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The study of inborn errors of immunity (IEI) provides unique opportunities to elucidate the
microbiome and pathogenic mechanisms related to severe viral infection. Several
immunological and genetic anomalies may contribute to the susceptibility to develop
Human Papillomavirus (HPV) pathogenesis. They include different acquired
immunodeficiencies, EVER1-2 or CIB1 mutations underlying epidermodysplasia
verruciformis (EV) syndrome and multiple IEI. Whereas EV syndrome patients are
specifically unable to control infections with beta HPV, individuals with IEI show broader
infectious and immune phenotypes. The WHIM (warts, hypogammaglobulinemia,
infection, and myelokathexis) syndrome caused by gain-of-CXCR4-function mutation
manifests by HPV-induced extensive cutaneous warts but also anogenital lesions that
eventually progress to dysplasia. Here we report alterations of B and NK cells in a female
patient suffering from cutaneous and mucosal HPV-induced lesions due to an as-yet
unidentified genetic defect. Despite no detected mutations in CXCR4, B but not NK cells
displayed a defective CXCR4-dependent chemotactic response toward CXCL12. In
addition, NK cells showed an abnormal distribution with an expanded CD56bright cell
subset and defective cytotoxicity of CD56dim cells. Our observations extend the clinical
and immunological spectrum of IEI associated with selective susceptibility toward HPV
pathogenesis, thus providing new insight on the immune control of HPV infection and
potential host susceptibility factors.

Keywords: WHIM, CXCR4/CXCL12 axis, B lymphocytes, NK cells, HPV
org January 2022 | Volume 13 | Article 7995641

https://www.frontiersin.org/articles/10.3389/fimmu.2022.799564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.799564/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:doria@uniroma2.it
https://doi.org/10.3389/fimmu.2022.799564
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.799564
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.799564&domain=pdf&date_stamp=2022-01-26


Doria et al. B and NK Defects in a WHIM-Like Disorder
INTRODUCTION

More than 200 types of human papilloma virus (HPV) ordered
into 5 genera have been recognized and classified as cutaneous or
mucosal according to their tropism (1). The alpha genus
comprises HPV types mostly associated with the development of
anogenital and oropharyngeal carcinomas whereas the beta genus
can be associated with cutaneous squamous cell carcinoma.
Patients with EV, a rare genodermatosis due to mutations of the
EVER1/EVER2/CIB1 trans-membrane channel proteins, develop
persistent disseminated beta HPV-derived verrucous cutaneous
lesions in sun-exposed areas that might become malignant later in
life (2). These patients show normal adaptive immunity while their
exclusive susceptibility to develop HPV-related disease might be
linked to epithelial homeostasis (2). Recent years have seen
growing evidence of recurrent and severe non-beta genus
restricted HPV infections among immunosuppressed individuals
with T cell primary immunodeficiency (3). Several germline
mutations causing IEI, such as those affecting CXCR4, GATA2,
SASH3 and WAS, have been associated with disseminated
cutaneous and anogenital HPV-induced pathology (3, 4).

The identification of CXCR4 gain of function mutations in the
etiology of the WHIM syndrome has expanded our knowledge of
the physiopathology of this receptor and its CXCL12 chemokine
ligand. In WHIM, premature termination or frameshift mutations
in the cytoplasmic tail of CXCR4 prevent receptor internalization/
desensitization in response to CXCL12 binding, which accounts for
enhancement of CXCR4 expression and chemotactic responses to
CXCL12 (5–7). The exacerbated CXCR4/CXCL12 signaling notably
hampers the trafficking of myeloid cells, results in the retention of
hyper mature neutrophils in the bone marrow (i.e. myelokathexis)
and affects both innate and adaptive immune responses (8–13). In
contrast, the impact of altered CXCR4/CXCL12 axis in NK cells is
still poorly defined (14–16). Over the years, WHIM-like disorders
showing variations both in genotype and phenotype from the
paradigmatic WHIM syndrome have been reported, also
including disorders developing in the absence of CXCR4
mutations (13). Here we report B and NK cell anomalies in a
female patient with HPV-related disease for whom we have
previously proposed a diagnostic hypothesis of WHIM-like
syndrome with wild-type CXCR4 (17). The expression of CXCR4
in peripheral lymphocyte subsets and their CXCR4/CXCL12-
dependent chemotaxis were investigated unveiling a previously
unrecognized B lymphocyte defect discrepant with a WHIM-
related response. Together with the identification of anomalies
affecting the phenotype and the function of NK cells, our data
frame a novel IEI associated with severe HPV infection.

Case Description
Our patient is a 32-year-old female who was described as a
WHIM-like disorder at 26 years of age on the basis of dysplasia
of granulocytes, recurrent infections, HPV-associated disease and
B-cell lymphopenia (17). As previously reported, no family
members showed HPV-susceptibility. However, one brother of
four siblings died due to pneumonia at 6 months of age.
The patient suffered from recurrent upper respiratory tract
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infections treated with antibiotic therapy, mostly in the first two
decades of life. Later on, HPV-associated disease featured the
clinical picture (Figure 1A). Also, early loss of teeth since
childhood, periodontal disease and hepatosplenomegaly was
present. No autoimmune manifestations were observed.
Molecular genetic testing for CXCR4 as well as for GATA2,
NEMO, and CD40L, revealed a wild-type status. Moreover,
significant data did not emerge from the analysis of a previously
described Next Generation Sequencing (NGS) panel that includes
well-defined IEI genes (>300) plus many candidate genes associated
with critical immune pathways (18), andWhole Exome Sequencing
(WES) of the patient and parents (trio). Although in the bone
marrow approximately 10% of neutrophils showed typical
multilobed nuclei reminiscent of myelokathexis, the lack of
perivascular clusters made us describe it as dysplasia of
granulocytes. Moreover, peripheral blood cell counts showed
normal values of neutrophils, monocytes, and lymphocytes but
high levels of eosinophils. Blood smears revealed hypo-segmented
nuclei with long filaments of chromatin connecting nuclear lobes in
neutrophils and eosinophils. Repeated immunophenotypic analysis
of peripheral blood mononuclear cells (PBMCs), before and after
lesion treatment, showed persistent B-cell lymphopenia (3%),
normal distribution of T- and B-cell subsets except for a gradual
increase in CD21low B lymphocytes (from 13.4% to 34%). Serum
immunoglobulin levels, including IgG subclasses and IgE, were
within the normal range. Protective anti-pneumococcus IgG levels
were detected after polysaccharide vaccine, although they tended to
wane over time (17). Also, an adequate humoral and cellular
response to COVID-19 vaccine was observed. Over the years, her
severe foot and hand cutaneous warts continued to benefit from the
treatment attempt with HPV vaccine (three doses and a booster of
Gardasil 4 plus three doses of Gardasil 9), although her mucosal
lesions persisted (19). Recently, she mostly suffered from severe
vulvar and cervical condylomata as well as cervical intraepithelial
neoplasia (grade 3), requiring several biopsies and Loop
Electrosurgical Excision Procedure, twice. Anal intraepithelial
lesions (grade 2) have developed, too. HPV genotyping from
cervical biopsies revealed HPV types 6, 18, 51, and 58.

The cell-surface expression of CXCR4 was comparatively
analyzed by flow cytometry on distinct lymphocyte subsets of our
patient and an age-matched healthy donor (HD) (for detailed
Materials and Methods please see Supplementary Material). The
CXCR4 expression level on CD4+ and CD8+ T lymphocytes was
similar in the patient and in HD (Figure 1B). Instead, patient’s
CXCR4 expression was somewhat reduced on NK cells (30% lower
MFI) but increased on B lymphocytes (47% higher MFI) as
compared with HD cells. We also explored the expression level of
CCR7, a chemokine receptor controlling the homing to secondary
lymphoid tissues of naïve T and B lymphocytes and CD56bright NK
cells, as well as the expression level of CXCR5, controlling homing
of B lymphocytes to follicular compartments on secondary
lymphoid tissues (20, 21). In patient’s cells the relative
expression level of CCR7 was reduced by 30 to 40% in CD4+

T, CD8+ T, and NK cells as compared with values in HD cells.
Finally, relative CXCR5 expression on B lymphocytes was 37%
higher in the patient as compared with HD.
January 2022 | Volume 13 | Article 799564
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The transwell migration assay showed that CD4+ and CD8+ T
lymphocytes as well as NK cells derived from the patient’s blood
displayed a normal chemotactic response towards CXCL12
(Figure 1C), despite the reduction of CXCR4 expression we
observed on patient’s NK cells. The observed dose-response effect
was CXCL12/CXCR4-mediated as revealed by the inhibition
provided by AMD3100, a specific inhibitor of CXCR4. Similarly,
the CCR7-dependent chemotactic response to CCL19 of these
lymphocyte subsets was equivalent in patient- and HD-derived
cells, despite the observed differences in relative CCR7 expression
Frontiers in Immunology | www.frontiersin.org 3
levels. CCR7-dependent chemotactic response of NK cells was
modest in conformity with the overall low CCR7 expression level.
In contrast, for the patient-derived B lymphocytes, the CXCR4-
dependent chemotactic response was strongly reduced as compared
to HD-derived cells, with a loss of chemotactic efficacy of 51 ± 7.6%
and 80 ± 2.8% in response to 50 nMCXCL12 and 100 nMCXCL12,
respectively (Figure 1C), in spite of increased expression levels of
CXCR4 on B lymphocytes. Of note, the response of patient-derived
B-lymphocytes to CXCL13, a ligand of CXCR5, was not affected as
compared with HD.
A

B

C

FIGURE 1 | (A) Clinical history of the patient (CAP, community acquired pneumonia; PID, pelvic inflammatory disease; CIN, cervical intraepithelial neoplasia; AIN,
anal intraepithelial neoplasia; LEEP, loop electrosurgical excision procedure). Chemokine receptor expression and chemotactic response of blood lymphocyte
subsets. (B) Cell surface expression of CXCR4, CCR7 and CXCR5 was analyzed in CD4+ T, CD8+ T, NK, and B cells upon immunolabeling of peripheral blood cells
from the patient (Pt; open histograms) and age-matched HD (filled gray histograms). The control IgG signal (dashed lines) is also shown. Values corresponding to
percentage of positive cells as well as MFI (in brackets) are reported. (C) The chemotactic response of blood lymphocyte subsets was analyzed using whole blood
samples from HD and Pt; results are expressed as percentage of input cells responding to the indicated concentrations of CXCL12, to 100 nM CCL19, or 300 nM
CXCL13. AMD: AMD3100. Arrows indicate chemotactic responses notably reduced in Pt as compared with HD.
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Patient’s NK cells had a normal frequency in peripheral blood
but their subset distribution was profoundly altered (Table 1 and
Figure 2A). We observed a striking expansion of CD56bright cells
(55.6% vs. median 5.8% in HDs) at the expense of CD56dim cells
(43.5% vs. median 87.8% in HDs). Then, we investigated the
phenotype of CD56bright and CD56dim subsets in our patient as
compared with HDs. Both patient’s NK-cell subsets showed
increased expression of the CD38 activation marker, albeit
CD69 was very low as in HDs’ cells (Figure 2B). The vast
majority of patient’s CD56bright cells displayed an immature
NKG2A+KIR-CD57- phenotype as seen in HD (Figure 2C),
w i th an overa l l expans ion of a CD56b r i g h tCD16-

NKG2A+NKG2C-KIR-CD57- NK cell population (27.3% vs.
median 2.4% of HDs) (Table 1). The expression of perforin
and of the NKG2D, NKp46, and DNAM-1 activating receptors
in patient’s CD56bright and CD56dim cells was normal, yet the
frequency of NKp46+ CD56bright cells was higher than in HD
(97.6% vs. 78%, respectively) (Table 2). Moreover, we analyzed
the distribution of CD56dim cell maturation subsets
which progress from early-differentiated (NKG2A+ KIR-) to
fully mature (NKG2A-KIR+CD57+) cells and, eventually, to
memory-like (NKG2A-NKG2C+KIR+CD57+) cells, a highly
cytotoxic NK cell subset with immune adaptive properties that
is expanded in CMV-seropositive individuals (23). Figure 2D
shows that our patient had a normal frequency of early-
differentiated and mature CD56dim cells (Table 1), but lacked
memory-like CD56dim cells despite CMV seropositivity. Next, we
analyzed the function of CD56bright and CD56dim NK cells by
measuring their degranulation activity (i.e. CD107a expression)
against HLA class I-devoid cell targets (K562 and 721.221 cells)
as well as their capacity to produce IFN-g upon stimulation with
IL-12, IL-15, and IL-18 cytokines, an NK-cell activity primarily
exerted by CD56bright cells. As shown in Figures 2E, F, patient’s
CD56bright cells were able to degranulate and accumulate IFN-g
in response to cytokines similarly to HD cells. In contrast,
patient’s CD56dim NK cells were impaired in their capacity to
degranulate against cell targets as compared to HDs.
Frontiers in Immunology | www.frontiersin.org 4
DISCUSSION

Individuals with IEI may suffer of increased infectious susceptibility
either to a specific pathogen or multiple pathogens (24). Here we
provide original data on a patient previously proposed as a potential
WHIM-like case with disseminated and persistent mucocutaneous
HPV infection, recurrent upper respiratory tract infections, B-cell
lymphopenia and dysplasia of granulocytes, while in a context of
wild-type CXCR4 and normal peripheral neutrophil and monocyte
counts (17, 19). In line with previous observations made in typical
WHIM patients, our patient showed B-cell lymphopenia as
prominent immunologic alteration and poor maintenance of
memory response to vaccines. In the present study further
immunological aspects were investigated in this patient. We
found that, as compared with HD, CXCR4 was expressed at
normal levels in patient’s CD4+ and CD8+ T lymphocytes, slightly
reduced in NK cells yet it was increased in B lymphocytes.
Moreover, we showed that the chemotactic response towards
CXCL12 was maintained in patient’s T and NK cells but was
strongly reduced in B lymphocytes, which is at odds with the typical
increased responsiveness of cells derived from WHIM patients (5–
7). Such uncoupling of the expression level of CXCR4 and its
chemotactic response has already been described also for B
lymphocytes (25, 26). In general, CXCR4 is expressed throughout
the whole B lymphocyte ontogeny where it fulfills different
functions depending on the developmental stage (6, 27, 28). Also,
mouse models underlined the key role of proper CXCR4
functioning in B-cell lymphopoiesis (29) and in the maintenance
of the humoral response (30). We thus hypothesize that patient’ B
cell dysfunctions could derive from an altered fine-tuning of the
CXCR4/CXCL12 axis responsiveness as a consequence of anomalies
in signal transducer(s), which has yet to be identified. Overall, these
results reveal additional differences between our patient’s clinical
and biological manifestations and those of the WHIM syndrome
and suggest a novel IEI awaiting for the identification of a genetic
defect in the CXCR4 signaling pathway that would account for the
cutaneous and mucosal susceptibility to HPV-induced disease.

It is of interest that while our patient had normal frequency of
circulating NK cells, an abnormal NK-cell subset distribution with a
dramatic expansion of CD56bright cells was observed. Patient’s
CD56bright cells, aside increased CD38 and NKp46 expression that
is indicative of an enhanced activation status, presented an
immature phenotype and efficient IFN-g producing capability that
normally distinguishes this NK-cell subset. In the peripheral blood
of healthy subjects, the vast majority of circulating NK cells is
CD56dim, while only a small percentage consists of CD56bright cells
that mainly reside in secondary lymphoid organs and are
considered to be CD56dim cell precursors (31). Of note, expansion
of the CD56bright subset has been observed in other disease settings
including chronic infection and IEI (32, 33). As described in IEI
cases, our patient showed a high frequency of immature CD16-

NKG2A+NKG2C-CD57- cells within the CD56 bright subset (33, 34).
Moreover, CD56bright cell expansion was paralleled by a decrease in
both the frequency and the cytotoxic potential of CD56dim cells. In
keeping with more arguments in favor of CD56bright cells being the
precursors of CD56dim cells (35), it can be postulated the presence in
TABLE 1 | Distribution of NK cells.

HDs
25-37y (n=9)

Pt
32y

NK
% of PBL 7.5 (6.1-8) 7.7
NK cell subsets (%)
CD56bright 5.8 (3.2-9.3) 55.6
CD56dim 87.8 (80.5-88.5) 43.5
CD56neg 6.5 (6.4-8.8) 0.6
CD56brightCD16-NKG2A+NKG2C-CD57- 2.4 (1.5-3.9) 27.3

CD56dim subsets (%)
NKG2A+KIR- (early differentiated) 33.6 (12.4-46.2) 23.8
NKG2A-KIR+CD57+ (mature) 31.3 (13.7-44.4) 30.7
NKG2A-KIR+CD57+NKG2C+ (memory-like) 2.8 (0.5-42.4)* 0.7
Values are indicated as median (IQR, interquartlile range).
*1.7(0.1-6) and 25(2.5-80) in CMV-seronegative and -seropositive subjects,
respectively (22).
y, years.
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A B

D

E

F

C

FIGURE 2 | Flow cytometry-based analysis of NK cell subsets. (A) The gating strategy used to identify NK cells among PBMCs and measure the frequencies of
CD56bright, CD56dim, and CD56neg subsets is shown for the patient (Pt) and a representative HD. (B) The frequency of CD38+ and CD69+ cells in CD56bright and
CD56dim NK cells from the patient (open histograms) and a representative HD (filled gray histograms) is shown together with control IgG signal (dashed lines).
(C) Histograms depict expression of CD16, NKG2A, NKG2C, KIR (KIRmix: KIR2DL1/S1/S3/S5 and KIR2DL2/L3/S2), and CD57 on CD56bright cells gated as shown
in panel (A). (D) The gating strategy used to identify different maturation subsets (Early differentiated, Mature, and Memory-like) on the basis of NKG2A, NKG2C,
CD57 and KIR expression in CD56dim cells gated as described in panel (A) is shown for the Pt and a representative CMV-seropositive HD. (E) Bar plots represent
pattern of CD107a expression measured by flow cytometry on gated CD56bright (left) and CD56dim (right) NK cells of the WHIM-like patient and HDs following 6 hours
culture of PBMCs with and without (non stimulated, ns) K562 or 721.221 (721) cell targets. The mean ± SD of 6 HDs is reported. (F) Dot plots depict intracellular
IFN-g expression in gated CD56bright and CD56dim NK cells following 20 hours culture in the presence or absence (ns) of IL-12, IL-15, and IL-18 of PBMCs derived
from a representative HD and the WHIM-like patient. The percentage of IFN-g+ cells is reported.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 13 | Article 7995645

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Doria et al. B and NK Defects in a WHIM-Like Disorder
our patient of a partial maturation block at some step during
differentiation from CD56bright to CD56dim cells. Intriguingly, our
patient did not present NKG2C+ memory-like CD56dim NK cells
that are normally expanded in CMV-seropositive individuals as she
was (22, 23). At present, however, we cannot discern whether our
patient has a bona fide NK cell memory defect or belongs to the 4%
of individuals with anNKG2C-/NKG2C- phenotype where memory-
like NK cells should be identified by specific transcriptional
reprogramming analysis (36). At any rate, the observed skewing
of CD56bright and CD56dim subsets and the impaired cytotoxic
potential of CD56dimNK cells might have detrimental consequences
in the responses towards viral infections as well as tumors.

Studies in vitro and in mouse models have shown that CXCR4/
CXCL12 signaling is important for the development of NK cells,
likely instructing NK-cell progenitors towards IL-15 niches formed
by mesenchymal stem/progenitor cells (37–39). In particular,
CXCR4 desensitization is required for the exit of most immature
NK cells from the bone marrow, whereas CXCR4 appears to be
dispensable for NK cell trafficking in lymph nodes (14). It is
tempting to speculate that a shared molecular mechanism
involving an abnormal CXCR4 signaling might have driven the
altered differentiation pattern of B and NK cells in our patient, a
hypothesis that deserves further investigation. In line with the
important role of NK cells in the immune defense against viruses,
a clinical hallmark shared by primary NK cell deficiencies is an
unusual susceptibility to severe and/or recurrent viral infections,
such as herpes virus and HPV infections (40). Therefore, a link may
exist between the alteration of the NK-cell compartment and severe
Frontiers in Immunology | www.frontiersin.org 6
and persistent HPV pathogenesis in our patient. Consistent with
this hypothesis, it has been reported the case of a woman affected by
HPV-associated recalcitrant warts who had a dramatic CD56bright

cell expansion associated with low frequency of CD56dim cells and
impaired NK-cell cytotoxicity. Treatment with IFN-a resulted in
warts disappearance and restoration of the NK cell function and
subset distribution (41). More recently, it was also reported the case
of a man with somatic reversion of an IL2RG germline mutation in
T lymphocytes but not in NK cells, presenting recurrent warts and
an intranasal HPV-related squamous-cell carcinoma and for whom
NK cell included 31% of CD56bright cells and displayed low cytotoxic
function. Allogeneic hematopoietic-cell transplantation allowed
normalization of the distribution on NK cell subpopulations and
cytotoxic function and also the regression of HPV-related lesions
(42). Moreover, killer immunoglobulin-like receptor (KIR) and
HLA polymorphisms have been demonstrated to affect the
individual susceptibility to various diseases including infections
(43). In particular, different studies have shown the association of
a specific KIR and/or HLA genotype with either protection against
or increased risk for HPV-associated cervical neoplasia (44, 45). The
occurrence that our patient might present KIR and/or HLA
genotype that confers increased resistance of HPV-infected cells
to cytotoxic responses needs to be investigated. The key role of
CXCR4 in HPV16-induced oncogenesis in an experimental mouse
model (46) and in the abnormal NK-cell distribution in a WHIM
mouse model (14) support the idea that CXCR4/CXCL12 signaling
could play a critical function in the control of HPV infection (13, 46,
47), with the important assistance of a balanced NK cell distribution
and function (40). Turning to a common link governing B and NK
cell abnormalities seen in our patient holds promise for the
dissection of critical regulators involved in CXCR4/CXCL12 axis.
CONCLUSION AND
TRANSPARENCY STATEMENT

Since the original description of our patient (17, 19), extended
clinical monitoring as well as immunological and genetic
investigations here presented have allowed further understanding
of this novel IEI, underscoring the contribution of CXCR4/CXCL12
signaling pathway and of NK cells in host defense against HPV and
providing new clues for targeted therapies.
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