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Better drugs are needed for common epilepsies. Drug repurposing offers the potential of significant savings in the time and cost of

developing new treatments. In order to select the best candidate drug(s) to repurpose for a disease, it is desirable to predict the rela-

tive clinical efficacy that drugs will have against the disease. Common epilepsy can be divided into different types and syndromes.

Different antiseizure medications are most effective for different types and syndromes of common epilepsy. For predictions of antie-

pileptic efficacy to be clinically translatable, it is essential that the predictions are specific to each form of common epilepsy, and re-

flect the patterns of drug efficacy observed in clinical studies and practice. These requirements are not fulfilled by previously pub-

lished drug predictions for epilepsy. We developed a novel method for predicting the relative efficacy of drugs against any common

epilepsy, by using its Genome-Wide Association Study summary statistics and drugs’ activity data. The methodological advance-

ment in our technique is that the drug predictions for a disease are based upon drugs’ effects on the function and abundance of

proteins, and the magnitude and direction of those effects, relative to the importance, degree and direction of the proteins’ dysregu-

lation in the disease. We used this method to predict the relative efficacy of all drugs, licensed for any condition, against each of

the major types and syndromes of common epilepsy. Our predictions are concordant with findings from real-world experience and

randomized clinical trials. Our method predicts the efficacy of existing antiseizure medications against common epilepsies; in this

prediction, our method outperforms the best alternative existing method: area under receiver operating characteristic curve (mean

6 standard deviation) 0.83 6 0.03 and 0.63 6 0.04, respectively. Importantly, our method predicts which antiseizure medications

are amongst the more efficacious in clinical practice, and which antiseizure medications are amongst the less efficacious in clinical

practice, for each of the main syndromes of common epilepsy, and it predicts the distinct order of efficacy of individual antiseizure

medications in clinical trials of different common epilepsies. We identify promising candidate drugs for each of the major syn-

dromes of common epilepsy. We screen five promising predicted drugs in an animal model: each exerts a significant dose-dependent

effect upon seizures. Our predictions are a novel resource for selecting suitable candidate drugs that could potentially be repur-

posed for each of the major syndromes of common epilepsy. Our method is potentially generalizable to other complex diseases.

1 Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool,
Liverpool L69 3GE, UK

2 Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands;
member of the ERN EpiCARE

3 Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht 3584 CX, the Netherlands
4 School of Medicine, University of Liverpool, Liverpool L69 3GE, UK

Received July 01, 2021. Revised September 17, 2021. Accepted October 20, 2021. Advance Access publication December 4, 2021
VC The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1093/braincomms/fcab287 BRAIN COMMUNICATIONS 2021: Page 1 of 15 | 1



Correspondence to: Dr Nasir Mirza

Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology

University of Liverpool, Liverpool L69 3GE, UK

E-mail: nmirza@liverpool.ac.uk

Keywords: epilepsy; drug repurposing; GWAS; genomics

Abbreviations: AC score ¼ abundance correction score; ASM ¼ antiseizure medication; CAE ¼ childhood absence epilepsy; FAM
score ¼ function and abundance modulation score; FE ¼ focal epilepsy; FM score ¼ function modulation score; GE ¼ generalized
epilepsy; GWAS ¼ Genome-Wide Association Study; HS ¼ hippocampal sclerosis; ILAE ¼ International League against Epilepsy;
JME ¼ juvenile myoclonic epilepsy; ROC ¼ area under receiver operated characteristics curve

Introduction
A total of 50 million people are affected by epilepsy.1

Current drug treatments for epilepsy fail to control seiz-

ures in �30% of patients2,3 and cause adverse effects in

�88% of patients4,5; �20% of people with newly diag-

nosed epilepsy discontinue their first antiseizure medica-

tion (ASM) because of intolerable adverse effects.6 Hence,

there is a need for new ASMs with higher efficacy and/or

lower toxicity. Drug repurposing—treating a disease using

drugs already licensed for other conditions—offers the

potential of significant savings in the time and cost of

developing new therapies. Numerous drugs licensed for

other conditions have the potential of antiepileptic effi-

cacy.7 In order to select the best candidate drug(s) to

repurpose for epilepsy, it is desirable to predict the rela-

tive clinical efficacy that drugs will have in people with

epilepsy. One established strategy for discovering poten-

tially effective drugs is to, first, identify the proteins that

underlie a disease and, then, identify the drugs that affect

the disease-proteins. In such analyses, genes associated

with a disease are routinely used as proxies for disease-

proteins.8

Genetic factors can contribute to the development of

epilepsies, either as single-gene mutations in rare mono-

genic epilepsies, or as multiple genetic variants in com-

mon epilepsies.9 Common epilepsies are complex traits

with a polygenic origin, which means that the combined

effect of many common risk variants contributes to their

genetic risk.9 Common epilepsies are divided into

Graphical Abstract

2 | BRAIN COMMUNICATIONS 2021: Page 2 of 15 N. Mirza et al.



different types and syndromes10; for brevity, we use

‘forms’ as a general term for both types and syndromes.

Different forms of common epilepsy have important dif-

ferences in their genetic determinants,11 clinical manifesta-

tions and response to medications.12 Hence, to be most

useful for common epilepsies, methods of drug prediction

must use the specific genes/proteins underlying a particu-

lar form of common epilepsy, to make drug predictions

that are specific for that particular form of common epi-

lepsy. This has not been achieved by any of the published

drug prediction studies for epilepsy.11,13–17 Some studies

have pooled genes/proteins associated with different forms

of epilepsy (including rare epilepsies), to produce a single

list of drug predictions for all forms of epilepsy15–17;

these methods are not readily adaptable to individual

common epilepsies, as they require a large number of

genes/proteins definitively associated with a disease.

Other studies have used genome-wide transcriptomic ana-

lysis of human brain tissue from epilepsy surgery14,15;

such tissue is only available for a very limited number of

epilepsy syndromes, and its analysis is hindered by the

lack of suitable control brain tissue that is comparable,

normal and has been exposed to ASMs. Of course, any

transcriptomic changes detected in epileptic brain tissue

could be a consequence, rather than a cause, of disease.

The Genome-Wide Association Study (GWAS) is

becoming an increasingly powerful tool for revealing the

distinct genetic determinants of different common epilep-

sies.11,18–20 GWAS results are routinely used to predict

new candidate drugs for complex diseases. In the stand-

ard approach, significant variants from the GWAS are

mapped to genes; drugs that are known to affect the

(protein products) of the genes, are predicted to affect the

disease.21 This simplistic approach has a number of

methodological deficiencies. It reflects neither the polyge-

nicity of common diseases, nor the polypharmacology of

common drugs. It ignores drugs’ effects on disease-protein

abundance, even though, in order to exert their thera-

peutic effect, drugs rectify the activity of disease-proteins

by modulating their function or abundance or both.22–24

It disregards the magnitude and direction of change in

disease-proteins’ activity, and drugs’ effects upon it.

Potential causal variants below the genome-wide disease

significance threshold are ignored. Practically, it produces

an unordered and unranked pool of drug names, with no

indication of the relative predicted efficacy of the com-

pounds, to enable selection of the most promising candi-

dates. Ultimately, it is liable to producing poor results.

Some limitations of the standard approach are addressed

by recently developed enhanced techniques for using

GWAS results to identify effective drugs,25–28 but these

newer methods and their drug predictions for common

epilepsy still leave room for improvement. None of the

existing methods make drug predictions for a disease

based upon drugs’ effects on the function and abundance

of proteins, and the magnitude and direction of those

effects, relative to the importance, degree and direction of

the proteins’ dysregulation in the disease. Our aim was

to develop such a method, and to use this method to pre-

dict the relative efficacy of drugs for each of the major

types and syndromes of common epilepsy, and to make

our predictions available as a novel resource for selecting

suitable candidate drugs that could potentially be repur-

posed for each of the major types and syndromes of

common epilepsy.

Materials and methods
Methods are summarized below; further details can be

found in the Supplementary methods.

Overview

Epilepsy types and syndromes

The common epilepsies are divided into different types,

which are further subdivided into different syndromes.10

In the current work, we included the main types and syn-

dromes analysed in the most recent epilepsy GWAS11:

i. All epilepsy, which is comprised of generalized, focal

and unclassified epilepsies

ii. The two main types of all epilepsy: generalized epilepsy

(GE) and focal epilepsy (FE)

iii. Two GE syndromes: juvenile myoclonic epilepsy (JME)

and childhood absence epilepsy (CAE)

iv. A FE syndrome: FE with hippocampal sclerosis (HS)

Method summary

Genetic variants cause disease by modifying the function

or abundance (or both) of proteins derived from the vari-

ant genes.29 Drugs exert a therapeutic effect by rectifying

the abnormal function or abundance (or both) of the

proteins underlying a disease.22–24 To predict the relative

efficacy of drugs against a disease, we developed (Fig. 1)

a novel score for drugs’ relative ability to affect the pro-

tein function and abundance changes caused by common

genetic variations associated with the disease: the disease-

protein function and abundance modulation (FAM) score.

For method development and benchmarking, we used

the all epilepsy GWAS. Then, we applied the developed

method to the GWAS for specific epilepsy types and

syndromes.

It should be noted that, to aid brevity and readability,

we use the expressions ‘disease-associated proteins’ and

‘disease-proteins’ as proxies for ‘proteins encoded by

genes bearing variations associated with the disease’, and

we use the expression ‘protein abundance changes’ as

proxy for ‘changes in gene expression’.

The disease-protein FAM score:
creation and benchmarking

The steps taken in developing the method for calculating

the FAM score are detailed in Supplementary material.
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Below, we summarize the method (Fig. 1) we developed

for calculating the FAM score.

The FAM score is calculated by aggregating its two

constituent scores:

i. The disease-protein function modulation (FM) score

ii. The disease-protein abundance correction (AC) score

FM score

The FM score is based on the following premise: A

drug’s ability to affect a disease can be predicted from:

i. the degree of disease-association of each protein whose

function is affected by the drug, and
ii. the strength of the drug’s effect on the function of each

of those proteins

The degree of disease-association of proteins is derived

from GWAS gene-based P-values. The strength with

which drugs affect proteins’ function is derived from

drug-target affinity data. Figure 1 presents a conceptual

explanation of how the FM score is calculated from these

two types of data. A more detailed explanation can be

found in the Supplementary material.

AC score

The AC score is based upon the following premise: A

drug is more likely to be effective for a disease if it is

better able to rectify the protein abundance changes

underlying the disease.30 Disease- and drug-induced tran-

scriptomes were compared in order to predict each drug’s

relative ability to rectify disease-associated protein abun-

dance changes, as previously described11 and detailed in

the Supplementary material. Briefly, the AC score for a

drug is calculated as follows: For each disease-associated

protein, the algorithm compares the magnitude and direc-

tion of change in the protein’s abundance found in the

disease, with the magnitude and direction of change in

the protein’s abundance caused by the drug. Then, drugs

are ranked in accordance with their overall predicted cor-

rective effect on the abundance of all disease-associated

proteins. To measure the overall effect, a metric called

‘cosine distance’ is used.31

Figure 1 Premise and conceptual explanation of the disease-protein function modulation (FM) and abundance correction

(AC) scores, which are integrated to form the disease-protein function and abundance modulation (FAM) score. Before

integration, the FM score is adjusted to control for the different number of proteins affected by each drug (see Supplementary material for

details). Cosine distance is the (dis)similarity metric used for calculating the AC score.
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Aggregating the FM and AC sores to generate the

FAM score

The FM and AC scores were converted into their respect-

ive z-scores. The FAM score for each is calculated by

averaging its FM and AC z-scores (see Supplementary

material for details).

Comparing our method with
existing alternative advanced
methods

We compared our results with the results from two exist-

ing and contrasting advanced methods for GWAS-based

drug predictions.

Network-based method

An approach employed in a number of studies is to identify

the drugs that target genome-wide significant disease-proteins

and, in addition, the drugs that target the proteins interacting

with genome-wide significant disease-proteins.32–34 We used

the GUILDify v2.0 Web Server35 to identify such drugs.

Gene-set analysis method

In this method,36 GWAS gene-based P-values are first

converted to z-statistics and, then, a single-sided two-sam-

ple t-test is used to determine if the mean z-statistic of

the genes that are altered in function by a drug is lower

than the mean z-statistic of the genes that are not.

Validation of the FAM score

For in silico validation of the FAM score, we examined

the following hypotheses:

• The FAM score for all epilepsy specifically prioritizes

the drugs that are effective in people with epilepsy:

when drugs are ranked by their FAM score for all epi-

lepsy, drugs used to treat epilepsy are ranked higher

than drugs used to treat any other human disease
• The FAM score predicts which ASMs are more clinic-

ally effective, and which ASMs are less clinically ef-

fective, for each common epilepsy syndrome studied
• The FAM score predicts the observed patterns of rela-

tive efficacy of individual clinically-effective ASMs for

each common epilepsy syndrome studied

The above hypotheses are further detailed in Results

and in Supplementary methods.

To test the above hypotheses, we used the following

metrics:

(1) Identification of effective drugs: we used area under

receiver operated characteristics curve (AUROC)

analysis to determine the accuracy with drugs’

scores discriminate ASMs from all other drugs, or

discriminate more from less clinically-effective sub-

sets of ASMs. AUROC was calculated using the

package PRROC (version 1.3.1)37 in R (version

3.4.3). In assessing the discrimination of ASMs from

all other drugs, there is a marked class imbalance,

because a very small fraction of all drugs are ASMs.

To correct for this imbalance, we employed the

standard technique of random under-sampling,

which is commonly used in published studies (see

Supplementary material for further details and refer-

ences). Specifically, AUROC was calculated using

the set of ASMs and a randomly selected set of other

drugs equal in number to the ASMs. This process

was repeated 1000 times, and mean (6 standard de-

viation) AUROC was calculated. When discriminat-

ing more from less effective ASMs, class imbalance

is not an issue and, hence, random under-sampling

was not employed.

(2) Prioritization of effective drugs: amongst all the drug

predictions for a phenotype, we determined the average

rank of ASMs, or compared the average rank of more

clinically-effective and less clinically-effective ASMs. To

ease conceptualization and interpretation of results, we

converted ranks to percentile ranks. For example, a

drug with a percentile rank of 90 is ranked higher/bet-

ter than 90% of all drugs. Like numerous published

studies, we used the median in order to compute the

average of ranks, as it is less liable to skewing by out-

liers (see Supplementary material for further details and

references).

Statistical analysis

We determined the statistical significance of drug iden-

tification and prioritization results by comparing the

results to those from a null distribution generated by

performing 106 random permutations of the scores

assigned to drugs.

Determining whether the drug
predictions are driven by individual
highly disease-associated proteins

For each epilepsy, FAM scores were re-calculated after

excluding, one at a time, the top 10 most strongly dis-

ease-associated proteins (Supplementary Table 3). Drug

ranks obtained after excluding a protein were compared

with the original drug ranks, using Kendall’s s. Kendall’s

s is a commonly used measure of rank correlation.38

Kendall’s s ranges from þ1 to –1, where þ1 means that

two ranked lists are identical to each other, –1 means

that they are the exact inverse of each other, and 0

means that there is no relationship between them.

Further details about this analysis can be found in the

Supplementary material.

Top candidate drugs

To aid the selection of suitable candidate drugs for ex-

perimental validation and clinical evaluation, we

demarcated the most promising candidate drugs for
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each phenotype: the topmost drug predictions with the

greatest enrichment of (more) effective ASMs for that

phenotype. A manually curated selection of top candi-

date drugs for different forms of common epilepsy was

also produced.

Testing top candidate compounds in

an animal model

As we used complex genetic data to make our drug

predictions, we used a complex genetic model to test

our drug predictions. We used a rodent model with a

complex genetic seizure disorder39–42 that manifests as

audiogenic generalized seizures: the DBA/2 mouse. We

tested the five most highly ranked predictions for GE,

after filtering out known ASMs, compounds with exist-

ing published evidence in the DBA/2 mouse model,

drugs lacking evidence of blood–brain barrier perme-

ability, drugs lacking evidence of safe long-term oral

use in humans, compounds insoluble in water or saline

and ‘controlled substances’ that require exceptional

legal authorization for procurement under the laws of

France, where the animal experiments were performed

by a contract research organization.

The animal experiment protocol followed the method

described by Dürmüller et al.43 The study was conducted in

compliance with Animal Health regulations, in particular:

i. Council Directive No. 2010/63/UE of 22 September

2010 on the protection of animals used for scientific

purposes and French decree No. 2013-118 of 1

February 2013 on the protection of animals;

ii. Porsolt facility accreditation for experimentation (E 53

1031, renewed on 19 April 2016);

iii. The recommendations of the Association for Assessment

and Accreditation of Laboratory Animal Care of which

the accreditation was granted in June 2012 and renewed

in 2018.

Porsolt has an in-house ethics programme, which cov-

ers animal care and use within the facility.

Additional experimental details about the animal model

testing can be found in the Supplementary material.

Code availability

The R code for computing FM and FAM scores is avail-

able at https://figshare.com/projects/Using_common_var

iants_to_find_drugs_for_common_epilepsies/78330. The

code is for non-commercial use only.

Data availability

The following datasets are available for download from

the project’s data repository page (https://figshare.com/

projects/Using_common_variants_to_find_drugs_for_com

mon_epilepsies/78330):

i. GWAS gene-based and tissue-wide association study

(TWAS) datasets used in our analyses.

ii. Ranked list of the top predicted drugs for each

phenotype.

iii. Our complete set of predictions, listing each drug and its

FAM score, for each phenotype.

Results

The standard method is inadequate

for predicting drugs effective

against common epilepsies

In the standard method, drugs are predicted to be effi-

cacious if they modulate the function of proteins that

are associated with the disease, according to the

GWAS, at a genome-wide level of significance.21 For

all epilepsy, GE and FE, SCN1A is the only gene that

both (i) reaches genome-wide level of disease-signifi-

cance, and (ii) produces a protein that is known to be

altered in function by any existing compound. For

CAE, JME and HS, there are no genes that both (i)

reach genome-wide level of disease-significance and

(ii) produce a protein that is known to be altered in

function by any existing compound. Predicting candi-

date compounds for epilepsy based upon their ability

to affect the function of sodium channel protein Type

1 subunit alpha (the protein product of SCN1A) yields

a recall (from amongst all ASMs, the fraction pre-

dicted to be effective) of 35% and precision (from

amongst all drugs predicted to be effective, the frac-

tion that are ASMs) of 32%, which equates to an F-

score (harmonic mean of the precision and recall) of

33%. The standard method of drug prediction produ-

ces an unordered and unranked set of candidate

drugs, with no metrics for the relative predicted effi-

cacy of the candidate compounds. This precludes

method evaluation based upon predicted drug rank-

ings and AUROC, and hampers the selection of the

most promising candidate drugs for experimental val-

idation. The same set of ASMs is predicted to be ef-

fective for the two divergent phenotypes of GE and

FE, even though some seizure types in the former are

aggravated by the ASMs that are most effective for

the latter. Hence, for different common epilepsies, this

method either fails to identify the majority of known

effective drugs, or identifies no candidate drugs at all,

or identifies potentially aggravating drugs. By exten-

sion, applying the standard approach to common epi-

lepsies will yield no or few candidates for

repurposing, will not prioritize amongst the candi-

dates, will fail to identify any or most of the effica-

cious compounds and will potentially identify

aggravating drugs.
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Creating and benchmarking a new

method for predicting the relative

efficacy of drugs against common

epilepsies

To predict the relative efficacy of drugs against common

epilepsies, we devised the disease-protein FAM score,

which is calculated using the method illustrated in Fig. 1.

For benchmarking, we used the FAM score and alter-

native existing advanced methods to predict drugs for all

epilepsy, and compared the methods’ performance. For

the identification and prioritization of ASMs, the FAM

score achieved AUROC (mean 6 standard deviation) of

0.83 6 0.03 and average percentile of 94, respectively. In

comparison, the best performing alternative method

achieved AUROC (mean 6 standard deviation) of

0.63 6 0.04 and average percentile of 77. Results of all

comparator alternative approaches are shown in

Supplementary Table 1.

Validating the FAM score

Next, we present results of the analyses performed to test

the validity of the predictions made using the FAM score.

The FAM score for all epilepsy specifically prioritizes

the drugs that are effective in people with epilepsy

When drugs are ranked by their FAM score for all epi-

lepsy, drugs used to treat epilepsy are ranked higher

than drugs used to treat any other human disease. The

median rank of drugs used to treat epilepsy is at least

seven percentiles higher than that of drug-sets used to

treat other human diseases. Permutation-based P-value

¼ 1 � 10�4 that ASMs are ranked highest, and so

much higher than all other drug-sets used to treat all

other human diseases.

The FAM score predicts which ASMs are more

clinically effective, and which ASMs are less clinically

effective, for each common epilepsy syndrome

Different ASMs are most effective for different syndromes

of common epilepsy. Clinical studies and experience show

that, for each common epilepsy syndrome, some ASMs

can be classified into a more clinically-effective subset and

some into a less clinically-effective subset. For each com-

mon epilepsy syndrome, the FAM score predicts which

ASMs are amongst the more efficacious in clinical practice,

and which ASMs are amongst the less efficacious in clinic-

al practice (Table 1). Specifically, for each common epi-

lepsy syndrome, the FAM score (i) distinguishes the more

from the less clinically-effective ASMs and (ii) prioritizes

the more clinically-effective ASMs higher than the less clin-

ically-effective ASMs (Table 1).

In order to predict which ASMs are more clinically-effect-

ive and which ASMs are less clinically-effective for a syn-

drome, the best results are obtained by using the FAM

score for that syndrome. To illustrate this, we show that

the ASMs that are more effective for CAE are favoured

over the ASMs that are less effective for CAE, only when

drugs are predicted using the FAM scores for CAE

(AUROC: 0.79), and not when drugs are predicted using

the FAM scores for all epilepsy, GE, JME, FE or HS (max

AUROC: 0.49); permutation-based P-value ¼ 1 � 10�5

that the AUROC values for CAE and other phenotypes are

so contrasting.

For FE, current ASMs are not readily classified into more

clinically-effective and less clinically-effective subsets. The FE

FAM score identifies and prioritizes ASMs: AUROC (mean

6 standard deviation) of 0.85 6 0.03 and average percentile

of 94; the FAM score’ performance is statistically significant

(permutation-based P-value ¼ 1 � 10�6), and superior to

that of its constituent scores.

When considering the ability to distinguish more effect-

ive ASMs from all drugs and from less effective ASMs,

the FAM score outperforms its constituent scores

(Supplementary Table 2).

Table 1 Performance of the FAM score, measured by the identification and prioritization of AEDs

Epi Identification of AEDs (AUROC) Prioritisation of AEDs (average percentile) P

More effective

AEDs from all

drugs

(mean 6 SD)

Less effective

AEDs from all

drugs

(mean 6 SD)

More from less

effective AEDs

More effective AEDs Less effective AEDs

HS 0.65 6 0.13 0.36 6 0.18 0.87 73 27 8 � 10–3

GE 0.85 6 0.04 0.69 6 0.09 0.71 93 70 <1 � 10–6

JME 0.88 6 0.04 0.76 6 0.08 0.72 96 86 <1 � 10–6

CAE 0.75 6 0.05 0.45 6 0.15 0.79 85 48 2.9 � 10–5

Constituents of the ‘More effective AEDs’ and ‘Less effective AEDs’ drug-sets are specific to each phenotype. ‘Less effective AEDs’ comprise the set of less effective, ineffective or

aggravating AEDs for that phenotype. AUROC is calculated using drugs’ FAM scores. AUROC for identifying AEDs from all drugs is computed using the technique of random under-

sampling, and presented as mean 6 standard deviation (see Supplementary methods). Prioritization is calculated using drugs’ ranks, when all drugs have been ranked from highest to

lowest predicted effect on the phenotype. Prioritization result shown is the average (median) rank of AEDs, expressed as a percentile; it is equivalent to the percentage of all drugs

ranked below the middle-ranked AED (see Supplementary methods). AUROC, area under the receiver operating characteristics; CAE, childhood absence epilepsy; Epi, epilepsy

type or syndrome; GE, generalized epilepsy; HS, focal epilepsy with hippocampal sclerosis; JME, juvenile myoclonic epilepsy; P, permutation-based P-value after Benjamini–Hochberg

correction; SD, standard deviation.
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The FAM score predicts the observed patterns of

relative efficacy of individual clinically-effective

ASMs

We tested our predictions against the following observed

patterns of relative efficacy of individual clinically-effective

ASMs.

Valproate is the most effective ASM for GE, whereas

carbamazepine is the most effective ASM for FE

It is recognized that the efficacy of valproate for general-

ized onset seizures is ‘unsurpassed’,44 whist for focal

onset seizures, ‘no other drug has been shown to be

more effective’ than carbamazepine.45 In our predictions

for GE, valproate is ranked highest of all current ASMs.

In our predictions for FE, carbamazepine is ranked high-

est of all current ASMs. Valproate and carbamazepine

are amongst the top two of all drugs in our predictions

for GE and FE, respectively; permutation-based P-value

¼ 5.6 � 10�6 for both valproate and carbamazepine

being ranked so highly in our predictions for GE and FE,

respectively.

The predicted order of efficacy of ASMs for FE

matches that seen in the SANAD trials

The SANAD studies are the largest published head-to-

head comparison of multiple ASMs for FE, and the larg-

est published randomized controlled trial of ASMs for

FE.46,47

Five ASMs were compared in the FE arm of SANAD I:

carbamazepine, gabapentin, lamotrigine, oxcarbazepine

and topiramate. These drugs’ predicted order of efficacy

for FE matches the observed order of efficacy in the

SANAD I trial. The finding that these drugs are ranked

as highly and in the correct order is unlikely to occur by

chance (P< 1 � 10�6 by permutation).

Carbamazepine and gabapentin are effective ASMs but,

in the FE arm of the SANAD I trial, carbamazepine was

significantly more efficacious than gabapentin.

Carbamazepine and gabapentin are ranked high in our

predictions for FE (percentile ranks 100 and 79, respect-

ively), but carbamazepine is ranked significantly higher

than gabapentin (permutation-based P-value ¼ 1 � 10�4

for the ranks of both drugs being as high but as dispar-

ate as observed).

The ASMs compared in the FE arm of SANAD II were

lamotrigine, levetiracetam and zonisamide. These drugs’

predicted order of efficacy for FE matches the observed

order of efficacy in the SANAD II trial. The finding that

these drugs are ranked as highly and in the correct order

is unlikely to occur by chance (P< 1 � 10�6 by

permutation).

The prioritized order of efficacy of ASMs for GE

matches that seen in the SANAD I trial

The SANAD studies are the largest published head-to-

head comparison of multiple ASMs for GE, and the

largest published randomized controlled trial of ASMs for

GE.48,49

The ASMs compared in the GE arm of SANAD I were

lamotrigine, topiramate and valproate. These drugs’ pre-

dicted order of efficacy matches the clinically observed

order of efficacy in the SANAD I trial. The finding that

these drugs are ranked as highly and in the correct order

is unlikely to occur by chance (permutation-based P-value

¼ 1 � 10�5).

Valproate and lamotrigine are effective ASMs but, in

the GE arm of the SANAD I trial, valproate was signifi-

cantly more efficacious than lamotrigine. Valproate and

lamotrigine are ranked high in our predictions for GE

(percentile ranks 100 and 81, respectively), but valproate

is ranked significantly higher than lamotrigine (permuta-

tion-based P-value ¼ 3 � 10�4 for the ranks of both

drugs being as high but as disparate as observed).

The ASMs compared in the GE arm of SANAD II

were levetiracetam and valproate. Valproate and levetira-

cetam are effective ASMs but, in the GE arm of the

SANAD II trial, valproate was significantly more effica-

cious than levetiracetam. Valproate and levetiracetam are

ranked high in our predictions for GE (ranks 1 and 15,

respectively), but valproate is ranked significantly higher

than levetiracetam (permutation-based P-value < 1 �
10�5 for the ranks of both drugs being as high but as

disparate as observed).

Topiramate is more effective than lamotrigine for

GE, but lamotrigine is more effective than

topiramate for FE, in concordance with the SANAD

I trial

Lamotrigine and topiramate are the only two ASMs

included in both the FE and GE arms of the SANAD I

study. In the GE arm of SANAD I, topiramate was more

efficacious than lamotrigine, whereas in the FE arm,

lamotrigine was more efficacious then topiramate. In our

predictions for FE, lamotrigine is ranked higher than top-

iramate, while for GE, topiramate is ranked higher than

lamotrigine. The contrasting ranks of lamotrigine and

topiramate for FE and GE are unlikely to occur by

chance (permutation-based P-value ¼ 1 � 10�4).

For JME, valproate is most effective

Valproate is thought to be the most efficacious broad-

spectrum ASM for JME50–52 but this is based on anec-

dotal data and retrospective analyses. Amongst our pre-

dictions for JME, valproate was amongst the highest

ranked drugs (percentile rank 98), but not the highest.

The highest ranked prediction was primidone. In the lon-

gest retrospective cohort study of JME to date, primidone

was most effective, with a 5-year terminal remission rate

of 73.3, compared to 50% with valproate.53
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For CAE, valproate and ethosuximide are most

effective

Valproate and ethosuximide are most effective for CAE;

both are similarly effective for CAE.54 In our predictions

for CAE, valproate is ranked highest of all drugs.

Ethosuximide is not ranked highly, but higher than aver-

age, amongst our predictions (median percentile rank 58).

The P-value for the two drugs being ranked so favour-

ably is 5¼ 1 � 10�4. Ethosuximide is ascribed a particu-

larly low FM score for CAE, which places it in the 20th

percentile of predictions for the phenotype. One possible

explanation of ethosuximide’s low FM score is that its

mechanism of action is poorly understood, as it is not an

extensively studied compound. Indeed, ethosuximide is

one of the least studied of the current ASMs: there are

343 MEDLINE articles with the word ethosuximide in

their title, compared to a mean of �1765 for the other

current ASMs that are also found in our datasets (as of

2 September 2021; single-sample one-tailed t-test t¼ 3.7

and P-value ¼ 6.9 � 10�4).

The drug predictions are not driven
by individual highly disease-
associated proteins

The relative predicted efficacy of drugs does not change

significantly after excluding, one at a time, the top 10

most strongly disease-associated proteins that contrib-

ute to the FAM score for that epilepsy. The predicted

ranks of drugs for each epilepsy remained significantly

stable after excluding, one at a time, the top 10 most

strongly disease-associated proteins that contribute to

the FAM score for that epilepsy. For each epilepsy,

FAM scores were re-calculated after excluding, one at

a time, the top 10 most strongly disease-associated pro-

teins (Supplementary Table 3) that contribute to the

FAM score for that epilepsy. When drug ranks

obtained after excluding a protein were compared with

the original drug ranks, Kendall’s s ranged from 0.80

to 0.93, with all corrected P-values <1� 10�200. In

contrast, comparing the predicted drug rankings for

two unrelated epilepsies—CAE and HS—yields a

Kendall’s s of 0.04 (P¼ 0.10).

Top candidate drugs

Ranked lists of the top drugs predicted to be effective for

each phenotype, which are most enriched with the drugs

that are known to be (more) effective for the phenotype,

are available for download (see Data availability). For

each phenotype, the top candidate drugs are significantly

(Benjamini–Hochberg P-value <0.05) enriched with the

ASMs that are (more) effective for the phenotype, except

for HS. For HS, there was no significant enrichment of

(more) effective ASMs, which may be a reflection of the

often drug-resistant nature of HS, or of the lower power

of the HS GWAS, or the relatively smaller size of the

more effective subset of ASMs for HS, or a combination

of these factors.

A manually curated selection of top candidate drugs

that could potentially be repurposed for different forms

of common epilepsy is shown in the Table 2.

Predicted drugs have a significant
dose-dependent effect on seizures
in an animal model

After excluding drugs that are toxic or otherwise unsuit-

able, the top five predicted drugs for GE were tested in a

mouse model with a complex genetic seizure disorder

that manifests as audiogenic generalized seizures. Each of

the drugs had a significant dose-dependent effect on tonic

and clonic convulsions (Table 3). Whilst four of the

drugs had a significant dose-dependent anti-convulsant ef-

fect, one of the compounds (betahistine) had a significant

dose-dependent pro-convulsant effect.

Discussion
We present the relative predicted efficacy of drugs against

each of the main types and syndromes of common epi-

lepsy. This dataset is a novel and valuable resource for

selecting the best candidate drug(s) to repurpose for any

of the main types and syndromes of common epilepsy.

Of course, our predicted candidate drugs require further

animal model and/or human clinical trial evidence before

being considered for deployment in clinical practice.

To generate our predictions, we created a novel

method. Our method possesses several strengths that are

lacking in previously published approaches. Common epi-

lepsies, like other complex diseases, develop when many

different proteins display abnormal activity due to patho-

logical changes in their abundance or function.55 Our

method prioritizes drugs according to their relative ability

to modulate changes in both the abundance and the func-

tion of disease-proteins. Furthermore, drugs are priori-

tized on the basis of their ability to correct disease-

protein abnormalities that are found in people with the

disease, rather than in animal models, and that are not

consequential to or compensatory for the disease, as they

are driven by germline variations. We use genetic vari-

ation data specific to each form of common epilepsy, to

make drug predictions specific to that form of common

epilepsy. The ASMs that are more clinically-effective for

a syndrome and the ASMs that are less clinically-effective

for a syndrome are predicted more effective and less ef-

fective, respectively, for that syndrome only, but not for

any other epilepsy type or syndrome—this suggests that

our predictions are not systemically biased in favour of a

particular set or type of drugs. The methodology is based

upon a polygenic model of disease and a multi-targeted

approach to treatment, which are desirable for complex

diseases. We utilize conventional canonical low-
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throughput single-target functional drug activity data,

and high-throughput genome-wide transcriptomic drug

activity data, so that prioritization of drugs is informed

by their on-target and off-target effects, and by their

affinities for individual proteins and effects upon genome-

wide gene expression. The directionality of drugs’ effects

on protein activity also helps inform drug prioritization.

Rather than dichotomous categorization of compounds

into drugs that are predicted to be effective or ineffective,

our method ranks drugs individually according to relative

predicted efficacy, which aids candidate selection for

in vivo validation and for development.

Our method produces accurate drug predictions for epi-

lepsy syndromes even if their GWAS results include few

genome-wide significant loci. Even excluding the most

strongly disease-associated proteins does not significantly

change the relative efficacy of drugs predicted by our

method (as we show in the Results, under subheading

‘The drug predictions are not driven by individual highly

disease-associated proteins’). This is because our method

is not reliant on individual highly disease-associated pro-

teins. Instead, our method leverages the gene-set analysis

approach, where each gene-set is the set of genes affected

by each drug. The disease association of all the genes in

a gene-set, even those below the genome-wide significant

threshold, is combined; the gene-sets that are more dis-

ease-associated overall are more biologically relevant. The

gene-set approach is a long-established and widely-used

method in all areas of genomic analysis,56 including post-

GWAS analysis generally57 and GWAS-based drug repur-

posing analysis specifically.27,28 Utilizing the full distribu-

tion of all genetic associations for gene-set analysis is a

validated, established and accepted approach, which has

been implemented in numerous widely-used post-GWAS

analysis tools, for example FUMA,58 MAGMA,58

MAGENTA,59 INRICH60 and DEPICT,61 each of which

Table 2 Manually curated selection of candidate drugs for the phenotypes shown in the table

Epi Drugs Evidence of antiseizure

efficacy in

Indication Mode of action

CAE Clomipramine Animal models1 and humans2 Depression Serotonin–noradrenaline reuptake

inhibitor

CAE Doxepin Animal models3,4 Depression Tricyclic antidepressant

CAE Pentoxifylline Animal models5 Peripheral vascular disease Haemorheological agent, increases

leukocyte deformability

CAE Phenelzine Animal models6 Depression Monoamine oxidase inhibitor

CAE Sulindac Animal models7 Pain Non-steroidal anti-inflammatory

CAE Tolbutamide Animal models8 Diabetes mellitus Sulphonylurea

CAE Tranylcypromine Animal models9 Depression Monoamine oxidase inhibitor

FE Chlorzoxazone Rat hippocampal neurons10 Muscle spasms Calcium and potassium channel

inhibitor

FE Hydrochlorothiazide Animal models11, 12 and

human12

Hypertension ACEII antagonist

FE Thalidomide Animal models16-18 Multiple myeloma Immunomodulation, unspecified

FE Zaleplon Animal models19 Insomnia GABA-BZ agonist

FE Zolpidem Animal models20-22 Insomnia GABA-BZ/GABA-A agonist

HS Amiodarone Animal models23 Arrhythmia Potassium channel blocker

HS Clonidine Animal models24-44 Hypertension Alpha-2 adrenoceptor agonist

HS Methoxamine Animal models45 Hypotension Alpha-1 adrenergic receptor agonist

HS Pergolide Animal models46 Parkinson’s disease D2 agonist

HS Thioridazine Animal models47 Psychosis D1/D2 antagonist

HS Tizanidine Animal models40 Muscle spasticity Alpha-2 adrenergic receptor

antagonist

JME Aliskiren Animal48, 49 Hypertension Renin inhibitor

JME Baclofen Animal models39, 50-76 Muscle spasticity GABA-B receptor agonist

JME Diazoxide Animal models77, 78 Hypoglycaemia Potassium channel agonist, inhibits

insulin release

JME Icosapent Animals79, 80 and humans81-

85

Hypertriglyceridaemia 20-carbon omega-3 fatty acid

JME Iloprost Animal models86, 87 Pulmonary arterial

hypertension

Synthetic analogue of prostacyclin

PGI2

JME Nicotinamide Animal models94-103 Pellagra Water-soluble form of Vitamin B3

JME Pranlukast Animal models104 and

humans105

Asthma Cysteinyl leukotriene receptor-1

antagonist

JME Riluzole Animal models106-109 Amyotrophic lateral sclerosis Glutamate antagonist

Candidate drugs for GE, which we tested in an animal model, are listed in Table 3. References, for the evidence cited here, can be found in the Supplementary material. CAE, child-

hood absence epilepsy; Epi, epilepsy type or syndrome; HS, focal epilepsy with hippocampal sclerosis; JME, juvenile myoclonic epilepsy.
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has been employed in a multitude of published GWAS-

based studies.

Alongside these strengths, our method has some limita-

tions, discussed below.

Our drug prediction method, like all previously pub-

lished genetics- or genomics-based drug prediction meth-

ods, predicts the efficacy of drugs for a disease.

However, the most efficacious drug for a disease in not

always the most appropriate drug for every individual

with the disease. Important factors to consider when

choosing a drug for an individual include the potential of

undesirable interactions with other medications and the

possible side-effects. Our method, like all previously pub-

lished genetics- or genomics-based drug prediction meth-

ods, does not predict drugs’ interactions with other

medications and side-effects. Indeed, the success of an

ASM is determined as much by its tolerability as by its

efficacy.59–62 As the drugs we have predicted for

epilepsies are already being used for other diseases, their

side-effect profiles are known. This allows researchers to

select for further development those candidate compounds

whose side-effects are less deleterious or even desirable.

Our method predicts drugs effective for a disease from

the proteins underlying the disease, after identifying the

proteins underlying the disease from the common genetic

variations associated with the disease. However, some

proteins become dysfunctional or dysregulated not be-

cause of common genetic variations, but because of rare

genetic variations, or copy number variations, or abnor-

malities of epigenetic, post-transcriptional or post-transla-

tional mechanisms, or because of environmental insults.

Such protein changes do not inform our predictions,

which could affect their accuracy, commensurate with the

contribution of those proteins to the causal mechanism

underlying an epilepsy and/or to the mechanism of action

of a drug. We are not aware of any existing drug predic-

tion methods which take into account the multiple poten-

tial pathogenic factors that influence proteins; the

development of such methods might lead to improved ac-

curacy of drug predictions.

Our analysis uses data from a GWAS that employed

imputation to improve genomic coverage. The GWAS

gene-level data used in this analysis offers coverage of

genes across the genome, and it is corrected for the

lengths and single nucleotide polymorphism-densities of

genes. However, if a gene is not (adequately) covered by

the genotyping array and the imputation, but the gene is

of importance in epilepsy and affected by drug(s), the ac-

curacy of our drug predictions could be adversely

affected. Hence, improved coverage of future epilepsy

GWAS analyses could help to improve the accuracy of

drug predictions.

Our drug predictions are based upon two scores: the

FM and AC scores. The FM score relies upon knowledge

of the proteins changed in function by drugs. At present,

knowledge of the proteins that are changed in function

by each drug is incomplete, and it is more incomplete for

some drugs than for others. The more incomplete the

knowledge of the proteins changed in function by a drug,

the more likely it is that the drug’s FM score will be

underestimated. By extension, the FM score is more likely

to be underestimated for drugs that are less studied, as

their modes of action are less analysed and, hence, know-

ledge of the proteins changed in function by them is less

complete. This may explain the relatively low FM sore

and, hence, FAM score and ranking for ethosuximide.

The AC score is free of this limitation, as the AC score is

based upon profiles of drug-induced transcriptomic

changes assayed by using the same standardized pipeline

for each drug. With over 44 000 compounds already

Table 3 Results from testing compounds in a genetic model of generalised seizures: the DBA/2 mouse model of

audiogenic seizures

Drug Latency (s) to convulsions (mean6s.e.m) P

Vehicle (i.p.) 10.9 6 2.6 –

Orphenadrine (12.5 mg/kg i.p.) 40.0 6 5.6 6.10 � 10–5

Orphenadrine (25 mg/kg i.p.) 53.4 6 3.7 5.40 � 10–7

Orphenadrine (50 mg/kg i.p.) 60.0 6 0.0 4.14 � 10–7

Dyclonine (5 mg/kg i.p.) 31.5 6 6.2 1.77 � 10–2

Dyclonine (10 mg/kg i.p.) 44.7 6 5.4 2.16 � 10–4

Dyclonine (20 mg/kg i.p.) 57.7 6 2.4 4.14 � 10–7

Trimeprazine (2.5 mg/kg i.p.) 11.0 6 20.6 6.52 � 10–1

Trimeprazine (5 mg/kg i.p.) 18.1 6 4.1 1.77 � 10–2

Trimeprazine (10 mg/kg i.p.) 44.5 6 5.3 4.06 � 10–6

Acamprosate (125 mg/kg i.p.) 8.7 6 0.4 6.40 � 10–1

Acamprosate (250 mg/kg i.p.) 9.2 6 0.2 4.56 � 10–1

Acamprosate (500 mg/kg i.p.) 14.3 6 2.5 1.20 � 10–2

Betahistine (75 mg/kg i.p.) 9.1 6 0.5 4.53 � 10–1

Betahistine (150 mg/kg i.p.) 6.9 6 0.4 2.83 � 10–2

Betahistine (300 mg/kg i.p.) 5.3 6 0.3 4.48 � 10–5

Valproate (180 mg/kg i.p.) 57.7 6 1.4 4.89 � 10–7

After activation of a bell, latency to the occurrence of tonic convulsions and clonic convulsions was measured. P, Benjamini–Hochberg-corrected P-value from two-sided Mann–

Whitney U test; s.e.m, standard error of the mean.
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analysed on this platform (http://lincsportal.ccs.miami.edu/

SmallMolecules/catalog; accessed on 1 February 2021),

transcriptomic profiles are available for the vast majority

of drugs of interest. However, a small number of interest-

ing drugs (for example, brivaracetam and cenobamate)

have not been assayed, which means that an AC score

and, hence, a FAM score cannot be calculated for them.

The platform and pipeline used for generating drugs’

transcriptomic profiles are in the public domain, and

have been used by researchers to generate profiles for

any compounds of interest not already found in the data-

base, albeit for industrial-scale projects.62 In addition,

there is active ongoing development of computational

methods for using knowledge of drugs’ structures to pre-

dict the proteins that they change in function and/or

abundance,63,64 which is another potential future strategy

for predicting the relative efficacy of compounds whose

molecular effects are still unknown.

It is noted that the FM score does not predict the ‘dir-

ectionality’ of drugs’ effects (that is, beneficial or harm-

ful) on disease-protein function. Therefore, drugs

predicted by the FM score to affect a phenotype may be

alleviating or aggravating for the phenotype. This is a

recognized limitation of methods that use data for the

ability of drugs to alter the function of genetically-associ-

ated disease-proteins in order to predict drugs that can

affect the disease,16,17,65 as the direction of change in

protein activity occurring in the disease is unknown. On

the other hand, the AC score does predict the ‘direction-

ality’ of drugs’ effects (that is, beneficial or harmful) on

individual disease-proteins and, thereby, the overall ‘direc-

tionality’ of drugs’ effects (that is, beneficial or harmful)

on the disease. The AC score takes into account the mag-

nitude and direction of change in proteins’ abundance

underlying disease, and the magnitude and direction of

change in proteins’ abundance caused by drugs. Thereby,

the AC score proposes to predict the drugs with a benefi-

cial effect on disease-protein abundance and clinical

phenotype. Hence, inclusion of the AC score, with the

FM score, in our final FAM score, is expected to help

mitigate the risk of deleterious compounds with high FM

scores being included in our candidate drugs. Still, it is

possible that some aggravating drugs are included in our

candidate compounds. Hence, experimental validation of

candidate drugs is essential before clinical use, as with all

in silico drug prediction methods. We tested five of our

candidate compounds in a rodent model: all five com-

pounds had a significant dose-dependent effect on seiz-

ures. Interestingly, one of the candidate compounds

(betahistine) had a significant dose-dependent pro-convul-

sant effect in the animal model. This finding could be

explained by the possibility that some of our predicted

compounds are aggravating, as discussed. However, it is

also possible that the pro-convulsant effect of betahistine

in our study is a reflection of species- or model-specific

behaviour. Indeed, a recent study (published after our

animal experiments had ended) showed that betahistine

has a significant antiepileptogenic and anticonvulsant ef-

fect on pentylenetetrazole-induced generalized seizures in

a different mouse strain.66

Whilst acknowledging these limitations and some aber-

rant predictions, we note that our method outperforms

alternative methods for predicting drugs that have effi-

cacy against common epilepsies in clinical studies and ex-

perience. Our method also predicts which ASMs are

amongst the more efficacious in clinical practice, and

which ASMs are amongst the less efficacious in clinical

practice, for each of the main syndromes of common epi-

lepsy, and it predicts the distinct order of efficacy of indi-

vidual ASMs in clinical trials of different common

epilepsies. This aspect is key to the clinical translation of

drug predictions for common epilepsies, but is missing

from previously published studies that have predicted

drugs for epilepsy.13–17

In this study, we have used the tissue-wide association

study method to identify the protein abundance changes

underlying disease. A closely-related alternative method is

to use Mendelian randomization. In future studies, both

methods could be compared and/or combined in order to

determine if this improves the drug predictions.

Mendelian randomization is discussed at greater length in

the Supplementary material.

As our method uses GWAS data, it cannot be applied

to monogenic diseases. It is conceivable that this method

could be adapted to make it applicable to monogenic dis-

eases, and we plan to explore this possibility in a future

study dedicated to this objective.

We have used results from the latest epilepsy GWAS

mega-analysis, which includes previously published and

unpublished epilepsy GWAS analyses, making it the larg-

est epilepsy GWAS to date.11 However, compared to

other common neurological diseases, even the largest epi-

lepsy GWAS had a modest sample size, with 15 212

cases and 29 677 controls, and produced a modest num-

ber of discoveries, with 16 loci identified. The latest

schizophrenia GWAS, for example, included 36 989 cases

and 113 075 controls, resulting in the identification of

108 risk loci.67 It is hoped that expanded cohort sizes of

future epilepsy GWAS analyses will increase power and

improve drug predictions. In this analysis, we predicted

drugs for the main epilepsy syndromes that had risk loci

identified in the latest epilepsy GWAS. It is hoped that

future epilepsy GWAS will be large enough to report

results for additional epilepsy syndromes, and drugs can

be predicted for them using the method presented here.

Finally, it is likely that our method can be applied to the

GWAS results of other common complex phenotypes.

Supplementary material
Supplementary material is available at Brain

Communications online.
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