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Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the
dysregulated host response to an infection. Sepsis, especially septic shock and multiple
organ dysfunction is a medical emergency associated with high morbidity, high mortality,
and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a
key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis
based on their heterogeneous characteristics, complex organ/tissue-specific patterns in
the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of
pathogenic microbiology, and even different types of laboratory research models and
clinical research methods. In the context of sepsis, Tregs may be considered both angels
and demons. We propose that the symptoms and signs of sepsis can be attenuated by
regulating Tregs. This review summarizes the controversial roles and Treg checkpoints
in sepsis.
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INTRODUCTION

A study of the global burden of disease from 1990 to 2017 showed that an estimated 48.9 million
(38.9-62.9) sepsis cases were recorded globally and 11.0 million (10.1-12.0) sepsis-related deaths
were reported in 2017, representing 19.7% (18.2-21.4) of global deaths (1). In China, one-fifth of
patients admitted to intensive care units (ICU) have sepsis and their 90-day mortality rate is 35.5%.
It is estimated that the annual medical costs of the 230,000 septic patients admitted to China’s ICUs
are about US $4.6 billion, which is a huge medical and social burden (2). In 2015, over 1.9 million
deaths occurred in 605 disease-surveillance points in mainland China, and the standardized sepsis-
related mortality incidence was 66.7 deaths per 100,000 population (3). Despite the 37% (11.8-54.5)
decrease in age-standardized sepsis and the 58% (47.7-57.5) decrease in mortality from 1990 to
2017, aggressive infection source control, early appropriate antibiotic treatment, titration,
compression therapy, and improved organ support measures, sepsis remains one of the major
causes of global mortality (1–7).

Regulatory T cells (Tregs) are a subset of CD4+ T lymphocytes with negative
immunomodulatory functions. They maintain peripheral immune tolerance to control immune
responses to prevent exaggerated responses to infections and harmless antigens, and prevent
autoimmunity. Due to the extensive regulatory role that Tregs play in the immune system, they have
considerable potential as treatment for various diseases (8–10). The discovery that forkhead box P3
org February 2022 | Volume 13 | Article 8292101
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(Foxp3) is a key transcription factor in the differentiation and
function of Tregs has multiple implications for understanding
how the immune system functions and for developing
therapeutic interventions for autoimmune diseases, infectious
diseases, and malignancies (11–13).

Over the past two decades, Tregs have been a focus in sepsis-
induced immune-inflammatory dysfunction research and the
hotspot strategy in immunotherapy and checkpoint inhibition
(14, 15). In sepsis, reduced T cell function is associated with
increased expression of Foxp3 (16–18). CD4+ T helper 17 cells
(Th17) represent the pro-inflammatory subpopulation, while
Tregs promote anti-inflammatory effects (19–22). This review
explores the current controversial, and sometimes conflicting,
conclusions about Tregs in the pathophysiology of sepsis. Both
laboratory and clinical research methods and models need to be
considered to begin to understand the precise role of Tregs
throughout the stages of sepsis (Figure 1).
SEPSIS

Research on the epidemiology, prevention, and management of
sepsis is an important topic for critical care medicine, surgery,
and anesthesiology, where clarification of the complex
pathophysiological mechanism of sepsis is a fundamental
problem (14, 23, 24). Since 1992, the definitions of sepsis,
Frontiers in Immunology | www.frontiersin.org 2
severe sepsis, and septic shock, as well as associated clinical
and laboratory studies have relied on the presence of infection
and the characteristics of systemic inflammatory response
syndrome (SIRS) (1, 24–28). However, efforts to inhibit this
hyper-inflammatory response syndrome by blocking pro-
inflammatory cytokines, such as interleukin (IL)-1b and tumor
necrosis factor (TNF)-a, ultimately fail to yield survival benefits
(26, 27). Physicians have emphasized the evaluation of sepsis-
induced organ dysfunction when they conduct the diagnosis and
treatment of sepsis, especially based on the sequential (sepsis-
related) organ failure assessment (SOFA), national early warning
score and modified early warning score, rather than quick SOFA
(qSOFA) (4–6, 24, 28–32).

Antagon i sm be tween the hos t and pa thogen i c
microorganisms is a complex pathophysiological reaction:
pathogens seek an advantage by incapacitating various aspects
of host defenses while the host seeks to control the bacterial
invasion and initiate repair of injured tissues (33, 34) (Figure 2).
Compared with Sepsis 3.0 criteria, the definition of Sepsis 2.0 and
1.0, as well as guidelines for the diagnosis and treatment of sepsis,
focus more on pathophysiological mechanisms (4, 25, 26, 29, 35).
The first three days of sepsis are defined as the early stage; in
these cases, more than 80% of patients first seek emergency
medicine according to their clinical manifestations of the
biological systemic immune-inflammatory response (26, 36–
43). As sepsis management techniques continue to improve,
FIGURE 1 | Factors that lead to the controversy surrounding the role of regulatory T cells in sepsis.
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most patients survive the SIRS-induced “cytokine storm” in the
early stage of sepsis and begin the late stage dominated by
compensatory anti-inflammatory response syndrome (CARS)
(44–46). Compelling experimental and clinical evidence has
indicated that SIRS and CARS occur early and simultaneously
in sepsis, and immunosuppression may persist for months or
even longer from the onset of sepsis (4, 15, 26, 45–51).
Importantly, immunosuppression is the cause of such
aggravation, which increases the chance of secondary
infections and viral activation. This complicates multiple organ
dysfunction syndromes (MODS), extends hospital length of stay,
and may even leads to death (15, 45, 46, 49).

Approximately 60-70% of septic deaths occur in the late stage
(≥3 days) and most deaths were associated with ICU-acquired
complications, including nosocomial infections (52). T cell
apoptosis and dysfunction contributes to sepsis-induced
immunosuppression (15, 26, 46, 53, 54). Intervention
strategies, such as anti-programmed cell death (PD)-1/PD-L1
mAb, blocking cytotoxic T lymphocyte antigen (CTLA)-4, and
blocking 2B4, have improved survival in experimental models of
Frontiers in Immunology | www.frontiersin.org 3
sepsis and recent clinical trials through improved T cell-induced
immunosuppression (46, 55–58). The degree of sepsis-induced
inflammation, including the level of immunosuppression, is
defined by specific host factors (such as age, gender,
alcoholism, repeated nosocomial infection, frequency in
hospital, chronic comorbidities, immunosuppressant use,
malignant tumor, site of infection, splenectomy, trauma, and
stress state) (59–66), pathogen status (such as multiple drug-
resistant organisms, malaria, SARS-CoV-2) (7, 26, 67, 68), and
the duration of sepsis (6, 28, 35, 44, 46, 61, 69, 70).

TREG HETEROGENEITY IN SEPSIS

Combined single-cell, TCR, and other analyses of Tregs and
conventional CD4+Foxp3– T cells (Tconv) demonstrate that
Tregs are highly heterogeneous cells in homeostasis and disease
(71–73). Treg cells can be either thymus-derived or peripherally
induced by naive CD+ T cells. Phenotypically, Tregs are identified
by markers they possess such as the transcriptional regulator
Forkhead box (Foxp3). Based on the expression levels of Foxp3,
FIGURE 2 | The antagonism between the host and pathogenic microorganisms. The spread of pathogens, especially Gram-negative bacteria, and their products
[such as lipopolysaccharide (LPS), etc.] causes systemic inflammatory response syndrome (SIRS), which leads to multiple organ dysfunction syndromes (MODS) and
shock, and even death. However, surviving patients suffer from a stage of compensatory anti-inflammatory response syndrome (CARS), especially
immunosuppression, and experience a long-term immune dysfunction called immuno-paralysis. And they are more susceptible to secondary infections, increased
viral activation, and reduced 5-year survival rate, compared to those who do not have sepsis.
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Tregs can be either resting Tregs with weak inhibitory potential,
activated Tregs with strong inhibitory potential, or cytokine
secreting non-suppressive Tregs also called effector Tregs (74).
Sepsis influences the heterogeneous characteristics of Tregs from
the aspects of percentage (22, 74), absolute number (67, 75),
phenotypes (15, 47, 50, 58, 75–79), cytokine and chemokine
secretion (80–82), and stability (12, 13, 60) (Tables 1–4).
Coordination between the innate and adaptive immune systems
plays a crucial role in the host’s responses to infection. Even after
sepsis recovery, the mechanism and cellular characteristics of the
immune system change due to the different characteristics of host
immune and pathogen status (23, 59–65, 84, 105, 120, 121).

Over the past decade, evidence from many compelling
experiments and clinical trials indicates that sepsis increases the
heterogeneous characteristics of Tregs. They act on both the innate
and adaptive immune systems, dampening immune functions,
causing immuno-paralysis, and eventually leading to MODS and
death in sepsis (14, 18, 122–125). Intervention strategies (Tables 3
and 4), such as human recombinant cytokines (IL-15 and IL-36)
(59, 101), blocking phenotypes or chemokines [neuropilin (Nrp)-
1, CTLA-4, lymphocyte activation gene (LAG)-3, and chemokine
(C-X-C motif) ligand (CXCL) 4)] (50, 58, 77, 82), nutrients
(glutamine) (107), inhibiting molecules [sema3A, tissue-
nonspecific alkaline phosphatase (TNAP), Sirtuin1, P2Y12,
COX-2, and poly ADP-ribose polymerase (PARP)] (48, 51, 102,
111–113), as well as even clinical therapeutics (high-volume
hemofiltration, immunoglobulin, fresh frozen plasma, stem
cells, and ulinastatin) (41, 114, 115, 117, 118) and traditional
Chinese medicine (TCM) (electroacupuncture and tanshinone
IIA) (103, 106), can increase the chance of survival by
inhibiting the heterogeneous characteristics of Treg-induced
immunosuppression. Alternatively, other studies have shown
improved outcomes in sepsis by increasing the heterogeneous
characteristics of Tregs to inhibit sepsis-induced SIRS through
intervention strategies such as human recombinant cytokines (IL-
38 and IL-7) (96, 97), blocking phenotypes or cytokines (CD28
and IL-3) (81, 95), nutrients (arginine and fiber cellulose) (108,
109), and others (bilirubin, ITK inhibitor, miR-126, maresin1,
excretory-secretory products of Trichinella spiralis adult worms,
and adipose-derived mesenchymal stem cell-derived exosomes)
(19, 20, 70, 98, 99, 116), as well as even clinical therapeutics
(enteral nutrition and pre-and post-dilution during continuous
veno-venous hemofiltration) (22, 42, 119) and TCM (baicalin,
rhubarb, Xuebijing injection, and curcumin) (21, 100, 104, 105).
Establishment of sepsis models such as the “memory mouse” (57,
95), “two- or three-hit mouse” (70, 118), and “gene recombination
mouse”models (78, 79, 94) have begun to shed light on additional
heterogeneous immune characteristics in sepsis, including
the presence of IL-10+ regulatory B cells (Bregs) and
lipopolysaccharide-responsive beige-like anchor protein (LRBA)-
deficient patients (97, 126, 127).
TREG CHECKPOINTS IN SEPSIS

Multiple co-stimulatory molecules (CD28, CD27, OX40, and 4-
1BB) (128–130) and co-inhibitory receptors [B− and T−lymphocyte
Frontiers in Immunology | www.frontiersin.org 4
attenuator (BTLA), T cell immunoglobulin and mucin domain-
containing-3 (TIM-3), CTLA-4, T cell immunoreceptor with
immunoglobulin and ITIM domains (TIGIT), LAG-3, PD-1, and
Nrp-12] (15, 50, 57, 77, 93, 131) that transmit various secondary
signals play a pivotal role in the heterogeneous characteristics of
Tregs and may contribute to Tregs-induced dysfunction of the
whole immune system in sepsis, especially imbalanced Tregs/
Tconvs (15, 74–77, 83, 132, 133). Although the innate immune
system is dominant in the early stage of sepsis, Tregs are thought to
be the link between the innate and adaptive immune systems
(37, 40).

The percentage of Tregs, OX40+ Tregs, and 4-1BB+ Tconvs
were higher in the early stage of CAP-associated septic patients.
The percentage of CD4+CD27+, CD4+CD28+, and CD4+OX40
+ CD27-CD28- T cells were positively correlated with SOFA and
predicted 28-day mortality, respectively (40). In addition, these
data indicated that imbalanced expression of OX40 and 4-1BB
may contribute to evaluate the imbalance of Tregs/Tconvs. The
absolute number of CD4+TIM-3+, CD4+PD-1+, and CD4
+CTLA-4+ T cells were positively correlated with the severity
of sepsis, especially CD4+PD-1+ T cells, which may be a risk
factor for sepsis (93). BTLA is a co-inhibitory receptor that is
constitutively expressed on IL-10+Tregs, which can effectively
inhibit the function of CD4+ T cells (15). BTLA expression on
Tregs remained high in patients with sepsis, compared to healthy
controls from day 1 to 7, especially in non-survivors (75).
GPR174, a member of the G-protein-coupled receptor family,
plays a negative role in the development and functionality of
Tregs which is highly expressed on the surface of Tregs in the
early stages of sepsis and closely associated with adverse sepsis
outcomes (79). A decrease of Human Leukocyte Antigen‐DR
(HLA‐DR) expression on monocytes has proved to be a reliable
indicator of immunosuppression in sepsis (37, 41, 60). From day
1 to 28 after sepsis diagnosis, both Foxp3 and RORC, the specific
transcription factor of Tregs and Th17 cells, respectively, were
significantly more highly expressed in survivors than in non-
survivors. The lack of a linear correlation with HLA-DR may be
due to the influence of sample size and other patient-specific
factors (60). Thymus Stromal Lymphopoietin (TSLP) has been
identified as a crucial inflammatory cytokine in immune
homeostasis and promoted Tregs differentiation (134). The
percentage of IL-10+ Tregs significantly increased in septic
patients with high TSLP levels (80). A comprehensive study on
the expression of co-stimulatory molecules and co-inhibitory
receptors in different stages of sepsis induced Tregs would
contribute to the systematic understanding of Tregs in sepsis
and help people identify the most effective immune checkpoints
for Tregs.
HOST-DEPENDENT TREG PATTERNS
IN SEPSIS

Compelling experimental and clinical evidence has indicated that
sepsis is a multi-dimensional heterogeneous syndrome, which is
reflected in the host’s variable immune responses (23, 135, 136).
February 2022 | Volume 13 | Article 829210
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TABLE 1 | Observational studies using animal models focused on the characteristics of Tregs in sepsis.
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Observational
study

Species Model Observation time Specimen
Source

Tregs Immuno
characte

He, et al. (23) Mouse Recurrent sepsis (Three
LPS stimulations, once
every 5 ds)

5 ds after the last LPS
injection

Spleens
Lung

Percentage and absolute
number↑

percentage and
CD4+ T cells↓
Percentage of C
CD69 and CD28
cells↓
PD-1 and Tim-3
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stimulations)
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LPS injection

Percentage↑ Percentage and
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hs↓
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cells↑

Gaborit, et al. (83) Mouse Pseudomonas aeruginosa
induced “two-hit” model

Day 3 for T cell
phenotype
Day 4 for lung injury in
the double-hit model

Spleens
Lung

Activation↑
TNFR2pos Tregs↑
Gizmo, Mki67 (Ki67), Irf4,
Prdm1 (Blimp 1)
and Havcr2 (TIM-3) ↑
CD62, CD25, CTLA-4 and
IL-10↑
percentage↑

Number of splen
cells↓

Saito, et al. (84) Mouse CS-induced model SAE 24hs, 6, 8 10, and 30
ds after induced

Brain
Blood
Spleen and other
lymph nodes
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number (brain)↓

Microglia, neuro
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(brain)↑
astrocytes (brain
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(brain)↑
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George, et al. (17) Mouse Acute DenV infection and
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induced “two-hit” sepsis
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Blood
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GITR, CTLA-4, Foxp3,
CD40L, CD44, CD62L,
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IL-10, and TGF-b↑
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IFN-g↓

Baek, et al. (85) Preterm pigs LPS stimulated
Staphylococcus
epidermidis challenge

6, 12, and 24 hs, day 5,
7, and 9 after stimulated
or challenged

Cord blood
Blood

Percentage and absolute
number↑

Genes related to
and adaptive im
Blood neutrophi
counts↓
Neutrophil phag
capacity↓

Shrestha, et al. (86) Neonatal mouse LPS stimulated once daily
on postnatal days (PNDs)
3–5

PND7 or PND14 Lung Percentage and absolute
number↓

CCL2, CCL3, C
and TNF-a↑
IL-10↑
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TABLE 1 | Continued

Immunological
characteristics

Outcome

Pulmonary vascular simplification↑
Lung cell proliferation↓, and apoptosis↑

2 macrophages↑
-6 and TNF-a↓

2 and 7-ds survival↑
Resistant to inflammatory shock↑
Lung injury↓

GF-b↑
eutrophil accumulation↓
ORgt, IL-17A, TNF-a, and
-1b↓

6-ds survival↑
Lung injury↓
Weight↑

-2, IL-6, TGF-b, and INF-g
eceived LPS injection)↑
h17(received LPS injection)↑
h17(after CLP) ↓

72-hs survival↑

-10 and IL-4↓
-2 and TNF-a↑

72-hs survival↑
Lung, liver injury↓

umber of CD4+ T cells↓
umbers of CD4/8+ central
emory and effector memory
ells↓
poptosis of central memory
cells↑
-2-secreting CD4+ T cells↓
-4-secreting CD4+ T cells↑
h17↓

7-ds survival↓

nlarged spleens with higher
eights↑
D11b+ F4/80− splenic
onocytes↑
y6C+ inflammatory
onocytes↑
y6C− alternative monocytes↓
D11b+ F4/80+

acrophages↑

There is no long-term impact of sepsis
on the systemic immune response in
mice 12 weeks after CLP.

tio of IFN-g/IL-4↓
-10↑

Relative tumor volume↑

-1b, IL-6, and IL-17A↑
-10↓

3 and 7-ds survival↑
Bacterial colonies↓
Lung injury↓
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Observational
study

Species Model Observation time Specimen
Source

Tregs

Qiu, et al. (79) G protein-
coupled receptor
174- KO Mouse

LPS stimulated
CLP

24 hs after stimulated or
challenged

Thymus
Lung

Ctla-4, Pdcd-1, and IL-
10↑
CTLA-4 and IL−10↑

M
I

Zhou, et al. (87) PTENM−K Mouse LPS-induced ALI 24 hs after induced Blood
Lung
BALF

Percentage and absolute
number↑
Foxp3 and TGF-b↑

T
N
R
I

Andrade, et al. (88) Mouse Received LPS injection
each day for 5 days, and
followed with CLP

4 hs after CLP Spleen
Blood

Absolute number (received
LPS injection) ↑
Absolute number (after
CLP) ↓

I
(
T
T

Cao, et al. (89) TLR4−/− mouse CLP 24 hs after CLP Lung
Liver
Spleen
Blood

Percentage and absolute
number↓
Apoptosis↓
Foxp3 and Tlr4↓

I
I

Fay, et al. (78) CD43-/- mouse CLP 24 hs after CLP Spleens Percentage ↓ N
N
m
c
A
T
I
I
T
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Blood
Bone marrow
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w
C
m
L
m
L
C
m

Ahmadi, et al. (64) Tumor mouse Induction of systemic
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Renal
Liver
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r
I

Hu, et al. (90) Mouse Injected with PC61 before
a two-hit model

24 hs two-hit Lung
BLFC
Spleens

Percentage and absolute
number↓

I
I
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TABLE 2 | Observational studies using septic patients or combined animal models focused on the characteristics of Tregs in sepsis.

Outcome
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FA scores↑
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.27% of infants with a 25-OHD deficiency were
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Observational
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Species Model Observation
time

Specimen
Source

Tregs Immunological characteristics

Yin, et al. (74) Humans Severe sepsis/septic
shock patients with
severe neutropenia

Day of PICU
admission

Blood Percentage↑ CRP, PCT, IL-6, IL-10, and IFN-g↑

Jiang, et al. (76) Humans Septic patients Day of ICU
admission

Blood PD-1↑↑
CD28, PD-L1, and
CD86↑

No data

Youssef, et al. (91) Neonates Vitamin D deficiency After enrolled Cord blood Percentage ↓ Total lymphocytes, CD3+ T lymphocyt
CD4+ T-helper, CD8+ T-cytotoxic
lymphocytes, and CD4+CD45RA+ naïv
T cells↓

Carvelli, et al. (37) Humans Septic shock patients 24 and 72 hs
after admission

Blood Percentage↓ Lymphocytes (CD3+ T cells and
CD3−CD56+ NK) ↓
HLA-DR↓
Innate lymphoid cells 1 count↑
Innate lymphoid cells 2 count↓
Innate lymphoid cells 3 count↓
Innate lymphoid cells 3 percentage↑

Arens, et al. (92) Humans Abdominal sepsis Over 5 ds Blood No distinguishable
trends in the
percentage

B and NK cell counts↓
IL-8↓
Th17 cells↑

Xu, et al. (60) Humans Septic patients Days 1, 3, 5, 7,
10, 14, 21 and
28 after sepsis

Blood Foxp3 (survivors)↑ HLA‐DRA (survivors)↑
Th1 and Th2 cells(especially non-survi
Th17 (survivors)↑
T‐bet (Th1) and GATA‐3 (Th2) had a li
59 survivors, 19 non‐survivors

Yu, et al. (80) Humans Septic patients After admission Blood The ratio of IL-10+

Tregs to total
Tregs↓

TSLP↑
Number of Th1 cells↑
IL-1b, IL-6, IFN-g, and TNF-a↑

Liu, et al. (75) Humans Septic patients Ds 1 and 7 Blood Day 1, absolute number (non-survivors) ↓
Day 7, percentage and absolute number(non-survivors) ↑
Day 7, percentage↓↓ and absolute number(survivors) ↑↑

Greenberg, et al.
(93)

Humans Staphylococcus aureus After positive S.
aureus blood
culture

Blood Associated with
immunosuppressive
medications

Neutrophil-to-lymphocyte count ratio↑
IL-6 and IL-17A↑
Th17↑
Th1↓
Th17 score-to-Th1 score ratios↑

Lu, et al. (40) Humans Septic shock Within 3 ds Blood Percentage↑
OX40↑

CD28, CD27, OX40 on CD4+ T cells↑
OX40 on CD4+CD27-CD28- T cells↑
CD4+CD27-CD28- T cells↓
4-1BB on CD4/8+ T cells↓
e

e

v

n
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There is significant inter−study heterogeneity among a large
number of sepsis-related studies: male sex, increased age, organ
dysfunction acquired during ICU stay, recurrent sepsis, and
presence of comorbidities are independently associated with
increased sepsis−related mortality, especially in ICUs (2, 3,
137). Seymour and colleagues demonstrated that patients with
the a phenotype (33%) have the lowest administration of a
vasopressor; Patients with the b phenotype (27%) are the oldest
age with the most chronic illness and renal dysfunction; Patients
with the g phenotype (27%) have the most inflammation and
pulmonary dysfunction; Patients with the d phenotype (n = 2667;
13%) have more liver dysfunction and septic shock. Their
cumulative 28-day mortality rates are 5%, 24%, 13%, and 40%,
respectively (135).

Studies of immune responses to sepsis usually exclude patients
who have immune disorders or receive immunosuppressive
medications (40, 76, 80); therefore, these studies do not fully
reflect the heterogeneous characteristics of sepsis (91, 135). An
increased Th17/Treg response throughout infection is most
strongly associated with increased mortality among patients who
are not immunocompromised; a decreased Th1/Treg response is
most common among immunocompromised patients.
Unexpectedly, patients who have immunocompromising
comorbidities or take immunosuppressive medications do not
have increased 90-daymortality, contrary to previous studies (138,
139). Immunocompromised patients with malignancies, especially
those treated with chemotherapies that have adverse effects on
immune function, have broadened the types and risks of drug-
resistant multi-pathogenic infections (140). For example, systemic
infection with Candida albicans (candidiasis) in tumor-bearing
mice does not significantly increase the percentage of Tregs
compared to the tumor group, but it significantly increases the
proportion of Tregs in the spleen of the non-tumor bearing
mouse. Surprisingly, systemic infection with C. albicans
promotes the rapid growth of tumors, and the percentage of
tumor-infiltrated Tregs in the tumor/candidiasis group is
significantly higher than these in the tumor only group (64).
This demonstrates that candidiasis could promote the growth of
tumors by expanding Tregs: tumors and candidiasis promote each
other through increased Treg activity. On the other hand, research
on common variable immunodeficiency (CVID) and autoimmune
diseases, both of which are characterized by loss of Treg function,
show that the heterogeneity in sepsis due to host factors has
become more prominent (127, 141). Autoimmune diseases are
associated with a lower risk of 30-day death (27% reduction) for
sepsis through a mechanism unrelated to the chronic
immunomodulation medications (141). LRBA deficiency leads
to different types of congenital immune deficiencies, such as
CVID, autoimmune lymphoproliferative syndrome (ALPS) with
recurrent infections, and even sepsis. Low expression of CTLA-4,
Foxp3, and CD25 in LRBA-deficient patients leads to a partial loss
of the regulatory effects of Tregs on T/B cell activation and causes
an inappropriate increase in T and B cell activation (127).

Some evidence demonstrates that ICU-acquired infections
contribute to the overall mortality of septic patients. Patients
with septic shock who have secondary infections are at a 5.8
times higher risk of late-stage death than those without because
T
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TABLE 3 | Intervention studies using animal models focused on the target of Tregs in sepsis.

Immunological
characteristics

Outcome

Apoptosis of memory T cells↑
T cell function↓
IL-10, IL-6,and MCP-1↓

7-ds survival↓

ion↑

nd

Apoptosis of CD44hi memory
CD4+ T cells↓
IL-10↑

7-ds survival↑

TNF-a, IL-6, and IFN-g↓
IL-10, and TGF-b↑
T cell activation↓
IFN-g-producing cells↓

14-ds survival↑
Lung injury↓

tivity↑ Th2 response (IL-4)↑
Proliferative ability of T cells↓

7-ds survival↑

and Hyper-inflammatory response
(TNF-a and IFN-g)↓
Anti-inflammatory response
(IL-10)↑

5-ds survival↑
Lung and liver injury↓

te
after

IL-10+ B cells (Bregs)↑
CD3+CD4-CD8- T cells↑
IFN-g and IL-10↑

No data

Total leukocytic and
neutrophilic numbers↓
%IL-17A + CD4+ T cells↓

Lung injury↓

te TNF-a, IL-6, and IL-17↓
IL-10↑
lymphocyte of apoptosis↓
Number of Th17↓

No data

te IL-1b, TNF-a, IL-6, and IL-17↓
IL-10 and TGF-b↑
Th17/Tregs↓

7-ds survival↑
Lung injury↓

IL-10 and TGF-b↑
TNF-a, IL-6, IL-1b↓
HMGB1, TLR2, and MyD88↓

3-ds survival↑
Lung injury↓

te

e)↑

Th1 and Th17 cells↓
T bet and RORgt (pancreatic
tissue)↓
IFN-g and IL-17↓
IL-10↑

Pancreatic injury↓

te CD4+T cell percentage↓
CD8+ T cell percentage↑
CD19+B cell percentage↓
NK cell percentage↑

No data

te Naïve CD4+ T cell↑
PD-1+CD4+ T cells↓
CD8+ T cell↑

Prevent the initial
reduction of body
weight (Day 3) ↑
Survival ↑

te CD4+ T cells↑
Naïve CD4+ T cell↑
PD-1+CD4+ T cells↓
Naïve CD8+ T cells↑
PD-1+CD8+ T cells↓

Survival ↑

CD4⁺CD25−T cell
proliferation↑
The ratio of IL-4 to IFN-g↓

7-ds survival (2 hs
before CLP) ↑

xp3,
10,

IL-10, IL-4, and TGF-b1↓
IFN-g↑

Renal injury↓

te Cytokines (TNF-a, IL-6, and
IL-10) and T cells apoptosis↓
IFN-g, the absolute number
and proliferative ability of CD4/
8+T cells↑

7-ds survival↑
Bacterial clearance↑
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Intervention
study

Species Model Intervention Intervention time Observation time Specimen
Source

Tregs

Sun, et al. (57) Mouse Memory mouse (56 ds
antigen-experienced) and
CLP

TIGIT (aTIGIT Ab) 12 and 24 hs after CLP 48 hs after CLP Spleens
Blood

Activation↓
Differentiation↓
Helios↓
CTLA-4↓
IL-10↓

Sun, et al. (95) CD28 (agonistic anti-
CD28 Ab)

Immediately after CLP and at ds 2,
4, and 6 post-CLP

24 hs after CLP Proliferation and activa
IL-10↑
CD127, CD69, Helios
CTLA-4↑

Tran, et al. (70) Mouse Injected with LPS, and 24
hs latter CLP induced
“Two-Hit” Model

Bilirubin Immediately after CLP 24 hs after CLP Lung
Blood

Percentage↑

Ge, et al. (96) Mouse CLP IL-38 (rmIL-38) 2 hs before or after severe CLP 48 hs after CLP Spleens Immunosuppressive ac
IL-10 and TGF-b1↑
Foxp3 and CTLA-4↑

Zhao, et al. (81) Mouse CLP IL-3 (siRNA, IL-3 Ab) 2, 6, and 12 hs after CLP 48 hs after CLP Spleens, lung,
and liver

Foxp3, CTLA-4, IL-10,
TGF-b↑
Suppressive activity↑
Percentage↑

Kulkarni, et al. (97) Mouse Stool suspension IL-7 Daily from day 5–9 3.5 months after
sepsis

Spleen Percentage and absolu
number (within 1 week
sepsis) ↑

Nadeem, et al. (98) Mouse LPS-induced ALI ITK (inhibitor) Once 30 min before and then 3
times after LPS administration at
12 hourly intervals

48 hs after LPS BAL Percentage↑

Zou, et al. (19) SD rats CLP miR-126 (mimic) Immediately after CLP 48 hs after CLP Blood Percentage and absolu
number↑

Xia, et al. (20) Mouse CLP Maresin1 1 h after CLP 24 hs after CLP Lung
BALF

Percentage and absolu
number↑

Li, et al. (99) Mouse CLP-induced ALI Excretory secretory
products of Trichinella
spiralis adult worms

Immediately after CLP 12 hs after CLP Lung
Blood

Percentage↑

Liu, et al. (21) Mouse CLP-induced pancreatic
injury

Baicalin Immediately after CLP 72 hs after CLP Blood
Spleen
Pancreatic
tissue

Percentage and absolu
number↑
Foxp3 (pancreatic tissu

Liu, et al. (100) Rats Burning model Rhubarb Immediately after model 12, 24, and 72 hs
after CLP

Liver
Blood

Percentage and absolu
number↑

Saito, et al. (59) Young
mouse

day 0, 4, 7, and 10 to inject
CS

IL-15 Day 3, 7 and 10 Within 50 days Blood
Spleens
Peritoneal
lavage fluids

Percentage and absolu
number↓

Aged
mouse

Percentage and absolu
number↓

Ge, et al. (101) Mouse CLP IL-36 (IL-36b) 2 hs before or after CLP 48 hs after CLP Spleens Tregs were required
IL-10 and TGF-b1↓
Foxp3 and CTLA-4↓

Gao, et al. (50) Mouse CLP Nrp-1 (siRNA, Nrp-1 Ab) Immediately after CLP 24 hs after CLP Spleens and
renal

Stability and activity (F
CTLA-4, TGF-b1m+, IL
and TGF-b1)↓

Lou, et al. (77) Mouse CLP LAG-3 (KO, LAG-3 Ab) Immediately after CLP 24 hs after CLP Blood
Spleens

Percentage and absolu
number↓
t
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TABLE 3 | Continued

Immunological
characteristics

Outcome

te IL-6, IL-10and TNF-a↓ Urine creatinine and
urea nitrogen↓

IL-4↓
IFN-g↑
Apoptosis of CD4+ T cells↓
Proliferative ability of CD4+ T
cells↑

liver, lung, and renal
injury↓

yte T- Did not affect 7-ds clinical severity outcomes
Loss of barrier function in BBB endothelial cells↑
48-hs Survival↓
Severity scores↑
TGF-b, IL10↓
IFN-g↑

7-ds survival↑

CD3+CD4+ and CD3+CD8+

lymphocytes percentages↑,
and apoptosis↓
IFN-g and IL-2↑
IL-4 and IL-10↓
Macrophage phagocytotic
activities↑

7-ds survival↑
Lung, liver, and renal
injury↓
Intraperitoneal
bacterial counts↓

te Th17↓
IL-17, IL-6, and TNF-a↓

5-ds survival↑
Renal and lung injury↓

te TNF-a and IL-6↓
The proliferation of CD4
+CD25− T cells↓
IL-10↑

Renal and lung injury↓
7-ds survival↑

TNF-a and IL-10↓
CD3+CD4+ cell↑

D-LA and DAO↓

Percentages of T and CD4+ T
cells↑
IL-6 and IL-4↓
Bcl-2↑

Renal injury↓

Percentages of CD4+T cells↑
Th1/Th2 ratio↑
Th17/Tregs ratio↓
IL-1b, IL-6, and TNF-a (liver) ↓

Liver injury↓

Number and activation of
splenic macrophages and
DCs↓
Pro-inflammatory cytokines↓
Chemokines↓
Anergy in T cells↑
Hepatic DNA binding activity
of NF-kB↓

4-ds survival↑ (110)

te Platelets and CD4+ T cells
interactions↓

7-ds survival↑
Splenomegaly and
spleen damage↓
Renal and cardiac
injury↓

IgM and IgG↑
IL-1b, IL-10, and TNF-a↓

7-ds survival↑
Spleen injury↓

te Number of CD4/8+

lymphocytes↑
Th17/Treg ratio↓
TNF-a, IL-1a, IL-1b, IL-2, IL-
4, IL-6, and IL-12p40↓

48-hs survival (young,
males) ↑
Multiorgan
dysfunction↓
Bacterial CFUs↓

Teff apoptosis↓
Teff proliferation↑
TNF-a, IL-1b, IL-2, and IL-10↓

72-hs survival ↑
Lung, liver, and renal
injury↓
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Intervention
study

Species Model Intervention Intervention time Observation time Specimen
Source

Tregs

Xu, et al. (82) Mouse CLP CXCL4 (CXCL4 Ab) Immediately after CLP 72 hs after CLP Urine
Blood
Spleens

Percentage and absolu
number↓

Gao, et al. (48) Mouse CLP Sema3A (EGCG, a
strong inhibitor of
Sema3A)

Immediately after CLP 24 hs after CLP Spleens
Blood

Foxp3↓

Brichacek, et al.
(102)

Mouse CLP Inhibitor of TNAP (SBI-
425)

Daily for 7 days after CLP 24 hs after the final
injection

Plasma
Brain
Bone
Spleens

CD4/8+Foxp3+ splenoc
cell populations↓

Martin et al. (51) Mouse CLP Sirtuin1 (EX-527-an
inhibitor)

24 hs after CLP 30 hs after CLP Spleen Percentage↓
CTLA-4↓

Gao, et al. (103) Mouse CLP Tanshinone IIA 24 hs after CLP Blood
Lung
Liver
Renal
Spleens

Percentage↓

Chen, et al. (104) Mouse CLP Xuebijing injection Immediately after CLP 36 hs after the
CLP

Spleens
Lung
Renal

Percentage and absolu
number↑
Differentiation↑
IL-10↑

Chen, et al. (105) Mouse CLP Curcumin 12 hs after CLP Day 1, 3, 5, and 7
after CLP

Spleen
Blood
Renal
Lung

Percentage and absolu
number↑

Xie, et al. (106) Rats CLP Electroacupuncture Immediately after CLP 48 hs after CLP Spleens
Intestinal
lymph nodes

Percentage↓

Hou, et al. (107) Mouse CLP Glutamine 2 weeks before CLP 72 h after CLP Blood
Spleens
Renal

Percentage↓

Yeh, et al. (108) Mouse CLP Arginine 1 h after CLP 12 and 24 hs after
CLP

Blood
Para-aortic
lymph nodes
Liver

Percentage↑

Di Caro, et al.
(109)

Mouse Injected with LPS Dietary fiber (fiber
cellulose)

2 weeks before injected with LPS 24 and 72 hs post
LPS injection

Blood
Liver
Spleens

Suppressive function↑
Percentage (72 hs) ↑

Albayati, et al.
(111)

Mouse CLP P2Y12 antagonism
(clopidogre)

2 hs before CLP 24 hs after CLP Blood
Spleens
Hearts
Renal

Percentage and absolu
number (spleens)↓

Sun, et al. (112) Mouse CLP COX-2-specific inhibitor
(parecoxib)

20 min after CLP 24 hs after CLP Blood
Spleens

Percentage↓

Ahmad, et al. (113) Mouse CLP Poly (ADP-ribose)
polymerase inhibitor
(Olaparib)

30 min and 8 hs after CLP 24 hs after CLP Spleens
Blood

Percentage and absolu
number↓

Cao, et al. (114) Mouse CLP Ulinastatin 1 h before and 6 hs after CLP 24 hs after CLP Spleens
Blood
Lung
Liver
Renal

Foxp3 and CTLA-4↓
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TABLE 3 | Continued

Intervention regs Immunological
characteristics

Outcome

Human dental follicle
stem cells

Im TNF-a↓ Ileal tissue injury↓

Adipose-derived
mesenchymal stem cell-
derived exosomes

3 TNF-a and IL-6↓
MMP-9, GFAP, F4/80 and
CD14↓
L6Gy+/CD11b/c+ inflammatory
cells↓
CD3+/CD4+cells↓
CD3+/CD8+ cells↓
Early/late apoptotic cells↓

Brain injury↓

Fresh frozen plasma Af
fev

and Galectin-9↓
The proliferation of Th1 and
Th17↑
IL-1b, IL-6, and IFN-g↑
IL-10↓

Recovered from
endotoxemia↑

IgG and IgM Da xp3↓ CRP↓
IL-6 and TNF-a↓
IL-18↑

7-ds survival ↑
MSS scoring↓

ulation, increase or enhance

ocused on the target of T

Intervention Immunological
characteristics

Outcome

Enteral nutrition e↑ Th17 cells and endotoxin↓ Duration of mechanical
ventilation, lengths of ICU
stay, hospital stay,
And the incidence of ICU-
AW↓

Enteral nutrition e↑ Th17 percentages↓
Th17/Tregs ratios↓
IL-17, IL-23, and IL-6↓

Duration of mechanical
ventilation↓
ICU stay↓

Pre-and post-dilution
during continuous
venovenous hemofiltration

IL-6 and IL-10↓
Neutrophil phagocytic
activity↓

No data

High-volume hemofiltratio e↓ TNF-a, IL-1b, IL-6, IL-8, and
PCT↓
HLA-DR↑

Incidence of sepsis, septic
shock↓
Vasopressor↓
90-ds survival ↑

ulation, increase or enhance
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Intervention
study

Species Model

Topcu, et al. (115) SD rats CLP

Chang, et al. (116) SD rats CLP

Zhang, et al. (117) Mouse Infected with E. coli 0111:
B4

Kyvelidou, et al.
(118)

Mouse 5 ds injection of LPS

Compared with the control group, "↑" represents up-reg

TABLE 4 | Intervention studies using septic patients

Intervention study Species Model

Liu, et al. (42) Humans Septic Patients
with mechanical
ventilation

Sun, et al. (22) Humans Septic Patients

Chihara, et al. (119) Humans Septic shock
patients with acute
kidney injury

You, et al. (41) Humans Severe burn

Compared with the control group, “↑” represents up-reg
f

Intervention time Observation time Specimen
Source

diately or 4 hs after CLP 24 hs after CLP Ileal tissue
Spleens

Percentage↓

fter CLP 6, 16, 24, 48, and
72 hs after CLP

Blood
Brain
Cerebrospinal
fluid

Percentage↑

evere sepsis (trembles, high
and difficulty breathing)

Recovered from
endotoxemia

Blood Differentiatio
expansion↓

of LPS injection Day 6 after LPS Blood
Spleens

CD25 and F

nt； “↓” represents down-regulation, decrease or inhibition.

in sepsis.

Intervention time Observation time Specimen
Source

Tregs

Treated within 48
hs after
admission

D 1 and 7 after
admission to the ICU

Blood Percenta

Treated within 48
hs after admission

7 ds after admission Blood Percenta

24 hs within
obtaining informed
consent

6 and 24 hs after
continuous
venovenous
hemofiltration

Blood Induction
rate↑

Within 3 days after
burn

Days 1, 3, 5, 7, 14, 21
and 28 post-burn

Blood Percenta

nt； “↓” represents down-regulation.
me

hs a

ter s
er,

y 1

me

regs

n

me
T

n

o

g

g

g
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Gao et al. Treg Heterogeneity in Sepsis
of their unique immunosuppressive status, especially T cell
exhaustion caused by aging and recurrent sepsis (2, 23, 52, 59,
142). In a clinically relevant cecal slurry (CS) induced model of
recurrent sepsis, increased T cell exhaustion and poor prognosis
(including reduced survival rate and body weight) was observed
in aged (18-24 months old) compared with young (5 week old)
female or male C57BL6/J mice. Their symptoms persisted for
over 50 days and were associated with increased PD-1 expression
on Tregs (59). Olaparib, a competitive PARP inhibitor used in
the field of oncology that inhibits the binding of NAD+ to the
catalytic sites of PARP, showed significant protective effects on
cecal ligation perforation (CLP)-induced sepsis in young (8
weeks old) male adult mice compared with aged (72 week old)
female mice (143). These age-and sex-selective protective models
were associated with olaparib reducing the Treg and Th17
populations, and the Th17/Tregs ratio, by regulating
intracellular miRNA levels (113).

In infants, especially preterm infants, early-onset sepsis (EOS)
increases the risk of death or neurodevelopmental disorders (144).
In a multi-centric clinical study of 326 neonatal intensive care
units, 0.8% of infants suffered from EOS, where many factors
reduced lymphocyte activation and the percentage of Tregs,
including low Apgar score, caesarean delivery, small gestational
age, prenatal antibiotic exposure, vitamin D deficiency, and
positive maternal group B streptococcus screening results (145,
146). Intraperitoneal injection of Escherichia coli O55: B5 LPS in
neonatal mice reduced survival and growth rates, including lung
development, in a dose-dependent manner. These effects were
associated with decreases in the percentage of anti-inflammatory
CD4+TCRb+Foxp3+ Tregs (86).

In addition, multiple clinical studies show that amplification
of CD4+CD25+ Tregs and increased Foxp3 levels may increase
risks of nosocomial infections or secondary infections in sepsis
(61, 68, 147). Using a “two-hit” CLP model with intratracheal
injection of Pseudomonas aeruginosa, which mimics clinical
conditions of secondary infection, Hu et al. demonstrated that
the absolute number of Foxp3+ Tregs in both spleen and lungs
increased 24 hours after secondary P. aeruginosa infection. After
injection of PC61 (depletion of Tregs via CD25), the absolute
numbers of Tregs in the spleens and lungs of septic mice were
reduced by 50% and 60%, respectively. Partial Treg depletion
increased IL-17A, IL-1b, and IL-6 secretion, and decreased IL-10
secretion, in septic mice infected with P. aeruginosa, thereby
reducing the bacterial load and lung injury, and improving 7-day
survival (90). On the other hand, 8-week-old male C57 mice with
simulated repeat infection by repeated subcutaneous injection of
LPS were able to resist CLP-induced sepsis and hyper
inflammatory response. These mice had an increased absolute
number of Tregs and Th17 and decreased ratio of Th17/Tregs
(88). However, ICU studies with critically ill lymphocytopenia
patients suggested that the first three days of septic shock may be
characterized by a skewed distribution of circulating innate
lymphoid cells (ILC), with an excess of ILC1 and a lack of
ILC3. At the same time, there was a significant decrease in the
absolute number of circulating Tregs (37). These conflicting
studies in both mice and humans highlight the heterogeneous
nature of Tregs in sepsis that vary upon host conditions.
Frontiers in Immunology | www.frontiersin.org 12
TISSUE-SPECIFIC TREG PATTERNS
IN SEPSIS

In addition to the role Tregs play in maintaining immune
homeostasis in dedicated lymphoid tissues, these cells exist in
other tissues such as the lung, liver, renal, muscle, brain and
myocardium (73, 87, 98, 99, 102, 148). Many tissue-specific Treg
functions go beyond our initial understanding of Tregs as
immune inflammation-specific inhibitors (70, 99, 133).
However, most previous interventional and observational
studies on sepsis have focused on the functions and
characteristics of Tregs in the peripheral circulation and spleen
(41, 48, 76, 96, 101). Splenectomy improved 28- day survival in a
secondary sepsis CLP mouse model from 62% to 92%, which was
concurrent with the lower release of inflammatory cytokines (IL-
6, CXCL-1, and MCP-1) and a 41% increase in Tregs within 48
hours (65). This indicates that induced circulating Tregs (iTregs),
rather than natural Tregs (nTregs) originating in the spleen, may
play a role in improving sepsis survival. Sepsis has tissue-specific
pathophysiological characteristics due to anatomical and
histological constraints: the structure, morphology, and
composition of the vasculature system vary across different
organs (149–151). In mice infected with Pseudomonas
aeruginosa, the absolute number of Foxp3+ Tregs in lung
tissue increased nearly 2-fold on the third day, then gradually
decreased and returned to normal on the seventh day. However,
the absolute number of Foxp3+ Tregs in the spleen increased 1.6-
fold on the third day and continued to increase (90).

Acute lung injury (ALI) or acute respiratory distress
syndrome (ARDS) is a type of respiratory failure caused by
trauma, infection (sepsis), or intoxication (152, 153). The
pathophysiological mechanism of ALI/ARDS is characterized
by rapid onset of widespread lung inflammation (87, 135, 154). A
growing body of evidence shows that CD4+CD25+Foxp3+Tregs
play a positive role in alleviating sepsis-induced rapid onset
inflammation and improving the outcome of ALI/ARDS through
both TGF-b-dependent and independent pathways (20, 22, 42,
81, 87, 98, 155). In a mouse model of sepsis-induced ALI,
blocking HMGB1 or myeloid-specific PTEN KO (PTEN M-
KO) increased TGF-b production, inhibited Rorgt and IL-17
expression, and promoted the b-catenin signalling pathway. The
increased CD4+CD25+Foxp3+ Tregs in the lungs improved
survival and weight outcomes. However, the opposite result
was obtained with myeloid-specific b-catenin ablation (b-
catenin M-KO). Furthermore, in vitro, the destruction of
macrophage HMGB1/PTEN or activation of b-catenin
significantly increased CD4+CD25+Foxp3+ Tregs (87). This
also suggests that infiltration of macrophages could inhibit
lung tissue-specific CD4+CD25+Foxp3+ Tregs via HMGB1/
PTEN/b-catenin axis in sepsis-induced ALI.

The pathophysiology of sepsis-associated encephalopathy
(SAE) is complex, multifactorial, and tissue-specific.
Combining intertwined processes, SAE is promoted by
countless alterations and dysfunctions resulting from the early
and late stages of sepsis. Additionally, some patients experience
chronic “sepsis brain” after sepsis recovery, such as
inflammation, neuro-inflammation, oxidative stress, reduced
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brain metabolism, and injuries to the integrity of the blood brain
barrier (BBB) (84, 156, 157). In the early stage of sepsis, some
corresponding interventions are effective in alleviating the
uncontrolled hyper-inflammatory (IL-1b, IL-6 IL-18, and TNF-
a, etc.) and immune (CD3+CD4+ cells and CD3+CD8+ cells,
etc.) responses associated with altering the BBB and amplifying
the inflammatory responses of SAE (116, 156–158).
Mesenchymal Stem Cell (MSC)-derived exosomes significantly
increased the percentage and absolute number of Tregs, which
ameliorated brain injury in the early stage of sepsis by mitigating
the hyper-inflammatory and immune responses (116). As sepsis
management techniques continue to improve, SAE is
characterized as chronic “sepsis brain”, which is associated
with long-lasting cognitive deficits and psychological
impairments such as anxiety and depression (159, 160). Using
a CS-induced sepsis mouse model and focusing on chronic
“sepsis brain”, Saito et al. demonstrated that infiltrated Tregs
and Th2 cells attenuate SAE and alleviate SAE-induced mental
disorders by resolving neuroinflammation in the chronic phase
of sepsis (84).
PATHOGEN-SPECIFIC TREG
PATTERNS IN SEPSIS

Many previous induced sepsis models focused on Gram-negative
bacteria and their products, such as LPS (50, 51, 101, 103, 118,
121, 161). A recent experimental LPS-induced endotoxemia
study in humans showed that pro-inflammatory Th1 (IFN-g,
IL-2, and TNFa) and Th17 (IL-17A) cells were suppressed, while
the Tregs and their ability to produce anti-inflammatory IL-10
were not affected (162). In addition, glycolipids and
diacylglycerols from Streptococcus pneumoniae, which cause
high mortality in patients over 65-years-old, induced septic
shock by activating invariant natural killer T cells (iNKT) and
the hyper-inflammatory responses (66, 110, 163, 164). Tregs
reduced the proliferation of iNKT and IL-4 secretion of iNKT
induced by glycolipids (including bacterial-derived
diacylglycerols). One striking observation was that Tregs
significantly increased Foxp3 expression, inhibitory function,
and IL-10 secretion after they contacted iNKT, especially in
the presence of bacterial diacylglycerols (164). Recent evidence
suggests that Streptococcus pneumoniae (including its
components and live attenuated mutants) and pneumococcal
infection may induce Treg proliferation and may be used in the
treatment of asthma (165).

Graphene oxide (GO) is a single-atomic layered material
composed of carbon with a variety of biomedical applications,
such as gene delivery, stem cell differentiation, and cancer
therapy (166). In addition, GO has been shown to be able to
regulate innate and adaptive immune functions (92, 166, 167). In
vivo, the administration of GO significantly improved
diacylglycerols-induced septic shock and inhibited the capacity
of diacylglycerols to induce iNKT-mediated trans-activation and
cytokine production of innate and innate-like cells (such as
dendritic cells, macrophages, and gd T cells), which were
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associated with the ability to increase the amount of Foxp3+
Tregs via TGF-b (166). This shows that gut microbiota not only
influences the gastrointestinal tract, but also supports immune
cells in distal organ sites (168). In another example, dietary
supplementation with nonfermentable fiber or high fiber (HF)
cellulose altered the gut microbiota and positively impacted
metabolic health to confer protection in sepsis models (109,
169). Supplementation with HF amplified the suppressive
function of CD4+CD25+Foxp3+ Tregs, inhibited SIRS, and
induced anergy in CD4+ T cells as compared to mice on a
regular diet (109). These pieces of evidence also suggest that
manipulating intestinal microbiota through dietary
supplementation with fiber may have broader systemic effects
on immune homeostasis by influencing the heterogeneity of
CD4+CD25+Foxp3+ Tregs.

Fungi are involved in 20% of sepsis and Candida is the most
commonly isolated pathogen (170, 171). Patients with
malignancies and immunodeficiencies are more likely to
develop Candida albicans infection that leads to candidiasis
(171). C. albicans induces the production of tumor infiltrating
and IL-10 producing Tregs through toll-like receptor (TLR) 2,
which leads to immune escape (64, 172). Different degrees (such
as 1,3-b-D-glucan -positive colonization and invasive
candidiasis) of Candida have different effects on patients with
abdominal sepsis. Decreased B and NK cell counts, and reduced
IL-8 secretion appeared to be associated with a higher risk of
subsequent candidiasis, rather than the heterogeneous
characteristics of Tregs. In contrast, the risk stratification of
candidiasis did not affect the heterogeneous characteristics of
Tregs in patients with abdominal sepsis (173).
TIME-DEPENDENT TREG PATTERNS
IN SEPSIS

Considering the various failures of clinical trials targeting hyper-
inflammatory mediators (especially IL-1b and TNF-a) and the
fact that most septic patients who survive the acute stage of
hyper-immune and inflammatory responses are burdened by
secondary infections, it is necessary to perform basic and
translational studies to understand the long-term post-sepsis
immune perturbations (26, 27, 45, 46). The heterogeneous
characteristics of Tregs are constantly changing over the course
of sepsis. In the early stage of sepsis there is no difference in the
percentage of Tregs in total CD4+ T cells between future sepsis
survivors and non-survivors. However, non-survivors had a
lower absolute number of Tregs compared to survivors. At the
later stage of sepsis (after 3 days), the absolute number of Tregs
increased, while the percentage of Tregs decreased in survivors.
Although the absolute number of Tregs increased, the percentage
of Tregs progressively increased in non-survivors. Moreover,
survivors had a lower percentage of Tregs and a higher absolute
number of Tregs (69, 75, 138). During the early stage of sepsis,
especially with organs injuries caused by hyper-inflammatory
responses (such as ALI, AKI, ALF, etc.), increasing the
proportion and absolute number of Tregs is critical to restore
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immune-inflammatory homeostasis, and reduce tissue damage
and organs injury. Animals depleted of Tregs at this stage are
unable to resolve SIRS and die from extensive tissue damage and
MODS (20, 21, 70, 81, 98, 104, 108, 174).

Evidence from gene knock-out (KO) mice with sepsis induced
by LPS or CLP illustrates that Tregs play a crucial role in
inhibiting SIRS and ameliorating acute organs injury in the
early stage of sepsis (77–79, 87, 94). Gpr174 deficiency in
Tregs promoted the expression of CTLA-4 and the secretion of
IL-10 in CD4+CD25+Foxp3+Tregs but the expression and
percentage of PD-1 and Foxp3 was not affected. In Gpr174-KO
mice induced by LPS or CLP to simulate sepsis, the induction of
M2 macrophages in the early stage was Treg dependent and
Gpr174-deficient Tregs protected mice from sepsis-induced ALI
and improved survival by promoting M2 macrophage
polarization (79).

The peritoneal contamination and infection (PCI) mouse
model, which is consistent with secondary infections in post-
septic patients, induced an increase in Bregs but did not induce a
lasting increase in Treg absolute number in the spleens from 1
week to 3.5 months after sepsis induction (97). Since the absolute
number of Foxp3+ Tregs in the lung tissues of CLP-induced
septic mice increased nearly two-fold on the third day and
returned to normal levels on the seventh day, mice were
susceptible to intratracheal injection of Pseudomonas
aeruginosa for 3 days, but not for 7 days (90). This suggests
that Tregs have different functions at different stages of sepsis
and contribute to secondary P. aeruginosa infection. In a study
with Xuebijing Injection, which contains 5 Chinese medicine
herbal extracts, mice were injected once/day for 5 days after CLP.
Septic mice had significantly improved 7-day survival and
reduced acute organ injury, which is associated with stimulated
IL-10+ Foxp3+ Tregs, inhibited Th17 differentiation, and
decreased Th17/Tregs (104). Some TCM, such as rhubarb,
have a bidirectional regulatory effect on the heterogeneity of
Tregs over time and improve the prognosis of sepsis by
increasing the proportion of Tregs in the early stage and
decreasing it in the late stage, although the specific molecular
mechanism of their effect is not clear (100). Although these
results are contradictory, they do imply that Foxp3+ Tregs play
an important role in amending early, late, and even long-term
immune disturbances after sepsis.
LIMITATIONS OF TREG MODELS
IN SEPSIS

While most of the data discussed in this review comes from
animal models, their limitations must be acknowledged. Most
previous experiments related to sepsis were induced by CLP or
LPS, where researchers used inbred mice under a specific
pathogen-free (SPF) experimental environment. These
methods do not fully conform to clinical heterogeneity and
often do not inform the treatment of sepsis in humans (50, 51,
101, 103, 118, 121, 161, 175). In fact, changes in the heterogeneity
of Tregs in induced sepsis animal models do not fully reflect
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clinical sepsis or are even opposite to patients’ results (51, 75).
Although LPS induction is a frequently used sepsis model, mice
and other rodents are much less sensitive to LPS than humans.
Thus, a 106 times higher (1-25 mg/kg) dose is required for mice
compared to humans, who only need 2-4 ng/kg to induce SIRS
(124, 162, 176). Furthermore, in most current experiments using
LPS, the regimens and dosages of LPS vary widely among
different mouse strains, animal ages, and animal facilities (23,
70, 87, 98, 109, 117, 118). For example, BALB/c mice induced by
intraperitoneal injection of LPS (0.2 mg/g of body weight or 5 mg/
mouse per day) for 5 consecutive days, showed significant
decreases of CD4+, CD8+, CD3z+, and CD19+ cells and an
increase of the percentage of CD25+Foxp3+ Tregs, accompanied
with increased production of IL-6, TNF-a, and IL-18 in the
serum. These results are consistent with the co-existence of SIRS
and CARS observed in the early stage of septic patients (4, 15, 26,
45–51, 118). In a cross-design placebo-controlled study of 20
healthy male volunteers who received intravenous LPS (0.8 ng/kg
body weight), their circulating neutrophils significantly
increased. Additionally, the absolute numbers of CD3+, CD4+,
and CD8+ T cells decreased 2 hours after LPS injection. In
contrast, the frequency of Tregs and their ability to produce IL-
10 did not change (162).

In the CLP model, the cecum of immunocompetent mice is
sutured and then punctured to cause spillage of cecal contents
into the peritoneum, which creates a life-threatening infection
characterized by physical disorders (such as septic shock and
acute organ failure) and ultimately death (99, 106, 161).
Unfortunately, the precise composition of cecal contents that
participates in the infection process is variable and has not been
adequately evaluated in the case of acute organ failure (175). To
compensate, some investigators tried to adopt intraperitoneal
injection of stool suspension or CS, or endotracheal injection of a
predetermined pathogen (such as Klebsiella pneumonia and
Staphylococcus aureus, etc.) (59, 67, 97). The “two-hit” model
was used to mimic clinical conditions of secondary infection, but
different regimens yielded surprisingly different results (57, 70,
83, 90, 97).

Due to their relatively stable genetic uniformity, inbred
BALB/c and C57BL/6 mice are most frequently used in sepsis-
related studies (47, 59, 65, 70, 83, 86, 98, 118, 177). Nevertheless,
researchers are beginning to emphasize the importance of using
genetically heterogeneous organisms in experiments since they
can better simulate the heterozygosity of humans, especially in
multi-dimensional heterogeneous syndromes such as sepsis (19,
23, 67, 85, 100, 135, 136). BALB/c (inbred) and CD-1 (outbred)
mice underwent unilateral femoral fracture, splenectomy, and
hemorrhagic shock, with increased circulating granulocytes
(LY6G+CD11+) in both strains at 24 and 48 hours later.
However, CD8+ T cells decreased by 30% within 48h only in
BALB/c mice. Circulating CD4+CD25+CD127low Tregs and
lymphocytes (CD11B-LY6G-MHC-2+) were always at least
1.5-fold higher in BALB/c mice, while MHC-2 expression in
bone marrow decreased in CD-1 mice. In addition, BALB/c mice
expressed higher levels of circulatory CD4+CD25+CD127low
Tregs and MHC-2+ lymphocytes, compared to CD-1 mice (178).
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Based on the high heterogeneity of Tregs observed in clinical
sepsis patient samples, we suggest that sepsis animal models
should be designed to mimic this heterogeneity. For example,
new sepsis models could be designed by guidance from both
clinical sepsis patient characteristic and Treg immune
checkpoints. Some experimental models of sepsis such as the
“memory mouse” (57, 95), “two- or three-hit mouse” (70, 118),
and “gene recombination mouse”models (78, 79, 94) have begun
to move the field closer to more relevant sepsis models.
THERAPEUTIC INTERVENTIONS
TARGETING TREGS

Several lines of evidence from experimental studies suggest that
Tregs can be the target for therapeutic interventions. Deletion of
Treg Notch4 gene with anti-Notch4 immunization in rodents
normalizes dysregulated innate immunity to reduce morbidity
and mortality (179). Lymphocyte-deficient recombinase
activating gene-1 knockout mice exhibit impairments in lung
injury healing. It has been found that administering isolated
Tregs in a model of lung injury helps improve recovery (180).
Depletion of Foxp3-positive Tregs from proliferating alveolar
cells in a rodent model led to a decrease in epithelial proliferation
(181). Such observations suggest that there are several pathways
to explore regarding the therapeutic role of Tregs in sepsis.
Moreover, Th17/Treg ratio alterations in favor of Th17 also
have implications for therapeutic utility for lung injury and acute
respiratory distress syndrome (182, 183).
DISCUSSION

Sepsis remains the leading cause of death in ICUs due to the
progress of aging, numerous chronic comorbidities (diabetes,
malignancies, autoimmune diseases, etc.), multi-drug resistant
bacterial pathogens caused by excessive use of antibiotics,
repeated secondary infections and other factors. The main
pathologic mechanism of sepsis-induced immunosuppression
is not completely understood. Furthermore, systematic,
s tandardized cl inical treatment for sepsis- induced
immunosuppression is lacking. Therefore, there is an urgent
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need for a better understanding of the pathophysiological
mechanisms of sepsis. New approaches to identify biological
targets and checkpoints for detection, assessment, and
management must be developed. Research that is emerging from
the study of COVID-19 is likely to further inform scientists about
the roles of Tregs in sepsis. In COVID-19 patients, Tregs are
reported to behave variably. Whereas some studies have reported
decreases in Tregs in COVID-19 patients (184, 185), others have
reported increases in Tregs in COVID-19 patients (186, 187). An
imbalance in the Treg/Th17 ratio in COVID-19 patients may
increase the risk of respiratory failure (74, 188). Overall, to
improve sepsis symptoms through the regulation of Tregs, it is
necessary to find the optimal balance point for Tregs to play a role
in sepsis. Researchers should not only take into account the
heterogeneous characteristics of Tregs, but also the
characteristics and organ/tissue-specific patterns of the host, the
multi-dimensional heterogeneous syndrome of sepsis, the different
types of pathogenic organisms, and even different types of
laboratory research models and clinical research methods.
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