNA hairpin was created at BioRender.com. 

 

Supp. Figure S4. Abundances of tRFs with mismatches. (A) The percentage of different non-

templated nucleotides attached to the 3´-ends of the known tRFs. The shown p-value is computed 

from a multivariable linear regression model adjusting for sex, age, RIN, and brain bank. (B) Highly 

abundant tRFs produced from tRNAGluCTC and tRNAGlyCCC/GlyGCC with internal mismatches at 

position 6. The bold nucleotides show the sequences of wild-type tRNAs. We show the 3 most 

abundant fragments and their mean RPMs for each type of mismatch. 

 

Supp. Figure S5. Distributions of selected DA isomiRs (A) and tRFs (B) in SCZ cases and 

controls in the HBCC brain bank. All molecules with FDR < 0.05 and median abundance above 

1,000 RPM in either cases or controls are shown. 
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Supp. Figure S6. Differential abundance of mRNAs between SCZ cases and controls in the 

HBCC brain bank. (A) Volcano plot. Significantly differentially abundant sncRNAs (FDR < 0.05) 

are highlighted with green and are filled if |log2 FC| ≥ 0.4. (B) Mutual distribution of FCs from SCZ 

vs. control and BD vs. control comparisons. The diagonal dotted line corresponds to equal FCs 

(Y = X). Only mRNAs associated with SCZ or BD (likelihood-ratio test FDR < 0.05) are shown. 

Markers are colored and/or filled if the same FDR and FC thresholding criteria are met in either 

of the two comparisons. (C-E) GSEA with (C) the reference PsychENCODE set of differentially 

abundant mRNAs; (D-E) the Gene Ontology biological process (BP) and cellular component (CC) 

gene sets. NES stands for normalized enrichment score. Only non-redundant pathways selected 

by the “collapsePathways” function from fgsea are shown. 

 

Supp. Figure S7. Replication of the HBCC-derived findings in the MSSM brain bank. All abundant 

sncRNAs (A-B) or mRNAs (C-D) are ranked according to the log10 p-value multiplied by the fold 

change sign of the SCZ vs. control comparison in the MSSM. The following sets were used as 

references: (A, C) sncRNAs/mRNAs significantly differentially abundant in SCZ (FDR < 0.05) in 

the HBCC; (B) different non-templated isomiRs; (D) the PsychENCODE set of differentially 

abundant mRNAs in SCZ. 

 

Supp. Figure S8. Age-dependent differential mRNA and sncRNA abundance between BD cases 

and controls (HBCC brain bank). (A, D) The number of significantly differentially abundant 

mRNAs/sncRNAs (FDR < 0.05) between age-restricted BD vs. control comparisons (horizontal 

dimension) and condition-restricted age ≥ 45 vs. age < 45 comparisons (vertical dimension). To 

remove the effect of sample size on the reported numbers, we show median numbers of 

differentially abundant molecules derived from 100 random down-samplings (see Methods). (B, 

E-I) Mutual distribution of FCs from BD vs. control and age ≥ 45 vs. age < 45 comparisons. The 

diagonal dotted line corresponds to equal FCs (Y = X). Only molecules associated with disease 

status or age group (likelihood-ratio test FDR < 0.05) are shown. Significantly differentially 

abundant mRNAs/sncRNAs are highlighted with color if FDR < 0.05 in either of the two 

comparisons. Highlighted markers are filled if |log2 FC| ≥ 0.4 in either of the two comparisons. 

IsomiRs, tRFs, rRFs, and yRFs include both wild-type and LD ≤ 2 molecules. “Other” molecules 

include rpFs and additional genomic mappings (see Methods). (C) GSEA of differentially 

abundant mRNAs in BD in the HBCC brain bank with the GTEx aging signature as a reference 

gene set. 
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Supp. Figure S9. Pearson correlations between different isomiRs of miR-99a-5p and miR-26a-

5p. Guanylated isomiRs originating from different miRNAs located on different chromosomes (top 

row) show higher correlation with each other than with their most abundant sibling isomiRs from 

the same miRNA (bottom row).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 

1. Gandal, M.J., et al., Transcriptome-wide isoform-level dysregulation in ASD, 
schizophrenia, and bipolar disorder. Science, 2018. 362(6420). 

2. Hoffman, G.E., et al., CommonMind Consortium provides transcriptomic and epigenomic 
data for Schizophrenia and Bipolar Disorder. Sci Data, 2019. 6(1): p. 180. 

3. Trubetskoy, V., et al., Mapping genomic loci implicates genes and synaptic biology in 
schizophrenia. Nature, 2022. 604(7906): p. 502-508. 

4. Rigoutsos, I., E. Londin, and Y. Kirino, Short RNA regulators: the past, the present, the 
future, and implications for precision medicine and health disparities. Curr Opin 
Biotechnol, 2019. 58: p. 202-210. 

5. Nemeth, K., et al., Non-coding RNAs in disease: from mechanisms to therapeutics. Nat 
Rev Genet, 2024. 25(3): p. 211-232. 

6. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): 
p. 215-33. 

7. Perkins, D.O., et al., microRNA expression in the prefrontal cortex of individuals with 
schizophrenia and schizoaffective disorder. Genome Biol, 2007. 8(2): p. R27. 

8. Beveridge, N.J., et al., Schizophrenia is associated with an increase in cortical 
microRNA biogenesis. Mol Psychiatry, 2010. 15(12): p. 1176-89. 

9. Kim, A.H., et al., MicroRNA expression profiling in the prefrontal cortex of individuals 
affected with schizophrenia and bipolar disorders. Schizophr Res, 2010. 124(1-3): p. 
183-91. 

10. Moreau, M.P., et al., Altered microRNA expression profiles in postmortem brain samples 
from individuals with schizophrenia and bipolar disorder. Biol Psychiatry, 2011. 69(2): p. 
188-93. 

11. Pietersen, C.Y., et al., Molecular profiles of pyramidal neurons in the superior temporal 
cortex in schizophrenia. J Neurogenet, 2014. 28(1-2): p. 53-69. 

12. Santarelli, D.M., et al., Upregulation of dicer and microRNA expression in the 
dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry, 2011. 
69(2): p. 180-7. 

13. Smalheiser, N.R., et al., Expression of microRNAs and other small RNAs in prefrontal 
cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One, 2014. 9(1): 
p. e86469. 

14. Martinez, B. and P.V. Peplow, MicroRNAs as potential biomarkers for diagnosis of 
schizophrenia and influence of antipsychotic treatment. Neural Regen Res, 2024. 19(7): 
p. 1523-1531. 

15. Smigielski, L., et al., Epigenetic mechanisms in schizophrenia and other psychotic 
disorders: a systematic review of empirical human findings. Mol Psychiatry, 2020. 25(8): 
p. 1718-1748. 

16. Mestdagh, P., et al., Evaluation of quantitative miRNA expression platforms in the 
microRNA quality control (miRQC) study. Nat Methods, 2014. 11(8): p. 809-15. 

17. Ibing, S., et al., On the impact of batch effect correction in TCGA isomiR expression 
data. NAR Cancer, 2021. 3(1): p. zcab007. 

18. Loher, P., E.R. Londin, and I. Rigoutsos, IsomiR expression profiles in human 
lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget, 2014. 
5(18): p. 8790-802. 

19. Fehlmann, T., et al., Common diseases alter the physiological age-related blood 
microRNA profile. Nat Commun, 2020. 11(1): p. 5958. 

20. Ziats, M.N. and O.M. Rennert, Identification of differentially expressed microRNAs 
across the developing human brain. Mol Psychiatry, 2014. 19(7): p. 848-52. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


21. Benesova, S., M. Kubista, and L. Valihrach, Small RNA-Sequencing: Approaches and 
Considerations for miRNA Analysis. Diagnostics (Basel), 2021. 11(6). 

22. Nersisyan, S., et al., A Post-Processing Algorithm for miRNA Microarray Data. Int J Mol 
Sci, 2020. 21(4). 

23. Evans, C., J. Hardin, and D.M. Stoebel, Selecting between-sample RNA-Seq 
normalization methods from the perspective of their assumptions. Brief Bioinform, 2018. 
19(5): p. 776-792. 

24. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling 
and discovery in human embryonic stem cells. Genome Res, 2008. 18(4): p. 610-21. 

25. Kozomara, A., M. Birgaoanu, and S. Griffiths-Jones, miRBase: from microRNA 
sequences to function. Nucleic Acids Res, 2019. 47(D1): p. D155-D162. 

26. Tomasello, L., et al., The MicroRNA Family Gets Wider: The IsomiRs Classification and 
Role. Front Cell Dev Biol, 2021. 9: p. 668648. 

27. Yang, A., et al., TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and 
abundance. Nat Commun, 2022. 13(1): p. 5260. 

28. Telonis, A.G., et al., Beyond the one-locus-one-miRNA paradigm: microRNA isoforms 
enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res, 2015. 
43(19): p. 9158-75. 

29. Yu, F., et al., Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids 
Res, 2017. 45(19): p. 11371-11385. 

30. Cherlin, T., et al., The subcellular distribution of miRNA isoforms, tRNA-derived 
fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type. 
BMC Biol, 2024. 22(1): p. 205. 

31. Nersisyan, S., et al., Characterization of all small RNAs in and comparisons across 
cultured megakaryocytes and platelets of healthy individuals and COVID-19 patients. J 
Thromb Haemost, 2023. 21(11): p. 3252-3267. 

32. Telonis, A.G., et al., Knowledge about the presence or absence of miRNA isoforms 
(isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids 
Res, 2017. 45(6): p. 2973-2985. 

33. Magee, R., E. Londin, and I. Rigoutsos, TRNA-derived fragments as sex-dependent 
circulating candidate biomarkers for Parkinson's disease. Parkinsonism Relat Disord, 
2019. 65: p. 203-209. 

34. Telonis, A.G., et al., Dissecting tRNA-derived fragment complexities using personalized 
transcriptomes reveals novel fragment classes and unexpected dependencies. 
Oncotarget, 2015. 6(28): p. 24797-822. 

35. Cherlin, T., et al., Ribosomal RNA fragmentation into short RNAs (rRFs) is modulated in 
a sex- and population of origin-specific manner. BMC Biol, 2020. 18(1): p. 38. 

36. Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing 
reads. 2011, 2011. 17(1): p. 3. 

37. Loher, P., et al., IsoMiRmap: fast, deterministic and exhaustive mining of isomiRs from 
short RNA-seq datasets. Bioinformatics, 2021. 37(13): p. 1828-1838. 

38. Loher, P., A.G. Telonis, and I. Rigoutsos, MINTmap: fast and exhaustive profiling of 
nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep, 2017. 7: 
p. 41184. 

39. Pliatsika, V., et al., MINRbase: a comprehensive database of nuclear- and mitochondrial-
ribosomal-RNA-derived fragments (rRFs). Nucleic Acids Res, 2024. 52(D1): p. D229-
D238. 

40. Tarailo-Graovac, M. and N. Chen, Using RepeatMasker to identify repetitive elements in 
genomic sequences. Curr Protoc Bioinformatics, 2009. Chapter 4: p. 4 10 1-4 10 14. 

41. Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA sequences 
to the human genome. Genome Biol, 2009. 10(3): p. R25. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics, 2010. 26(6): p. 841-2. 

43. Pliatsika, V., et al., MINTbase: a framework for the interactive exploration of 
mitochondrial and nuclear tRNA fragments. Bioinformatics, 2016. 32(16): p. 2481-9. 

44. Pliatsika, V., et al., MINTbase v2.0: a comprehensive database for tRNA-derived 
fragments that includes nuclear and mitochondrial fragments from all The Cancer 
Genome Atlas projects. Nucleic Acids Res, 2018. 46(D1): p. D152-D159. 

45. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550. 

46. Highet, B., et al., RNA Quality in Post-mortem Human Brain Tissue Is Affected by 
Alzheimer's Disease. Front Mol Neurosci, 2021. 14: p. 780352. 

47. Broniscer, A., et al., Prospective collection of tissue samples at autopsy in children with 
diffuse intrinsic pontine glioma. Cancer, 2010. 116(19): p. 4632-7. 

48. White, K., et al., Effect of Postmortem Interval and Years in Storage on RNA Quality of 
Tissue at a Repository of the NIH NeuroBioBank. Biopreserv Biobank, 2018. 16(2): p. 
148-157. 

49. Leek, J.T., et al., The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics, 2012. 28(6): p. 882-3. 

50. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): 
p. 15545-50. 

51. Liberzon, A., et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 
27(12): p. 1739-40. 

52. Fang, Z., X. Liu, and G. Peltz, GSEApy: a comprehensive package for performing gene 
set enrichment analysis in Python. Bioinformatics, 2023. 39(1). 

53. Parsana, P., et al., Addressing confounding artifacts in reconstruction of gene co-
expression networks. Genome Biol, 2019. 20(1): p. 94. 

54. Skoufos, G., et al., TarBase-v9.0 extends experimentally supported miRNA-gene 
interactions to cell-types and virally encoded miRNAs. Nucleic Acids Res, 2024. 52(D1): 
p. D304-D310. 

55. Miranda, K.C., et al., A pattern-based method for the identification of MicroRNA binding 
sites and their corresponding heteroduplexes. Cell, 2006. 126(6): p. 1203-17. 

56. Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. 
Nat Methods, 2020. 17(3): p. 261-272. 

57. Akins, R.B., et al., The Typical tRNA Co-Expresses Multiple 5' tRNA Halves Whose 
Sequences and Abundances Depend on Isodecoder and Isoacceptor and Change with 
Tissue Type, Cell Type, and Disease. Noncoding RNA, 2023. 9(6). 

58. Zhiyanov, A., S. Nersisyan, and A. Tonevitsky, Hairpin sequence and structure is 
associated with features of isomiR biogenesis. RNA Biol, 2021. 18(sup1): p. 430-438. 

59. Fromer, M., et al., Gene expression elucidates functional impact of polygenic risk for 
schizophrenia. Nat Neurosci, 2016. 19(11): p. 1442-1453. 

60. Shaham, L., et al., MiR-125 in normal and malignant hematopoiesis. Leukemia, 2012. 
26(9): p. 2011-8. 

61. Yin, J., et al., miR-137: a new player in schizophrenia. Int J Mol Sci, 2014. 15(2): p. 
3262-71. 

62. Khudayberdiev, S.A., et al., A comprehensive characterization of the nuclear microRNA 
repertoire of post-mitotic neurons. Front Mol Neurosci, 2013. 6: p. 43. 

63. Sabunciyan, S., Gene Expression Profiles Associated with Brain Aging are Altered in 
Schizophrenia. Sci Rep, 2019. 9(1): p. 5896. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


64. Arakelyan, A., et al., Temporal changes of gene expression in health, schizophrenia, 
bipolar disorder, and major depressive disorder. Schizophrenia (Heidelb), 2024. 10(1): p. 
19. 

65. Lin, C.W., et al., Older molecular brain age in severe mental illness. Mol Psychiatry, 
2021. 26(7): p. 3646-3656. 

66. Evangelista, J.E., et al., SigCom LINCS: data and metadata search engine for a million 
gene expression signatures. Nucleic Acids Res, 2022. 50(W1): p. W697-W709. 

67. Cooke, W.R., et al., Differential 5'-tRNA Fragment Expression in Circulating 
Preeclampsia Syncytiotrophoblast Vesicles Drives Macrophage Inflammation. 
Hypertension, 2024. 81(4): p. 876-886. 

68. Gandal, M.J., et al., Shared molecular neuropathology across major psychiatric 
disorders parallels polygenic overlap. Science, 2018. 359(6376): p. 693-697. 

69. Nguyen, T.T., L.T. Eyler, and D.V. Jeste, Systemic Biomarkers of Accelerated Aging in 
Schizophrenia: A Critical Review and Future Directions. Schizophr Bull, 2018. 44(2): p. 
398-408. 

70. Ling, E., et al., A concerted neuron-astrocyte program declines in ageing and 
schizophrenia. Nature, 2024. 627(8004): p. 604-611. 

71. Hu, Z., et al., Temporal dynamics of miRNAs in human DLPFC and its association with 
miRNA dysregulation in schizophrenia. Transl Psychiatry, 2019. 9(1): p. 196. 

72. Ragan, C., et al., Small non-coding RNA expression from anterior cingulate cortex in 
schizophrenia shows sex specific regulation. Schizophr Res, 2017. 183: p. 82-87. 

73. Liu, Y., et al., Non-coding RNA dysregulation in the amygdala region of schizophrenia 
patients contributes to the pathogenesis of the disease. Transl Psychiatry, 2018. 8(1): p. 
44. 

74. Shamsuzzama, et al., Role of MicroRNA Let-7 in Modulating Multifactorial Aspect of 
Neurodegenerative Diseases: an Overview. Mol Neurobiol, 2016. 53(5): p. 2787-2793. 

75. Lehmann, S.M., et al., An unconventional role for miRNA: let-7 activates Toll-like 
receptor 7 and causes neurodegeneration. Nat Neurosci, 2012. 15(6): p. 827-35. 

76. Bian, S., T.L. Xu, and T. Sun, Tuning the cell fate of neurons and glia by microRNAs. 
Curr Opin Neurobiol, 2013. 23(6): p. 928-34. 

77. McGowan, H., et al., hsa-let-7c miRNA Regulates Synaptic and Neuronal Function in 
Human Neurons. Front Synaptic Neurosci, 2018. 10: p. 19. 

78. Swahari, V., et al., MicroRNA-29 is an essential regulator of brain maturation through 
regulation of CH methylation. Cell Rep, 2021. 35(1): p. 108946. 

79. Blaze, J. and S. Akbarian, The tRNA regulome in neurodevelopmental and 
neuropsychiatric disease. Mol Psychiatry, 2022. 27(8): p. 3204-3213. 

80. Clark, P.M., et al., Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue 
types. Sci Rep, 2014. 4: p. 5947. 

81. Alon, S., et al., Systematic identification of edited microRNAs in the human brain. 
Genome Res, 2012. 22(8): p. 1533-40. 

82. Magee, R., et al., Assessment of isomiR Discrimination Using Commercial qPCR 
Methods. Noncoding RNA, 2017. 3(2). 

83. Broseghini, E., et al., MicroRNA Isoforms Contribution to Melanoma Pathogenesis. 
Noncoding RNA, 2021. 7(4). 

84. Giuliani, A., et al., Long-term exposure of human endothelial cells to metformin 
modulates miRNAs and isomiRs. Sci Rep, 2020. 10(1): p. 21782. 

 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S8
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supp. Figure S9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.24.630254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630254
http://creativecommons.org/licenses/by-nc-nd/4.0/

