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Abstract: Prebiotic dietary fiber supplements are commonly consumed to help meet fiber
recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the
production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this
research project was to compare potential prebiotic effects and fermentability of five commonly
consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota,
total gas production and formation of common SCFAs. Fecal donations were collected from three
healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available
oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory
root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest
production of propionate at 12 h (4.76 µmol/mL) compared to inulin, WholeFiber and XOS samples
(p < 0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples
promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase
in the genus Bifidobacterium after 24 h of fermentation (0 h:0.67 OTUs (operational taxonomic unit);
24 h:5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent
with findings in clinical studies. All analyzed compounds were fermentable and promoted the
formation of beneficial SCFAs.
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1. Introduction

Prebiotic definitions vary among different scientific and political arenas across the world [1].
Depending on the local definition, nearly all prebiotics can be classified as dietary fiber, but not all
fibers are considered prebiotics [2]. The most recent definition describes a prebiotic as “a substrate that
is selectively utilized by host microorganisms conferring a health benefit” [3]. Functional characteristics
of prebiotics include the ability to: resist the low pH of the stomach, resist hydrolysis by mammalian
enzymes, resist absorption in the upper gastrointestinal tract, the ability to be fermented by intestinal
microbiota and selectively stimulate the growth and/or activity of intestinal bacteria associated
with host health and overall well-being [4,5]. Inulin, beta-glucans, and xylooligosaccharides all
provide health benefits to consumers that are related to the fermentation of these compounds in
the distal gastrointestinal tract, and are also considered functional fibers with many other benefits [6].
As the definition of “prebiotic” broadens to include the overall impact from the metabolism from these
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compounds, the category of prebiotics will expand [7]. The importance of displaying direct health
benefits due to bacterial fermentation is still the driving mechanism for all prebiotics.

As our awareness and understanding of the importance of the gut microbiome and gut microbiota
increases, it is imperative for consumers to understand the key differences between different forms
of prebiotics, and where they can be found in various foods and food products. XOS is an emerging
prebiotic with well-displayed, consistent health benefits [8] and is composed of sugar oligomers
composed of xylose units [9], found naturally in fruits, vegetables, milk, honey and bamboo
shoots. XOS is commonly produced from xylan containing lignocellulosic materials through various
chemical methods, direct enzymatic hydrolysis, or a combination of both treatments [10–14]. Inulin is
a heterogeneous blend of fructose polymers (degree of polymerization, DP < 10) [15] which occurs
naturally in thousands of plant species, including wheat, onion, bananas, garlic and chicory [16].
Beta-glucan is a polysaccharide composed of D-glucose monomers with beta-glycosidic linkages,
present in either linear chains in grains, such as oat and barley (up to 7%), or in branched structures
in fungi, yeast and certain bacteria [17]. These prebiotics, or prebiotic mixtures, each provide
a unique carbon source for selective stimulation of different bacterial taxa and are important
microbiota-shaping compounds.

Because no analytical method currently exists to measure the prebiotic capacity of foods in terms
of their influence on gastrointestinal taxa, this field relies heavily on fecalbiotics (living or once living
fecal microbial populations) to quantify the effects of these compounds. In vitro fermentation models
allow for quantitative analysis of specific materials and are semi-representative models of colonic
fermentation [18]. Although not a complete substitute for human studies, when paired with in vivo
models, in vitro analysis can be an accurate systematic approach to analyzing different parameters
and end points in colonic fermentation [19].

With the recent release of the International Scientific Association for Probiotics and Prebiotics
consensus statement, XOS has been categorized as a prebiotic or prebiotic candidate [3]. The prebiotic
effects of XOS have previously been summarized by Broekaert et al. [20]. While there is less evidence
supporting the prebiotic effects of XOS compared to other types of prebiotics, studies have shown
that XOS supplementation in humans can increase SCFA and bifidobacteria, as well as improve
stool consistency and frequency [21–23]. This paper compares the fermentation effects of XOS to
previously established prebiotics (inulin and beta-glucans) in a controlled in vitro model. To the
authors’ knowledge, this is the first controlled in vitro study comparing the effects of XOS to these
known prebiotics. The objective of this project was to compare currently available prebiotics by their
ability to change specific taxa as well as compare differences in the production of gas and common short
chain fatty acids (SCFA) between these products. Inulin, XOS and beta-glucan based products were
chosen for this experiment because they are established and emerging prebiotics that are commonly
consumed, and offer well-demonstrated health benefits to their consumers.

2. Materials and Methods

2.1. Prebiotic Dietary Fibers Analyzed

Five common prebiotic dietary fibers were chosen for this study (Table 1), including different
types of beta-glucans, inulin and xylooligosaccharide supplements.

Table 1. Comparison Prebiotic Dietary Fibers Analyzed with in vitro Fermentation System.

Prebiotic Dietary Fibers Supplier Information

OatWell (Oatbran containing 28% beta-glucan) DSM Nutritional Products, Ltd. (Kaiseraugust, Switzerland)
WholeFiber (A dried chicory root blend containing: inulin, pectin, hemi/cellulose) WholeFiber, Inc. (Pennington, NJ, USA)

Xylooligosaccharide (XOS) AIDP, Inc. (Industry, CA, USA)
Pure Inulin Cargill, Inc. (Wayzata, MN, USA)

Pure Beta-glucan Megazyme, Inc. (Bray, Wicklow, Ireland)
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2.2. Donor Information

Fecal samples were collected from three healthy volunteers (2 males, 1 female) under anaerobic
conditions. Donors included individuals (ages 22–28) consuming non-specific Western diets, who do
not consume any supplements, including fiber supplements. Donors were non-smokers, did not
receive any antibiotic treatments in the last year, and were not affected by any known gastrointestinal
diseases (Table 2).

Table 2. Demographic Characteristics of Three Fecal Donors.

Demographic characteristics Donor 1 Donor 2 Donor 3

Age 26 25 22
Sex Female Male Male

Body Mass Index (kg/m2) 28.1 26.3 23.0

2.3. Fecal Collection

Fecal samples were anaerobically collected within 5 min of the start of the fermentation
(Medline Specimen Collection Kit, Medline, Inc., Rogers, MN, USA), and homogenized immediately
upon collection. All data and samples collected were done in accordance with University of Minnesota
policies and procedures.

2.4. Fermentation

The fiber samples were fermented using in vitro methods to mimic the environment of the
distal colon. These methods have been used in previous in vitro studies, including Koecher et al.,
who found complementary results between these in vitro methods and a human intervention study
of the same fibers [24]. Fiber samples (0.5 g) were hydrated in 40 mL of prepared sterile trypticase
peptone fermentation media in 100 mL serum bottles, capped, and incubated for 12 h at 4 ◦C to
limit possibility of microbial growth [25]. Following incubation, serum bottles were transferred to
a circulating water bath at 37 ◦C for 2 h to allow the samples to reach body temperature. Post-collection,
fecal samples were mixed using a 6:1 ratio of phosphate buffer solution to fecal sample. After mixing,
obtained fecal slurry was combined with prepared reducing solution (2.52 g cysteine hydrochloride,
16 mL 1 N NaOH, 2.56 g sodium sulfide nonanhydride, 380 mL DD H2O) at a 2:15 ratio. 10 mL of the
prepared fecal inoculum was added to each of the serum bottles, 0.8 mL Oxyrase® was added, flushed
with CO2, sealed, and then immediately placed in a 37 ◦C circulating water bath. Fecal inoculum
control samples with no fiber added were prepared for SCFA and gas production comparison. Baseline
pH of the fermentation media was measured, with a mean of 6.83 ± 0.04, to mimic the environment of
the distal colon. Samples were prepared in triplicate and analyzed at 0, 12 and 24 h. Upon removal at
each time point, total gas volume was measured. Then samples were divided into aliquots for analysis
and 1 mL of copper sulfate (200 g/L) was added to cease fermentation. All samples were immediately
frozen and stored at −80 ◦C for further analysis.

2.5. SCFA Analysis

SCFA samples were extracted according to Schneider et al. [26] with minor modifications, and
analyzed with previously described methods [27].

2.6. DNA Extractions

Fecal bacteria DNA from the in vitro system were extracted using a PowerSoil DNA Isolation
Kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA) following the provided operating instruction,
including bead beating for 20 min.
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2.6.1. Primary/Secondary Amplification

The V1-V3 region of the 16S rRNA was amplified using a two-step PCR protocol. The primary
amplification was done using an ABI7900 qPCR machine (Applied Biosystems, Foster City, CA, USA).
The following recipe was used: 3 µL template DNA, 0.48 µL nuclease-free water, 1.2 µL 5× KAPA
HiFi buffer (Kapa Biosystems, Woburn, MA, USA), 0.18 µL 10 mM dNTPs (Kapa Biosystems,
Woburn, MA, USA), 0.3 µL DMSO (Fisher Scientific, Waltham, MA, USA), 0.12 µL ROX (25 µM)
(Life Technologies, Carlsbad, CA, USA), 0.003 µL 1000× SYBR Green, 0.12 µL KAPA HiFi Polymerase
(Kapa Biosystems, Woburn, MA, USA), 0.3 µL forward primer (10 µM), 0.3 µL reverse primer (10 µM).
Cycling conditions were: 95 ◦C for 5 min, followed by 20 cycles of 98 ◦C for 20 s, 55 ◦C for 15 s, and 72 ◦C
for 1 min. The primers for the primary amplification contained both 16S-specific primers (V1_27F and
V3_V34R), as well as adapter tails for adding indices and Illumina flow cell adapters in a secondary
amplification. The following primers were used (16S-specific sequences in bold): Meta_V1_27F
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGTTTGATCMTGGCTCAG) and Meta_V3_534R
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG).

The amplicons from the primary PCR were diluted 1:100 in sterile, nuclease-free water,
and a second PCR reaction was set up to add the Illumina flow cell adapters (Illumina Inc., San Diego,
CA, USA) and indices. The secondary amplification was done on a fixed block BioRad Tetrad PCR
machine (Bio-Rad Laboratories, Inc., Hercules, CA, USA) using the following recipe: 5 µL template
DNA, 1 µL nuclease-free water, 2 µL 5× KAPA HiFi buffer (Kapa Biosystems, Woburn, MA, USA), 0.3 µL
10 mM dNTPs (Kapa Biosystems, Woburn, MA, USA), 0.5µL DMSO (Fisher Scientific, Waltham, MA, USA)
0.2 µL KAPA HiFi Polymerase (Kapa Biosystems, Woburn, MA, USA), 0.5 µL forward primer (10 µM),
0.5 µL reverse primer (10 µM). Cycling conditions were: 95 ◦C for 5 min, followed by 10 cycles of 98 ◦C
for 20 s, 55 ◦C for 15 s, 72 ◦C for 1 min, followed by a final extension at 72 ◦C for 10 min. The following
indexing primers were used (X indicates the positions of the 8 bp indices): Forward indexing
primer: AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC and Reverse
indexing primer: CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG.

2.6.2. Normalization and Sequencing

The samples were normalized using a SequalPrep capture-resin bead plate (Life Technologies,
Carlsbad, CA, USA) and pooled using equal volume. The final pools were quantified via PicoGreen
dsDNA assay (Life Technologies, Carlsbad, CA, USA) and diluted to 2 nM. 10 µL of the 2 nM pool was
denatured with 10 µL of 0.2 N NaOH, diluted to 8 pM in Illumina’s HT1 buffer, spiked with 15% phiX,
heat denatured at 96 ◦C for 2 min, and sequenced using a MiSeq 600 cycle v3 kit (Illumina, San Diego,
CA, USA).

2.6.3. Sequence Processing and Analysis

Generated sequence data was processed and analyzed using QIIME [28]. Fastq sequence data
was processed with the University of Minnesota’s gopher-pipeline for metagenomics [29]. Sequence
data had adapters removed and sliding quality trimming window by Trimmomatic [30]; primers
removed and overlapping reads merged by Pandaseq [31]. Within QIIME, chimera checking done
by chimera slayer, Open reference OTU picking completed with Usearch61, taxonomic identification
using GreenGenes (Version 13.8) reference database, rarefied to 14,393 sequences per sample. Analysis
was performed using R (R Development Core Team, Vienna, Austria, 2012).

2.7. Statistical Analysis

All statistical analysis was performed using R software (Version 3.2.2, R Development Core
Team, Vienna, Austria, 2012). Differences in means were determined using the Kruskal-Wallis
ANOVA test, testing the null hypothesis that the location parameter of the groups of abundancies
for a given OTU is the same. Multiple comparisons were corrected using the Benjamini-Hochberg
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FDR (false discovery rate) procedure for multiple comparisons. For gas and SCFA data, ANOVA with
Tukey HSD was used to compare means. Significance was set for p-values < 0.05 for all statistical tests.

2.8. Consent Ethics Approval Code

Voluntary informed consent was obtained from all fecal donors prior to this study according to
University of Minnesota policies and procedures.

3. Results

3.1. Gas Production

At 12 h, the OatWell and the pure beta-glucan samples produced similar amounts of total gas
(Figure 1). The XOS samples produced significantly more gas than the pure beta glucan samples
(p < 0.01) or the OatWell samples (p < 0.01). The WholeFiber and pure inulin samples produced similar
amounts of total gas (p = 0.102), and the total gas production for both of these prebiotic dietary
fibers was significantly higher than the XOS samples, (p < 0.01 and p = 0.045), respectively. At 24 h,
the OatWell samples had the lowest gas production (46.2 mL) and were similar to the pure beta-glucan
samples (63.7 mL; p = 0.498). The 24 h XOS samples (74.0 mL) were also similar to the beta-glucan
samples (p = 0.926). However, the 24 h WholeFiber (109.6 mL) and pure inulin (107.1 mL) samples
produced significantly more gas than XOS, beta-glucan and Oatwell samples (p < 0.01). Individual
variation in gas production can be seen in Table S1.
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Figure 1. Total gas production comparing fermentation differences among five prebiotic dietary
fibers for three individuals at 12 h and 24 h post-exposure to fecal microbiota in an in vitro
fermentation system. Data displayed are means (3 donors × 3 replicates = 9) for each prebiotic dietary
fiber ± SD. Columns with different letters are significantly different from one another within each time
measurement (lowercase: 12 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD
(p < 0.05).

3.2. SCFA Production

For all SCFA analysis, analysis at 12 and 24 h shows production only, from baseline corrected
samples. Acetate, propionate and butyrate production is shown as µmol/mL of fermentation media.
Individual variation in SCFA production can be seen in Table S1.

Acetate production at 12 h was similar for the Oatwell, WholeFiber and beta-glucan samples
(Figure 2). The XOS samples produced significantly more acetate at 12 h than the Oatwell, WholeFiber
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or beta-glucan samples (p < 0.05). The inulin samples had similar amounts of acetate compared to the
WholeFiber and XOS samples, and significantly more than the Oatwell (p = 0.024) and beta-glucan
(p = 0.013) samples at 12 h. After 24 h, the inulin samples contained less acetate than the XOS samples
(p = 0.038), while the Oatwell, WholeFiber and beta-glucan samples were similar to both the XOS and
inulin samples.

Nutrients 2017, 9, 1361 6 of 17 

 

WholeFiber and XOS samples, and significantly more than the Oatwell (p = 0.024) and beta-glucan (p 
= 0.013) samples at 12 h. After 24 h, the inulin samples contained less acetate than the XOS samples 
(p = 0.038), while the Oatwell, WholeFiber and beta-glucan samples were similar to both the XOS and 
inulin samples. 

Propionate production at 12 h of fermentation was highest for the OatWell samples (4.76 
μmol/mL) and was significantly greater than the WholeFiber (p = 0.029), XOS (p = 0.005) and inulin 
samples (p = 0.004), and similar to the beta-glucan samples (Figure 3). At 24 h of fermentation, the 
Oatwell samples had the highest mean production 5.05 μmol/mL, which was significantly greater 
than the XOS samples (2.58 μmol/mL; p = 0.021), and similar to WholeFiber, inulin and beta-glucan 
samples. 

 
Figure 2. Acetate production at 12 h and 24 h of fermentation for five prebiotic dietary fibers displayed 
as μmol/mL of fermentation inoculum. Data displayed are means (3 donors × 3 replicates = 9) for each 
prebiotic dietary fiber ± SD. Columns with different letters are significantly different from one another 
(lowercase: 12 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD (p < 0.05). 

 
Figure 3. Propionate production at 12 h and 24 h of fermentation for five prebiotic dietary fibers 
displayed as μmol/mL of fermentation inoculum. Data displayed are means (3 donors × 3 replicates 
= 9) for each prebiotic dietary fiber ± SD. Columns with different letters are significantly different from 
one another (lowercase: 12 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD 
(p < 0.05). 

Butyrate production after 12 h of fermentation ranged from 7.30 μmol/mL for the beta-glucan 
samples to 16.76 μmol/mL for the inulin samples (Figure 4). The inulin samples had the highest 
average production, and were similar to the XOS (16.38 μmol/mL) and WholeFiber samples (12.89 
μmol/mL). The XOS samples were significantly higher than the Oatwell (p = 0.035) and beta-glucan 
samples (p = 0.014). At 24 h of fermentation, all five prebiotic dietary fibers were statistically similar 
to one another, ranging from 7.93–14.08 μmol/mL due to a wide ranges in response differences 
between the three fecal donors used in this study. 

Figure 2. Acetate production at 12 h and 24 h of fermentation for five prebiotic dietary fibers displayed
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prebiotic dietary fiber ± SD. Columns with different letters are significantly different from one another
(lowercase: 12 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD (p < 0.05).

Propionate production at 12 h of fermentation was highest for the OatWell samples (4.76 µmol/mL)
and was significantly greater than the WholeFiber (p = 0.029), XOS (p = 0.005) and inulin samples
(p = 0.004), and similar to the beta-glucan samples (Figure 3). At 24 h of fermentation, the Oatwell
samples had the highest mean production 5.05 µmol/mL, which was significantly greater than the
XOS samples (2.58 µmol/mL; p = 0.021), and similar to WholeFiber, inulin and beta-glucan samples.
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Figure 3. Propionate production at 12 h and 24 h of fermentation for five prebiotic dietary fibers
displayed as µmol/mL of fermentation inoculum. Data displayed are means (3 donors × 3 replicates = 9)
for each prebiotic dietary fiber ± SD. Columns with different letters are significantly different from
one another (lowercase: 12 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD
(p < 0.05).

Butyrate production after 12 h of fermentation ranged from 7.30 µmol/mL for the beta-glucan
samples to 16.76 µmol/mL for the inulin samples (Figure 4). The inulin samples had the highest average
production, and were similar to the XOS (16.38 µmol/mL) and WholeFiber samples (12.89 µmol/mL).
The XOS samples were significantly higher than the Oatwell (p = 0.035) and beta-glucan samples
(p = 0.014). At 24 h of fermentation, all five prebiotic dietary fibers were statistically similar to one
another, ranging from 7.93–14.08 µmol/mL due to a wide ranges in response differences between the
three fecal donors used in this study.
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prebiotic dietary fiber ± SD. Columns with different letters are significantly different from one another
(lowercase: 24 h; uppercase: 24 h). Data were analyzed using ANOVA with Tukey HSD (p < 0.05).

3.3. Microbiota Analysis

Extracted DNA from in vitro samples were sequenced using the MiSeq Illumina platforms
(Illumina Inc., San Diego, CA, USA) generating a total of 31,591,899 sequence reads. Sequencing
parameters identified reads belonging to 11 bacterial phyla, 61 families and 97 genera.

For all three donors, the phyla Bacteroidetes and Firmicutes represented > 80% of all sequence reads
(Figure S1) across 24 h of fermentation. At the family level, 13 families represented 85% of all sequence
reads (Figure S2), while 11 genera represented >75% of all sequence reads (Figure S3). Six metrics
measuring α-diversity for all donors showed various degrees of similarity by donors (Figure S4),
and by treatment (Figure S5). Both Unifrac and Bray-Curtis β-diversity metrics (measuring pairwise
dissimilarity between samples), showed similarity among technical replicates of treatment groups for
each donor (Figure S6) as well as for all treatment groups for each respective donor (Figure S7).

After 24 h of fermentation, the Oatwell samples significantly decreased the population of SMB53
(0 h:9.11 OTUs; 24 h:2.11 OTUs; p = 0.008), Lachnospira and Faecalibacterium (0 h:26.56 OTUs; 24 h:4.44
OTUs; p = 0.008 and 0 h 136.44 OTUs; 24 h:66 OTUs; p = 0.022, respectively) (Table 3). No genera
analyzed showed significant increases in 24 h for the Oatwell samples measured for the three fecal
donors in this study. The WholeFiber samples (Table 4) significantly increased the genus Collinsella at
24 h compared to 0 h (0 h:68 OTUs; 24 h:299.78 OTUs; p = 0.011). Bifidobacterium populations were
only significantly increased at 24 h compared to 0 h for the XOS samples (0 h:0.67 OTUs; 24 h:5.22 OTUs;
p = 0.038), while the same samples showed a significant decrease in Lachnospira and Faecalibacterium
(p = 0.038 and p = 0.03) (Table 5). The inulin samples (Table 6) increased Collinsella (0 h:55.11 OTUs;
24 h:291.44 OTUs; p = 0.016). The pure beta glucan samples significantly decreased Lachnospira and
Faecalibacterium (p = 0.008) (Table 7).

Table 3. Combined changes across 24 h of fermentation for Oatwell samples of identified genera 1.

Genera 0 h 24 h p-Value

Actinobacteria
Bifidobacterium 1.22 0.89 0.660
Adlercreutzia 1.44 3.00 0.470

Collinsella 48.44 140.56 0.089

Bacteroidetes
Alistipes 2.56 1.33 0.674

Parabacteroides 135.00 155.89 0.952
Bacteroides 755.67 865.00 0.192
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Table 3. Cont.

Genera 0 h 24 h p-Value

Firmicutes
Eubacterium 0.44 0.56 0.817
Veillonella 1.11 1.22 0.980

Dorea 2.33 3.56 0.516
Acidaminococcus 3.22 10.44 0.817

Clostridium 7.67 8.33 0.769
Anaerostipes 8.11 6.00 0.674
Turicibacter 8.67 1.22 0.286

SMB53 9.11 2.11 0.008 *
Ruminococcus 11.22 23.22 0.263

Lactococcus 11.67 10.67 0.980
Streptococcus 15.22 8.11 0.511

Roseburia 20.22 22.33 0.980
Oscillospira 21.78 36.67 0.121
Lachnospira 26.56 4.44 0.008 *

Phascolarctobacterium 27.78 173.33 0.263
Dialister 39.56 43.00 0.560
Blautia 41.89 53.11 0.470

Coprococcus 49.89 39.00 0.396
Ruminococcus 61.33 40.67 0.289

Faecalibacterium 136.44 66.00 0.022 *

Proteobacteria
Escherichia 0.44 1.44 0.325

Haemophilus 10.22 0.67 0.286
Sutterella 10.78 14.44 0.980
Bilophila 13.67 14.78 0.788

Verrucomicrobia
Akkermansia 5.00 12.00 0.980

1 Replicate samples were pooled among donor at each respective time point (3 donors × 3 replicated = 9).
Samples were analyzed between differentially represented OTUs for significant changes after 24 h of fermentation
compared to 0 h samples. Values are the number of OTUs after rarefaction to 3668 sequences per sample. Data were
analyzed using the Kruskal-Wallis ANOVA test, with the FDR (false discovery rate) multiple comparisons correction.
* Indicates significance at p ≤ 0.05.

Table 4. Combined changes across 24 h of fermentation for WholeFiber samples of identified genera 1.

Genera 0 h 24 h p-Value

Actinobacteria
Adlercreutzia 0.89 3.89 0.239

Bifidobacterium 1.11 1.11 0.785
Collinsella 68.00 299.78 0.011 *

Bacteroidetes
Alistipes 1.11 0.56 0.894

Parabacteroides 131.44 142.00 0.913
Bacteroides 743.56 776.56 0.785

Firmicutes
Eubacterium 1.11 0.78 0.799
Veillonella 1.22 1.00 0.960

Dorea 2.00 5.00 0.785
Acidaminococcus 2.67 11.33 0.894

SMB53 5.67 4.00 0.239
Clostridium 7.33 13.22 0.896
Anaerostipes 10.22 1.22 0.239

Ruminococcus 10.89 19.67 0.943
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Table 4. Cont.

Genera 0 h 24 h p-Value

Firmicutes
Streptococcus 12.67 8.78 0.785
Turicibacter 14.22 2.44 0.960
Lachnospira 14.78 72.00 0.237
Oscillospira 17.22 14.89 0.647
Lactococcus 20.44 9.22 0.896

Phascolarctobacterium 24.67 60.44 0.501
Dialister 26.11 58.22 0.943
Roseburia 28.56 6.00 0.674

Blautia 32.44 49.44 0.156
Coprococcus 45.78 66.44 0.501

Ruminococcus 54.22 39.33 0.261
Faecalibacterium 154.89 93.11 0.080

Proteobacteria
Escherichia 0.78 1.44 0.960
Sutterella 4.00 32.44 0.894

Haemophilus 10.67 0.56 0.107
Bilophila 10.67 7.67 0.896

Verrucomicrobia
Akkermansia 17.00 3.33 0.501

1 Replicate samples were pooled among donor at each respective time point (3 donors × 3 replicated = 9).
Samples were analyzed between differentially represented OTUs for significant changes after 24 h of fermentation
compared to 0 h samples. Values are the number of OTUs after rarefaction to 3668 sequences per sample. Data were
analyzed using the Kruskal-Wallis ANOVA test, with the FDR multiple comparisons correction. * Indicates
significance at p ≤ 0.05.

Table 5. Combined changes across 24 h of fermentation for xylooligosaccharide samples of identified genera 1.

Genera 0 h 24 h p-Value

Actinobacteria
Bifidobacterium 0.67 5.22 0.038 *
Adlercreutzia 1.33 1.78 0.972

Collinsella 58.44 154.00 0.413

Bacteroidetes
Alistipes 1.44 0.56 0.413

Parabacteroides 147.33 133.33 0.972
Bacteroides 770.89 870.44 0.189

Firmicutes
Eubacterium 0.33 1.67 0.364
Veillonella 0.67 0.00 0.162

Acidaminococcus 1.33 2.33 0.972
Dorea 2.11 3.67 0.423

SMB53 7.33 5.44 0.558
Anaerostipes 7.44 3.44 0.447
Turicibacter 8.00 8.56 0.972
Clostridium 8.44 4.00 0.087

Ruminococcus 12.78 26.11 0.087
Streptococcus 14.11 4.67 0.367
Lachnospira 21.11 5.33 0.038 *
Oscillospira 21.33 21.78 0.972

Phascolarctobacterium 23.44 16.33 0.972
Lactococcus 23.89 21.00 0.982
Roseburia 28.89 35.33 0.972
Dialister 33.89 41.56 0.831
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Table 5. Cont.

Genera 0 h 24 h p-Value

Firmicutes
Blautia 39.22 65.00 0.087

Ruminococcus 45.11 37.33 0.385
Coprococcus 47.11 48.67 0.705

Faecalibacterium 148.56 79.56 0.030 *

Proteobacteria
Escherichia 0.89 0.44 0.972

Haemophilus 6.44 3.11 0.972
Bilophila 17.78 6.22 0.107
Sutterella 25.78 40.89 0.831

Verrucomicrobia
Akkermansia 2.78 5.00 0.841

1 Replicate samples were pooled among donor at each respective time point (3 donors × 3 replicated = 9).
Samples were analyzed between differentially represented OTUs for significant changes after 24 h of fermentation
compared to 0 h samples. Values are the number of OTUs after rarefaction to 3668 sequences per sample. Data were
analyzed using the Kruskal-Wallis ANOVA test, with the FDR multiple comparisons correction. * Indicates
significance at p ≤ 0.05.

Table 6. Combined changes across 24 h of fermentation for pure inulin samples of identified genera 1.

Genera 0 h 24 h p-Value

Actinobacteria
Bifidobacterium 1.33 5.44 0.304
Adlercreutzia 1.33 2.00 0.845

Collinsella 55.11 291.44 0.016 *

Bacteroidetes
Alistipes 1.56 0.89 0.878

Parabacteroides 147.44 164.78 0.887
Bacteroides 726.78 644.44 0.652

Firmicutes
Veillonella 0.78 0.56 0.908

Eubacterium 0.89 1.56 0.908
Dorea 1.78 7.00 0.640

Acidaminococcus 3.11 18.67 0.887
SMB53 7.44 9.11 0.965

Turicibacter 7.78 4.89 0.652
Clostridium 8.22 7.11 0.845

Ruminococcus 9.56 34.11 0.309
Anaerostipes 11.22 4.67 0.652
Streptococcus 13.00 12.44 0.887
Lactococcus 19.11 9.67 0.908
Lachnospira 21.00 4.89 0.022 *

Phascolarctobacterium 26.22 21.00 0.887
Oscillospira 26.33 10.11 0.034 *
Roseburia 26.78 14.11 0.887
Dialister 32.67 95.11 0.887
Blautia 38.22 50.22 0.690

Coprococcus 48.11 60.89 0.640
Ruminococcus 52.33 43.00 0.908

Faecalibacterium 148.11 187.33 0.652

Proteobacteria
Escherichia 1.00 1.22 0.908

Haemophilus 9.11 2.67 0.652
Sutterella 14.00 31.22 0.908
Bilophila 16.89 7.78 0.309
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Table 6. Cont.

Genera 0 h 24 h p-Value

Verrucomicrobia
Akkermansia 7.78 7.44 0.304

1 Replicate samples were pooled among donor at each respective time point (3 donors × 3 replicated = 9).
Samples were analyzed between differentially represented OTUs for significant changes after 24 h of fermentation
compared to 0 h samples. Values are the number of OTUs after rarefaction to 3668 sequences per sample. Data were
analyzed using the Kruskal-Wallis ANOVA test, with the FDR multiple comparisons correction. * Indicates
significance at p ≤ 0.05.

Table 7. Combined changes across 24 h of fermentation for pure beta-glucan samples of identified genera 1.

Genera 0 h 24 h p-Value

Actinobacteria
Bifidobacterium 0.33 0.33 1.000
Adlercreutzia 2.00 1.89 0.843

Collinsella 69.22 85.11 0.723

Bacteroidetes
Alistipes 0.78 0.89 0.778

Parabacteroides 119.56 179.78 0.778
Bacteroides 776.11 854.33 0.664

Firmicutes
Eubacterium 0.11 0.44 0.778
Veillonella 0.56 0.22 0.778

Dorea 0.89 3.11 0.110
Acidaminococcus 2.33 15.11 0.778

SMB53 6.11 4.89 0.778
Lactococcus 6.11 0.67 0.778
Anaerostipes 7.44 5.22 0.778
Turicibacter 8.11 3.00 0.803

Ruminococcus 9.44 18.67 0.166
Clostridium 10.11 3.33 0.110

Streptococcus 14.89 6.44 0.256
Roseburia 16.11 54.33 0.510

Lachnospira 21.22 3.89 0.008 *
Oscillospira 24.33 35.11 0.389

Phascolarctobacterium 29.00 125.33 0.283
Dialister 30.56 43.67 0.819

Coprococcus 44.11 20.78 0.211
Blautia 45.11 68.11 0.408

Ruminococcus 59.67 44.44 0.500
Faecalibacterium 152.11 62.67 0.008 *

Proteobacteria
Escherichia 0.89 0.56 0.778

Haemophilus 11.00 0.78 0.110
Sutterella 14.00 35.44 0.778
Bilophila 14.44 13.89 0.778

Verrucomicrobia
Akkermansia 9.11 15.89 0.778

1 Replicate samples were pooled among donor at each respective time point (3 donors × 3 replicated = 9).
Samples were analyzed between differentially represented OTUs for significant changes after 24 h of fermentation
compared to 0 h samples. Values are the number of OTUs after rarefaction to 3668 sequences per sample. Data were
analyzed using the Kruskal-Wallis ANOVA test, with the FDR multiple comparisons correction. * Indicates
significance at p ≤ 0.05.
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4. Discussion

The aim of this study was to investigate the beneficial effects of commonly consumed prebiotic
dietary fibers, including their ability to influence the growth of identified bacterial populations, form
beneficial SCFAs, and the amount of gas they produce due to fermentation. Total gas production due to
fiber fermentation depends on a wide range of factors. The inulin samples and the WholeFiber samples
(mixture of dried chicory root inulin, pectin and hemi/cellulose) resulted in the highest gas production
at both 12 and 24 h. These results are consistent with results from both clinical feeding studies and
other in vitro experiments, in which fermentation of inulin products resulted in high amounts of
gas production, sometimes resulting in mild negative gastrointestinal symptoms, depending on
the dosage [32,33]. Similar in vitro studies have found inulin to be much more fermentable than
beta-glucan products, for both barley and oat-derived beta-glucans [34]. XOS fermentation results in
less gas production than the inulin products, and more gas than beta-glucan products. Because of these
findings, previous studies based on digestive tolerance and parameters have established a tolerated
daily dosage for XOS of approximately 12 g/day [35].

SCFA production due to the fermentation of prebiotic dietary fibers promotes many beneficial
health outcomes to the host. SCFA production may contribute to up to 10% of the host’s metabolizable
energy daily, with production of total SCFAs usually between 100–200 mmol/day, but is highly
dependent on the donor and availability of substrates for fermentation [36,37]. At 12 h of fermentation,
the OatWell and beta-glucan samples had significantly higher concentrations of propionate, and the
highest mean concentration at 24 h, compared to the other prebiotic dietary fibers analyzed.
Similar in vitro studies with beta-glucan based products have also shown similar preference for
these products to result in propionate formation [34]. Although no mechanism has been identified,
and studies show conflicting results [38], elevated serum propionate concentrations have been shown
to have a hypocholesterolaemic effect [39]. Propionate may also play an influential role in satiety,
although mechanisms still remain unclear [40,41]. Cholesterol-lowering properties of beta-glucans
may be limited to effects from the upper-GI, although many propionate-producing bacteria have
a preference to fermenting various types of beta-glucans (Bacteroides, Prevotella, Clostridium) based on
the presence of genes responsible for endo-β-glucanase enzyme production [42].

Microbial diversity among fecal donors complicates the identification of trends among the
five treatment groups (Supplemental Figures S8 and S9). In terms of taxonomic shift, the inulin-based
products were fermented nearly identically by all three fecal donors. Both pure inulin and WholeFiber
promoted the growth of Collinsella comparing the 24 h samples to the 0 h samples. Inulin-type fructans
have been shown in clinical studies to promote substantial growth of Collinsella, paralleled with
increased urinary hippurate levels [43]. Hippurate is a metabolite derived from various fermentation
processes in the gut that has been found in decreased concentrations in obese individuals compared to
lean individuals, and also between diabetics and non-diabetics [44–46]. The genus Collinsella has
been found in lower concentrations in individuals with IBD compared to healthy controls [47],
while Collinsella aerofaciens has been associated with low risk of colorectal cancer [48]. Increases
in Collinsella and increased urinary hippurate levels are considered a beneficial effect of inulin
consumption due to its prebiotic capacity [43]. In vivo studies with inulin, scFOS and resistant starch
supplementation have found decreases in the SMB53 genus, consistent with the OatWell treatment in
the present study [30,31].

A significant increase in the genus Bifidobacterium was observed only with the XOS treatment.
Rycroft et al. found a similar affinity of Bifidobacterium toward XOS [49]. However, previous studies
have shown inulin to also stimulate the growth of Bifidobacterium [49–52]. While there was an overall
rise in Bifidobacterium with the inulin treatment group between 0 h and 24 h (1.33, 5.44 OTUs
respectively), this study did not find that increase to be significant (p = 0.304). The small sample size
and individual microbiome variability likely played a role in this result. Increases in Bifidobacterium
have been heavily studied and reviewed, and are considered a beneficial effect due to their correlation
with many positive health outcomes [1]. Bifidobacteria reside naturally in the gastrointestinal tract of
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healthy human adults and have a strong affinity to ferment oligosaccharides, making them a common
marker for prebiotic capacity. Bifidobacterium is a unique genus of bacteria in that no gas is formed as
an end product of metabolism [53]. Like Lactobacillus, these bacteria are saccharolytic, often considered
a beneficial trait [54]. Bifidobacteria also do not produce any known carcinogenic substances in vivo.
Bifidobacteria concentrations have been negatively associated with obesity and weight gain [55–58].
Increases in Bifidobacteria have also been correlated with a decrease in blood lipopolysaccharides (LPS),
inflammatory reagents that play a role in the development of inflammatory metabolic disorders and
conditions, and are primarily found in gram-negative bacteria [59]. LPS induce the activation of
Toll-like receptor 4 (TLR4), which leads to inflammation due to release of pro-inflammatory cytokines
and chemokines [60].

In vitro fermentations are semi-representative models of colonic fermentation, but have
limitations [18]. This study did not include an in vitro digestion process, which would remove
digestible contents from the samples prior to fermentation, and would be a more representative
model. However, because the test substrates are primarily fiber, which is non-digestible, this should
have minimal impact on the results of this study. In vivo, formed gases are continually absorbed and
colonic absorption is rapid. Because SCFAs are rapidly absorbed and difficult to measure, in vitro
models help to understand the kinetics of colonic fermentation. However, in vitro models must be
paired with similar in vivo models to better understand the full mechanisms of action resulting from
colonic fermentation of prebiotic dietary fibers. Because the SCFA are not absorbed in in vitro models,
the SCFA produced can alter the pH of the fermentation media. While the fermentation media was
designed to mimic the pH of the distal colon at baseline, the pH of the media in this study was
not further controlled throughout the experiment. This is another limitation of this in vitro model.
An additional limitation of this study was the small sample size. The present study was conducted
using fecal inoculum from only three donors. Due to the individual variability between the donor’s
microbiota (Figure S7), a larger sample size may be needed to achieve a more representative view of
the effects of each of the fibers.

5. Conclusions

All five prebiotics measured in this study display fermentability and SCFA production that could
have potential health benefits. Depending on their structure, each compound offers a specific carbon
source for fermentation by different bacterial populations, yielding changes in beneficial taxa and
production of various amounts of SCFAs and gas in vitro. For instance, while OatWell and beta-glucans
promoted propionate production, XOS increased concentrations of Bifodobacterium, and WholeFiber
and pure inulin promoted Collinsella growth. Findings in this study are consistent with other in vitro
studies with similar prebiotic dietary fibers, as well as clinical feeding studies [34,43,49,61–63].

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/12/1361/s1.
Table S1: Gas and SCFA Production Comparing Fermentation Differences of Five Prebiotic Dietary Fibers at
12 h and 24 h Post-Exposure to Fecal Microbiota from Three Individual Donors in an In Vitro Fermentation
System, Figure S1: Identified phyla from three fecal donors microbiota at 0, 12 and 24 h of fermentation for five
prebiotic dietary fibers analyzed based on percent of sequence reads, Figure S2: Identified abundant families for
three fecal donors at 0, 12 and 24 h of fermentation for five prebiotic dietary fibers analyzed based on percent of
sequence reads, Figure S3: Identified abundant genera for three fecal donors at 0, 12 and 24 h of fermentation
for five prebiotic dietary fibers analyzed based on percent of sequence reads, Figure S4: Six metrics of analysis
for alpha-diversity among samples at 0, 12 and 24 h of analysis, grouped by donor for all five prebiotic dietary
fibers analyzed, Figure S5: Six metrics of analysis for alpha-diversity among samples at 0, 12 and 24 h of analysis,
grouped by treatment for all three fecal donors, Figure S6: Bray-Curtis β-diversity principal component analysis
of technical replicates among each treatment group between microbiota analysis of three fecal donors, Figure S7:
Bray-Curtis β-diversity principal component analysis among microbiota of three fecal donors at 0, 12 and 24 h of
analysis, Figure S8: Variations in abundant phyla among three donors analyzed, Figure S9: Variations in treatment
groups and pooled donors analyzed.
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