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A B S T R A C T

Prostaglandin (PG) D2 has been in the focus of research for quite a long time, but its biological effects and its
roles in human disease are still not fully characterized. When in 2001 a second major PGD2 receptor termed
chemoattractant receptor homologue expressed on Th2 cells (CRTH2; alternative name DP2) was discovered,
diverse investigations started to shed more light on the complex and often controversial actions of the pros-
taglandin. With various immunomodulating effects, such as induction of migration, activation, and cytokine
release of leukocytes observed both in vivo and in vitro, CRTH2 has emerged as a promising target for the
treatment of allergic diseases. However, with more and more research being performed on CRTH2, it has also
become clear that its biological actions are far more diverse than expected at the beginning. In this review, we
aim to summarize the roles that PGD2 – and CRTH2 in particular – might play in diseases of the central nervous
system, kidney, intestine, lung, hair and skin, bone and cartilage, and in cancer. Based on current data we
propose that blocking CRTH2 might be a potential therapeutic approach to numerous conditions beyond clas-
sical allergic diseases and asthma.

1. CRTH2 – history and clinical potential

Among prostaglandins (PG), PGD2 remained the most elusive spe-
cies for a long time and was initially regarded as having negligible
biological activity [1]. In 1974 its inhibitory effect on platelet ag-
gregation was discovered by Smith et al. [2] and Mills &McFarlain [3],
and both pressor and depressor actions were found in different smooth
muscle preparations by Horton et al. [4]. In 1976, pro-inflammatory
actions of PGD2 were described by Flower et al. in rat and human skin,
causing erythema and edema, however, in the absence of pain [5]. In
dog lung, PGD2 was observed to cause broncho- and vasoconstriction,
while causing systemic hypotension [6] and renal vasodilation [7]. In
contrast, guinea pig coronary arteries were constricted by PGD2 [8,9].
Later it was shown that it was the thromboxane receptor, TP, that
mediated these constrictor effects, as PGD2 was found also to bind to TP
at micromolar concentrations [10], whereas inhibition of platelet ag-
gregation and vasodilation by PGD2 depended on its cognate D-type
prostaglandin receptor, DP (also named DP1) [11]. In 1978, Anhut
et al. [12] suggested that PGD2 was formed during anaphylactic reac-
tions, which might contribute to broncho- and vasoconstriction during
asthma attacks, as they hypothesized. Four years later, Lewis et al.
demonstrated that mast cells were a major source of PGD2 [13]. Al-
though Peskar & Brune already proposed in 1979 that PGD2 was the

prevailing PG in acute inflammatory responses [14], its immune mod-
ulator mode of action still needed to be elucidated. In dogs, two studies
indirectly suggested that PGD2 might be a chemoattractant for eosi-
nophils, the first showing that intravenous PGD2 caused a transient
drop in circulating eosinophil numbers [15], and the second that in-
tratracheal PGD2 caused intra-luminal eosinophil accumulation [16]. In
1990, Woodward et al. described the ocular hypotensive effect of PGD2

and the selective DP1 agonist BW245c in guinea pigs [17]. However,
they also found that PGD2–but not the DP1 agonist − induced ocular
inflammation characterized by accumulation of eosinophils in the
conjunctiva. Interestingly, the PGD2 metabolite PGJ2 was as effective as
PGD2 in causing eosinophil accumulation, but was unable to decrease
ocular pressure, which pointed to a yet unknown PGD2 receptor. Sub-
sequently, PGD2 was shown to stimulate the migration of eosinophils
towards zymosan-activated serum and induce calcium flux in human
eosinophils [18,19], but it was only in 2001 that PGD2 was unequi-
vocally shown to be a potent eosinophil chemoattractant acting through
a novel receptor termed chemoattractant receptor homologue expressed
on Th2 cells (CRTH2; alternative name: DP2) [20–22]. This receptor
had previously been cloned as an orphan receptor (GPR44) that was
expressed by eosinophils, basophils and Th2 lymphocytes [23]. In fact,
CRTH2 was characterized as the most reliable surface marker for Th2
cells [24]. With these findings in mind, PGD2 and its receptor CRTH2
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has become one of the most promising therapeutic targets in the field of
allergy and asthma, which was also fueled by the discovery of in-
domethacin as a potent and selective CRTH2 agonist. This clinically
used cyclooxygenase inhibitor subsequently served as a pharmacophore
for the development of several CRTH2 antagonists [25], belonging to
the family of indole-acetic acid derivatives. Some of those including
OC000459, or AZD1981 have already been evaluated in clinical studies
for the treatment of asthma, allergic rhinitis and eosinophilic esopha-
gitis [26–30]. Although, major breakthroughs in the clinical usefulness
of CRTH2 antagonists are still to be anticipated, recent studies in al-
lergic asthma are showing promising results: Fevipriprant improved
lung function in a subgroup of patients suffering from severe air flow
limitation [31] and timapriprant (OC000459) beneficially altered
asthma control as well as lung function in atopic eosinophilic asth-
matics [32]. Timapiprant and another CRTH2 antagonist, BI 671800,
also successfully reduced nasal and ocular symptoms in allergic subjects
exposed to grass pollen [27,33]. For a detailed review of PGD2 receptor
antagonists in the treatment of asthma, please refer to the recent review
by Santus and Radovanovic [25].

Ironically, the purported TP antagonist ramatroban (BAY u 3405)
which had already been marketed in Japan as a treatment of allergic
rhinitis, was also revealed to be a potent CRTH2 antagonist [34].

2. CRTH2 beyond allergy and asthma

Meanwhile, CRTH2 has been found to be expressed on several ad-
ditional cell types and in different tissues suggesting that the PGD2/
CRTH2 axis might be of potential relevance beyond allergy and asthma.
Although the role of PGD2 in a Th2-biased inflammation is well es-
tablished, investigation of its function in other groups of inflammatory
reactions in experimental mouse models is confounded by differential
expression patterns of CRTH2 in mice and humans: While CRTH2 can
be used as an exclusive marker for Th2 cells in humans, CRTH2-positive
Th1 cells as well as neutrophils are present in mice. These differences
have to be taken into consideration when drawing conclusions from
studies exclusively based on mouse data. A detailed summary of the
presence or absence of CRTH2 on various cells types can be found in
Table 1.

2.1. Respiratory tract

In the human lung, the majority of structural (epithelium and en-
dothelium) and immune cells (including macrophages, monocytes, mast
cells, Th2 cells and eosinophils) express CRTH2 receptors. Interestingly,
CRTH2 expression levels as well as the ratio of CRTH2-positive vs
CRTH2-negative cells have been reported to correlate with disease ac-
tivity. In scleroderma, an increased ratio of CCR5- vs CRTH2-expressing
cells in the circulating T lymphocyte population was associated with a
persistent involvement of the lung vasculature manifested as pul-
monary arterial hypertension. This state of a high CCR5/CRTH2 ratio
was associated with a poorer prognosis and a profibrotic phenotype in
scleroderma patients [51]. In experimental fibrosis induced by bleo-
mycin application, hematopoietic PGD synthase-deficient mice ex-
hibited a more severe phenotype. Although the authors did not assess
the specific receptors involved, a protective role of PGD2 in fibrosis was
proposed [52]. It is reasonable to at least partially attest the protective
role of PGD2 in pulmonary fibrosis to both direct anti-proliferative ef-
fect on fibroblasts [53] and anti-fibrotic effects mediated by inhibition
of TGF-beta-induced collagen production by DP1 receptor activation
[54]. In addition, an involvement of CRTH2 receptors seems also likely,
as earlier studies using indomethacin found reduced collagen content
and improved lung histopathology after intratracheal administration of
bleomycin (primarily inducing lung damage and fibrosis) [55] as well
as after systemic bleomycin administration (causing multiple organ fi-
brosis) [56]. In support of these findings, preliminary reports also
suggested that bleomycyin-induced pulmonary fibrosis was aggravated

in CRTH2-knockout mice, displaying higher mortality rate, reduced
pulmonary compliance and increased inflammation and collagen de-
position [57,58]. This notion of an anti-fibrotic action of PGD2 was
further substantiated by the ability of CRTH2/PGD2 to inhibit epithe-
lial-to-mesenchymal transition, a process observed during development
of fibrosis [59]. Unfortunately, the involvement of CRTH2 receptors has
not been assessed in human pulmonary fibrosis thus far. Given the
differential expression of CRTH2 receptors in mice and humans, the
antifibrotic effects in experimental fibrosis may not be directly trans-
ferable to human disease. Indeed, at variance with the murine studies,
Zhou and colleagues described a profibrotic role of CRTH2 in the in-
herited disorder Hermansky-Pudlak syndrome. This disease can present
with pulmonary fibrosis as a leading cause of mortality. The authors
here described a functional interaction of CRTH2 and chitinase 3-like-1
(CHI3L1) resulting in increased pro-fibrotic signaling [60]. Hence,
these data suggest that CRTH2 can be associated both with anti- and
pro-fibrotic events.

CRTH2 has further been found to contribute to acute lung in-
flammation. In a murine model of endotoxin-induced acute lung in-
jury,we found that CRTH2 activation led to an early-phase polarization
of alveolar macrophages resulting in a lung milieu favoring neutrophil
recruitment and, therefore, inducing a more severe phenotype with
regard to lung histo-pathology as well as lung function. In this study,
activation of CRTH2 on macrophages induced a pro-inflammatory
phenotype leading to elevated levels of proinflammatory cytokines,
such as tumor necrosis factor-alpha (TNF-α), monocyte chemotactic
protein-1 and keratinocyte-derived cytokine in the bronchoalveolar
lavage fluid (BALF) which − in turn − stimulated neutrophils.
Accordingly, a measurable increase in endogenous PGD2 levels was
detected in the BALF of endotoxin-treated animals and pharmacological
blockade of CRTH2 ameliorated alveolar neutrophil influx into the
lungs. Although murine neutrophils are known to express CRTH2 re-
ceptors (as mentioned in the previous section), then pro-inflammatory
actions on neutrophils were not due to direct activation by PGD2 but via
macrophage activation. [40]. In a more severe form of LPS-induced
acute lung injury, PGD2 was found to play a protective role, which
seemed to depend on the DP1 receptor rather than CRTH2 [37].
Therefore, in acute inflammation, CRTH2 activation is likely to induce a
proinflammatory signature in the lung.

The prominent role of CRTH2 in the lung prompted investigations to
evaluate the potential of the CRTH2 antagonist AZ11805131 in tobacco
smoke-induced airway inflammation, modelling chronic obstructive
pulmonary disease (COPD) [61]. The decreased levels of bronch-
oalveolar lavage neutrophils, macrophages and lymphocytes as well as
an improved lung mucosal pathology upon CRTH2 antagonism showed
promising results in this mouse study. In the same year another study
provided further support for the therapeutic potential of CRTH2 an-
tagonism in both acute as well as sub-chronic murine models of cigar-
ette-induced airway inflammation. In this study, the potent CRTH2
antagonists AM156 and AM206 inhibited neutrophil and lymphocyte
recruitment, and additionally also ameliorated airway inflammation by
reduction of airway epithelial thickening and mucus cell metaplasia
[62]. With these promising results from murine experimental studies,
the CRTH2 antagonist AZD1981 was tested in COPD patients. Un-
fortunately, the positive effects observed in murine models were not
replicated in a phase II trial of the CRTH2 antagonist in COPD patients
[63]. In consideration that COPD patients present with a Th1 skewing,
it cannot be excluded that the beneficial effect in the murine models
resulted from an antagonistic action on Th1 cells and neutrophils,
which might not be the case in human pathology.

2.2. Kidney

In the renal system, increased expression of the lipocalin-like PGD
synthase (L-PGDS) has been reported in early stage diabetic nephro-
pathy in rats [64] and adriamycin-induced nephropathy in mice [65],
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suggesting a possible contribution of PGD2 in chronic kidney disease.
To our knowledge, so far only one study investigated the functional role
of CRTH2-mediated PGD2 effects in kidney disease. Here, the authors
corroborated the previous findings of increased L-PGDS expression in
another model of chronic kidney disease induced by ureteral obstruc-
tion. Furthermore, genetic as well as pharmacological blockade of
CRTH2 signaling strongly reduced renal fibrosis and inflammation via
suppression of the interleukin (IL)-4/IL-13 axis[66]. Hence, there is a
clear involvement of PGD2 in the renal system, with elevated levels of
PGD2 after induction of various forms of kidney pathology, and a pro-
fibrotic role of CRTH2 activation. Therefore, although data in humans
are still lacking, CRTH2 antagonists might also be a promising approach
to kidney disease.

2.3. Gastrointestinal tract

Increasing evidence further suggests that CRTH2 might evolve as a
promising therapeutic target in inflammatory bowel diseases. In pa-
tients suffering from Crohn’s disease, which can affect the entire gas-
trointestinal tract, we found increased serum levels of PGD2 and its
metabolite Δ(12)-PGJ2, and in a corresponding mouse model of colitis
induced by 2,4,6-trinitrobenzenesulfonic acid, the CRTH2 antagonist
timapiprant ameliorated inflammation via inhibition of pro-in-
flammatory mediators TNF-α, IL-1β and IL-6 [67]. In ulcerative colitis,
where inflammatory reactions are limited to the colon, we investigated
CRTH2 expression in peripheral blood cells and observed an inverse
correlation of CRTH2 expression on peripheral blood eosinophils and
disease activity in affected patients. We also found that CRTH2 antag-
onism in a murine model of dextran sulfate sodium-induced colitis
improved disease activity with regard to inflammation score, myelo-
peroxidase levels and weight loss [68]. Previously it was noted that the
numbers of CRTH2-positive cells, most likely CD4-positive lympho-
cytes, were increased in mildly inflamed mucosa and at the margins of

more severely inflamed areas in patients with ulcerative colitis [69].
These findings suggest that both in mice and humans the involvement
of a Th2-dominated immune response may be possible in the early
pathogenesis of inflammatory bowel disease. Peripheral blood eosino-
phils of patients with eosinophilic esophagitis showed enhanced CRTH2
expression, among other markers [70,71]. Supporting this pro-in-
flammatory role of CRTH2 in IBD, timapiprant significantly reduced
eosinophil infiltration in the tissue and induced some clinical im-
provement in eosinophilic esophagitis patients [28].

2.4. Bone and cartilage

Interestingly, PGD2 can potently modulate bone metabolism with its
capacity to induce collagen synthesis during the process of calcification
[72] and IL-6 secretion by osteoblasts [73]. In 2005, Gallant and col-
leagues described both the production of PGD2 by, and the presence of
both DP1 and CRTH2 receptors on, human osteoblasts. Selective
CRTH2 activation in osteoblasts resulted in an increased production of
osteoprotegerin, suggesting an autocrine and/or paracrine function of
the PGD2-CRTH2 axis in bone anabolism [74]. In human differentiated
osteoclasts, CRTH2 stimulation induced lamellipodia formation via
actin reorganization, a process crucial for motility and bone resorption.
Consequently, CRTH2 antagonism inhibited vitamin D3-induced bone
resorption and osteoclastogenesis [75]. In addition, CRTH2 has been
proposed as an inducer of apoptosis in osteoclasts via the intrinsic
pathway, depending on caspase 9 activity [76] as a consequence of
Erk1/2 and Akt signaling [77]. Osteoclast activation also plays a role in
arthritis. Interestingly, a murine model of adjuvant-induced joint in-
flammation revealed that CRTH2-deficient mice develop a more severe
phenotype with increased levels of paw swelling and infiltration of
inflammatory cells, particularly CD68+ macrophages, which appeared
to accelerate the inflammatory response [78]. Noteworthy, this model
does not involve T-cell infiltration in the affected joints, which is a clear

Table 1
Reported presence (or reactivity) and absence of CRTH2/DP2 on human and murine structural and immune cells.

Human

Cell type Reported by Reference

CRTH2/DP2 positive bronchial epithelium immunostaining [35,36]
mast cells immunohistochemistry, flow cytometry [38]
basophils flow cytometry, mRNA expression [39]
eosinophils flow cytometry, mRNA expression [21,39]
macrophages flow cytometry, immunohistochemistry [40]
monocytes flow cytometry, mRNA expression [41]
innate lymphoid cells type 2 flow cytometry [42]
Th2 cells flow cytometry, mRNA expression, western blotting [23]
dendritic cells flow cytometry, mRNA expression [41]
CD8 + T cells (positive in same cases) flow cytometry, mRNA expression, western blotting [23]

CRTH2/DP2 negative Th1 cells flow cytometry, mRNA expression [23]
NK cells flow cytometry, mRNA expression [23]
B cells flow cytometry, mRNA expression [23]
neutrophils mRNA expression [22,43]

Mouse

Cell type Reported by Reference

CRTH2/DP2 positive/reactive epithelium reactive to CRTH2 agonism [44]
mast cells mRNA expression, western blotting [45]
eosinophils mRNA expression [46]
macrophages mRNA expression [47]
monocytes mRNA expression [47]
Innate lymphoid cells type 2 flow cytometry, mRNA expression [48]
Th2 cells mRNA expression [49]
Th1 cells mRNA expression [49]
CD8+ T cells mRNA expression [49]
neutrophils mRNA expression [50]
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limitation when compared to the adaptive autoimmune response ob-
served in human rheumatoid arthritis. Interestingly, treatment of mice
with a CRTH2 antagonist did not modify disease severity in a different
experimental model of rheumatoid arthritis, i.e. collagen-induced ar-
thritis, while selective activation of DP1 proved beneficial [79]. To-
gether, the role of PGD2 receptors in bone disorders and arthritis still
needs to be clarified.

2.5. Nervous system

Inflammation, especially if inappropriately controlled, cannot only
lead to a chronic state, but also induce signaling pathways in the brain
that influence behavior, emotion and cognitive function. PGD2 sig-
naling via DP1 is known to regulate crucial CNS-related functions such
as food intake [80] and the sleep–wake cycle [81,82]. Increasing
numbers of studies are now also addressing a link between PGD2 and
CRTH2, and the modulation of cognitive function. A role for the PGD2

metabolite, 15-deoxy-PGJ2 in the central nervous system was first de-
scribed in 1999 as an enhancer of nerve growth factor-mediated neurite
outgrowth, a function which appeared to be independent from PPARγ
and DP1 receptors [83,84], but involved CRTH2 receptors [85]. Ad-
ditionally, PGD2 produced by astrocytes carrying the amyotrophic lat-
eral sclerosis-causing gene SOD1 was identified to contribute to the
devastating process of motor-neuron degeneration conferred by glial
cells, but blockade of the DP1 receptor only slightly reversed motor
neuron loss, tentatively suggesting a potential role for CRTH2 [86–88].
In the peripheral nervous system the PGD2eCRTH2 axis contributes to
myelination, as both genetic deletion and pharmacological inhibition of
L-PGDS as well as genetic ablation of CRTH2/DP2 caused myelin da-
mage and hypomyelination [89].

A direct link between CRTH2 activation and cognitive dysfunction
was proposed recently in mice. LPS-induced sickness behavior, social
impairment as well as induction of c-Fos expression in the hypotha-
lamic paraventricular nucleus and central amygdala were dependent on
the presence of CRTH2 and were reversed by CRTH2 antagonists.
Similar effects were observed with regards to social impairment after
tumor inoculation [90]. In a model of cognitive dysfunction induced by
the N-methyl-D-aspartate receptor antagonist, MK-801, both pharma-
cological inhibition and genetic deletion of CRTH2 were shown to be
beneficial [91]. Thus, while CRTH2 is essential/involved in myelination
and neurite outgrowth, it might also contribute to sickness-induced
changes in cognitive function and behavior.

2.6. Skin

Prostaglandins have long been implicated in skin homeostasis [92].
Human and mouse keratinocytes produce PGD2 and express both PGD2

receptors [93,94]. Stimulation of CRTH2 leads to release of the anti-
microbial factor beta-defensin-3 from human keratinocytes [93], sug-
gesting a protective effect of the prostaglandin. However, several mouse
models have shown that PGD2 and it receptor CRTH2 are actively in-
volved in allergic skin inflammation [95,50,96–100]. Moreover, per-
ipheral blood eosinophils and CD4-positive T cells of patients with al-
lergic skin disease have been shown to express higher levels of CRTH2
as compared to healthy controls [101,102]. In a model of chronic skin
inflammation, transgenic mice overexpressing lypocalin-type PGD
synthase exhibited a complex phenotype: While PGD2 acting via DP1
ameliorated the early phase of croton oil-induced skin-inflammation
due to its barrier-enhancing properties, PGD2 acting via CRTH2 pro-
longed and worsened the later phase of the inflammatory response by
promoting neutrophil activation [103]. CRTH2 seemed to outweigh
DP1-mediated responses which – in this specific model – resulted in an
overall exaggerated inflammatory response mediated by CRTH2.

CRTH2 might also play a role in eosinophilic pustular folliculitis,
which is a chronic pruritic skin disease characterized by massive eosi-
nophil infiltrates of sebaceous glands. One treatment option for the

disease is systemic administration of the COX inhibitor and CRTH2
agonist, indomethacin. In addition to abrogating prostaglandin synth-
esis, indomethacin was found to reduce CRTH2 expression in peripheral
blood eosinophils and lymphocytes, probably thereby preventing their
recruitment to inflamed skin [104,105].

Bimatoprost, a PGF2α analogue used to decrease ocular pressure in
glaucoma, stimulates the growth of eyelash hair as a side effect [106].
In 2012, PGD2 and lipocalin-type PGD synthase were found at abundant
levels in male scalp tissue of balding areas as compared to non-balding
areas [107]. The authors found a direct inhibitory effect of PGD2 on
hair growth that could be attributed to its action on CRTH2. Moreover,
PGD2 inhibited hair follicle regeneration in a mouse model of dermal
injury in a CRTH2-dependent manner [108]. Previously both DP1 and
CRTH2 were found to be present in hair follicles [109]. Another study
described that 15-deoxy-PGJ2 induces keratinocyte apoptosis, thereby
contributing to PGD2-induced inhibition of hair growth [110]. Seti-
piprant, an orally available CRTH2 antagonist, is purportedly in-
vestigated in the treatment of androgenic alopecia in a phase II study.

2.7. CRTH2 in cancer

Inflammation is a two-edged sword, on the one hand fighting pa-
thogens to limit tissue damage and promote healing, but if in-
appropriate in nature and degree on the other hand, inflammation itself
can drive tissue damage. This is not only the case in allergy and auto-
immune disorders but also in cancer [111]. It is now well established
that there is both cancer-related inflammation as well as inflammation-
induced cancer [112,113]. This interaction is established both via di-
rect cell-to-cell interaction as well as communication by inflammatory
mediators such as cytokines or prostanoids. Some of the pro-apoptotic
properties of PGD2 and its metabolites such as 15-deoxy-PGJ2 can be
attributed to both PPARγ activation and a receptor-independent me-
chanism, such as modulation of intracellular redox potential in osteo-
sarcoma cells [114], but a clear contribution of CRTH2-mediated effects
is also given: CRTH2 activation can induce apoptosis via autocrine
stimulation of both reactive oxygen species and TNF-α production in a
MAPK pathway-dependent manner in cardiomyocytes [115], and via
Erk1/2 and Akt signaling in human osteoclasts [77]. Although, these in-
vitro data suggest anti-tumorigenic properties, the exact role of CRTH2
in cancer is still unclear: CRTH2 expression on circulating CD4 positive
cells was elevated in the late stage of non-small cell lung cancer [116],
and in an experimental model using Lewis lung carcinoma cells im-
planted on the back of mice, CRTH2 expression was detected in vas-
cular cells and the growing tumor [117]. Furthermore, in 277 samples
of human gastric cancer, 17% of cases showed cancer cells positive for
CRTH2 [118] and polarized group 2 innate lymphoid cells (ILC2) with
increased levels of CRTH2 were found in the peripheral blood of gastric
cancer patients [119]. These data point to a potential implication of
PGD2 and CRTH2 in cancer, but whether beneficial or deleterious still
needs to be elucidated.

3. Conclusion

With a plethora of actions, CRTH2-mediated effects are apparent in
almost every tissue of the human body (Fig. 1). There is growing evi-
dence that CRTH2 plays important roles in allergic inflammation of the
respiratory tract and the skin; however, this does not exclude it from
being a potential therapeutic target in other conditions, too. These
might comprise inflammatory bowel disease, mood disturbances or
even cognitive dysfunction on the one hand, and autoimmune disease
such as rheumatoid arthritis, and lung and kidney fibrosis, on the other
hand. In male-type baldness, CRTH2 antagonists might already be on
the crossroads to becoming available for patients, soon.
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