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The major surface protein 1a (MSP1a) gene has been used to characterize

Anaplasma marginale genetic diversity. This pathogen causes significant

productivity and economic losses to the cattle industry. The objective of

the present study was to report the first characterization of A. marginale

genetic diversity in Uruguay based on MSP1a genotypes and their putative

relationship with Rhipicephalus microplus. This cross-sectional study was

conducted between 2016 and 2020. The study included whole blood samples

from clinical cases of bovine anaplasmosis obtained from 30 outbreaks

located in six Uruguay territorial departments. Diagnosis was performed

using Giemsa-stained smears and confirmed by nested Polymerase Chance

Reaction (nPCR) targeting the A. marginale major surface protein 5 gene.

The genetic diversity of A. marginale strains was characterized by analyzing

the microsatellite and tandem repeats of MSP1a. Based on the microsatellite

structure, four genotypes were identified. Genotype E was the most prevalent.

Analysis of MSP1a tandem repeats showed 28 di�erent strains from the

combination of 31 repeats, with τ-10-15 and α-β-β-β-Γ being the most

common. Repeats Γ , β, α, and γ were associated with the absence of

R. microplus with statistical significance (p < 0.05). Molecular observations

showed that 46.7% of the strains identified in our samples lacked the ability to

bind to tick cells; therefore, they were probably transmitted by other vectors.

Strain genetic diversity provides valuable information for understanding

the epidemiological behavior of A. marginale and could contribute to the

development of e�ective vaccines for the control of this disease.
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Introduction

Bovine anaplasmosis is caused by an obligate

intraerythrocytic Anaplasmataceae agents, Anaplasma

marginale (1), found within membrane-bound vacuoles

(1µm in size) in the cytoplasm of host cells. This bacterium

belongs to the order Rickettsiales and family Anaplasmataceae

(2). Bovine anaplasmosis is widely distributed throughout the

world, particularly in tropical and subtropical regions (3). It is

considered a major economic and production problem for cattle

in enzootic tick-infested areas (4).

Different species of Dermacentor and Rhipicephalus can

biologically transmit A. marginale. However, some A. marginale

strains are not infective or transmissible by ticks (5, 6). In

Uruguay, the only tick species related to the transmission of A.

marginale to cattle was Rhipicephalus microplus (7).

Anaplasma marginale is often transmitted mechanically to

susceptible cattle by blood-contaminated mouthparts of the

bloodsucking diptera of the Tabanus and Stomoxys genera, or via

fomites (8). In cattle, the only site for the replication is within

the erythrocytes, where it develops membrane-bound vacuoles

which contain−4–8 A. marginale (9).

The prepatent period ranges from 7 to 60 days (depending

on the infective dose), and as many as 70% or more of

the erythrocytes may become infected during acute infections

and/or during the manifestation of clinical sings (3). The

animals most susceptible to developing clinical diseases are

bovines older than 1 year. Severe anemia, icterus (without

haemoglobinuria), fever, weight loss, lethargy, depression, and

abortion were the main clinical signs observed (10). The major

postmortem findings include severe haemolytic anemia, icterus,

splenomegaly, hepatomegaly, and petechial hemorrhage on the

serosa surface over the heart and pericardium. All tissues were

pale and blood was thin and watery (11). Cattle that survive

acute infections may remain carriers for life (1).

Currently, there are different strains of A. marginale

worldwide, with diverse epidemiological behaviors, virulence,

pathogenicity, adaptation to ecological niches and induction

of the host‘s immune response (12). The major surface

proteins (MSP1a, MSP 4, and MSP 5) have been used for

the molecular characterization of strains (5), as these are

single genes that do not vary antigenically within isolates

(3). In particular, the analysis of MSP1a gene sequences

provides information regarding genetic diversity, evolution

of host-pathogen and vector-pathogen relationships, and

transmissibility of phenotypes.Moreover, these sequences can be

used to compare strains in a given region (12, 13). Furthermore,

using information from the MSP1a tandem repeat, it is possible

to design peptide-based vaccines (12).

Therefore, MSP1a is a stable marker of strain and has

been widely used to identify different strains of A. marginale

based on N-terminal variable tandem repeats (more than

300 strains characterized by tandem repeat structures) and

5′- untranslated region (UTR) microsatellite (described eleven

genotypes identified by letters A to L) located in the MSP1a

gene (14–16).

There are many studies around the world that report the

genetic diversity of A. marginale. This diversity is higher in

region where the vector R. microplus is present (14, 15, 17, 18).

This situation of wide diversity is frequently reported in South

American countries where they have endemic region of R.

microplus, both in beef and dairy cattle production (19–22).

Currently, no studies have been carried out in Uruguay to

characterize the strains of A. marginale. Therefore, the aim of

the present cross-sectional study was to characterize the genetic

diversity of A. marginale in clinically sick animals in Uruguay

and its possible relationship with R. microplus.

Materials and methods

Study design, geographical area, and
sample collection

A cross-sectional study was carried out in Uruguay, a

country located in the Southern Hemisphere temperate zone

between parallels 30◦ and 35◦ of the South latitude and

meridians 53◦ and 58◦ of the West longitude. The region

has subtropical climatic conditions, with an average annual

temperature of 17.5◦C and an annual average rainfall of

1,200mm. Convenience sampling was performed between

August 2016 and April 2020. Sixty blood samples from

tail vein in tube with potassium EDTA3 K anticoagulant

(ethylenediaminetetraacetic acid) from clinical cases of

anaplasmosis were collected from animals of different ages

(cows, calves, steers, and heifers). The samples were obtained

from 30 farms (outbreaks) located in six of 19 Uruguayan

departments: Artigas, Salto, Paysandú, Rio Negro, Soriano,

and Colonia (Figure 1). Of these 30 farms, belonged: 25 beef

production cross breed herd (48 samples) and five herd of

dairy cattle Holland (12 samples). These samples were sent

by veterinary practitioners to the laboratory of the “División

Laboratorios Veterinarios” (DILAVE) Northwest region of

the “Ministerio de Ganadería, Agricultura y Pesca” (MGAP),

Uruguay for diagnosis. The presence or absence of R. microplus

has been reported for each outbreak.

Blood samples were collected from animals with fever

(>39.9◦C), anemia (anemia was considered when the

microhematocrit was <26%; for this microtube with

blood was centrifuged at 11,800 × g for 5min), weakness,

jaundice, and pale mucosa. The average morbidity and

mortality (minimum–maximum) registered in the farms where

samples were collected were 5.4% (0.2%−32%) and 2.8%

(0%−25.7%), respectively.
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FIGURE 1

Map showing geographic location of the samples. The 60 samples of infected animals with Anaplasma marginale were obtained from 30

outbreaks of bovine anaplasmosis (dots with di�erent color according to microsatellite genotype), distributed in six departments of Uruguay.

Blood smear and molecular diagnosis

To confirm clinical cases of anaplasmosis, smears and

molecular detection using nested PCR (nPCR) were performed.

For this, blood extracted from tail vein was used. Blood smears

were fixed with methanol for 5min and stained with Giemsa for

60min. All smear readings were performed by the same trained

technician. For a positive result, at least 5% of the parasitised

erythrocytes had to be observed in 100 fields. The smears were

viewed under a light microscope at 1,000× magnification. For

molecular diagnosis, DNA extraction from 200 µl aliquots of

blood was performed using the PureLink Genomic DNA Mini

Kit (Invitrogen, USA) following the manufacturer’s instructions.

DNAwas quantified using a NanoDrop 2000 spectrophotometre

(Thermo Scientific) and stored at −20◦C until further analysis.

Molecular detection of A. marginale was carried out by nPCR

targeting a 458 bp fragment of the MSP-5 gene, as previously

described (23). In each run of the assay, a negative control

(ultrapure water) and a positive control (A. marginale Paysandú

isolate), previously sequenced and stored, were included.

PCR targeting MSP1a gene and sequence
processing

Molecularly confirmed A. marginale samples were

used to amplify a fragment of the MSP1a gene. For this

purpose, a semi-nested PCR method described by Lew

et al. (24) was carried out. The primers used were as

follows: 1733F (5′TGTGCTTATGGCAGACATTTCC3′)
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and 2957R 5′AAACCTTGTAGCCCCAACTTATCC 3′)

in the first step, and 1733F and 3134R (5′

TCACGGTCAAAACCTTTGCTTACC 3′) in the second

round, only when the first step showed no detectable bands.

Reactions were performed in a final 25 µl volume consisting

of 12.5 µl of MangoMix (Bioline; Meridian Bioscience), 6.5 µl

of ultrapure water, 4 µl of sample DNA solution, and 1 µl (10

pmol) of each primer. The amplification cycling following an

initial denaturation at 94◦C for 3min, 30 cycles of 30 s at 94◦C,

1min at 55◦C and 2min at 72◦C, followed by a final cycle with

a 7min extension step at 72◦C. The amplification protocol was

performed as described by Lew et al. (24). The PCR products

from each reaction were run on a 1.5% agarose gel stained

with GoodView nucleic acid stain (Beijing SBS Genetech) and

visualized under a UV transilluminator.

Amplicons of the expected size were purified using

a PureLink quick PCR purification kit (Invitrogen) and

sequenced (Macrogen, Seoul, South Korea). Sequence identities

were confirmed using BLASTN (http://www.ncbi.nlm.nih.gov/

BLAST). The raw sequences were assembled with the software

MEGAX (25). Each sequence was carefully checked, andmanual

corrections were performed when necessary.

Molecular characterization of the A.

marginale

Anaplasma marginale strains were classified using

microsatellite genotyping and tandem repeat (TR) composition

(15, 26). A microsatellite is located in the 5′-UTR of the MSP1a

gene between the putative Shine-Delgarno (GTAGG) sequence

and the translation initiation codon (ATG), SD-ATG (5),

containing the sequence structure GTAGG (G/ATTT)m (GT)n

T ATG. The Shine-Delgarno and initial codon distances were

calculated as (4×m)+ (2× n)+ 1, and the resulting genotypes

were identified by the letters A–L (14, 16).

MSP 1a sequences were classified by TR sequence and

number following the nomenclature described by de la Fuente

et al. (26) and other authors (15, 16, 27). The TRs present in each

sequence were classified using RepeatAnalyzer software (28).

The amino acid composition of the MSP 1a repeats is described

for each sample.

Phylogenetic analysis

Phylogenetic analyses were conducted using the MSP1a

amino acid sequences. Theoretical translation of nucleotide

sequences into amino acid sequences was performed using

the ExPASy translation tool web server (https://web.expasy.org/

translate/).

A set of reference sequences for phylogenetic analysis was

obtained by a BLAST search of each Uruguayan sequence

against the GenBank database. BLAST’s top five hits by sequence

(E-values < 1.0 × 10–5, >700 bp long, and with available

information of country and collection date) were retrieved.

The repeated sequences in the dataset were removed. This

resulted in a final dataset of 114 sequences from nine countries.

The amino acid sequences obtained in this study were aligned

with sequences retrieved from GenBank using MAFFT v7.467

program (29) and subjected to maximum likelihood (ML)

phylogenetic analysis. The ML tree was inferred with IQ-

TREE 1.6.1 software (30) under the JTT+F+I+G4 amino acid

replacementmodel selected byModelFinder application. Branch

support was assessed using the approximate likelihood-ratio

test based on a Shimodaira-Hasegawa-like procedure (SH-aLRT)

with 1,000 replicates (31).

Statistical analysis

The association between the TRs identified in the sample

and the presence or absence of R. microplus was evaluated

using the Phi correlation coefficient (φ) and Yates Chi2 test

(X2Yates), with a 95% confidence level. The test was performed

with the statistical software Statistical Package for the Social

Sciences (SPSS), v. 28.0.0.0 (International Business Machines

–IBM, USA).

Results

All 60 samples were smear-positive, showing more than

15% parasitised erythrocytes. In addition, all samples were

molecularly confirmed as A. marginale by MSP five nPCR.

Regarding animal age, the positivity distribution was 45 cows,

13 steers, one heifer, and one calf. Sixteen outbreaks were tick-

free (35 animals) and 14 outbreaks had ticks (25 animals). All

animals showed clinical signs of haemolytic disease.

Molecular characterization of A.
marginale strains using MSP 1a

MSP1a sequence analysis showed amplicons between 670

and 1,110 bp. Based on the structure of theMSP1amicrosatellite

of A. marginale, four genotypes were identified. The most

frequent genotype was E (45/60), followed by G (8/60), H (6/60),

and C (1/60).

Tandem repeats analysis revealed 28 different genotypes

were found in our 60 samples, contained between two and

eight TRs.

The strains commonly observed had three (42%), five (28%),

and four (10%) tandem repeats. Thirty-one TRs were found,

being the most frequently identified 15, τ , 10, Γ , F, β, and α

(Table 1 and Supplementary Table SI).
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TABLE 1 Sequence of MSP1a tandem repeats found in the Anaplasma marginale strains of this study, ordered from highest to lowest presence.

Repeat Sequence ofmsp1α tandem repeat Tick

A (ref) D D S S S A S G Q Q Q E S S V S S Q S E – A S T S S Q L G * * –

15 A * * * * * * * * * * * * G * L * * * G Q * * * * * * * * * * TA

τ T * * * * * * * * * * * * * * L * P * G Q * * * * * * * * * TP

10 A * * * * * * * * * * * * * * L * P * G Q * * * * * * * * * * TP

Γ T * * * * * * * * * * * * * * * * * * D * * * * * * * * * * TA1

F T * * * * * * * * * * * * * * * * * * G Q * * * * * * * * * TA

β T * * * * * G D * * * G * G * * * * * G Q * * * * * * * * TA1

α A * * * * * * * – – – – – – * L * * * G Q * * * * * * * * * TA1

3 A * * * * * * * * * * * * * * L * * * G Q * * * * * * * * * * TA

ru6 T * * * * * * * * * * * * G * * * * * * A S T S * Q L G TP

γ T * * * * * * * * * * * * * * * * * * D * * * * * * – Q L G * TA1

B A * * * * * G * * * * * * * * * * * * D Q * * * * * * * * * TP

E A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TP

M A * * * * * * * * * * * * * * * * * * G Q * * * * * – Q L G * TP

5 A * * * * * * * * * * * * * * * * * * D * * * * * * * * * * * TA

9 A * * * * * * * * * * * * * * * * * * D * * * * * * * S * * * TA

4 T * * * * * * * * * * * * * * L * * * G Q * * * * * * * * * * TA

EV7 T * * * * * * * * * * * * * * L * P * G Q * * * * * * * * V G TA

T A G * * * * G * * * * * * * * * * * * D Q * * * * * * * * * * TP

13 T * * * * * * * * * * * * * * L * * * D Q * * * * * * * * TP

100 T * * * * * * * * * * * * G * L * * * G Q * * * * * – Q L G * TP

154 A * * * * * * * * * * * * * * L * * * D Q * * * * * – Q S G * TP

C A * * * * * G * * * * * * * * * * * * G Q * * * * * * * * * TP

m A * * * * * * * * * * * * * * * * * * G Q * * * * * * S * * * TP

Q A * * * * * * * * * * * * * * * * * * D Q * * * * * * * * * * TA

34 A N * * * * * * * * * * * * * L * * * D Q * * * * * * * * TP

38 A * * * * * * * * * * * * * * L * * * G Q * * * * * * S * TP

61 T * * * * * G D * * * * * * * * * * * G A S T S * Q L G – TA

62 T * * * * * G D * * * * * * * * * * * D * * * * * * – Q L G * TA

162-3 A * * * * * * * * * * * * G * * * * * G Q * * * * * * * * TA

Ph21 A * * * * * G D * * * * * * * * * * * G A S T S * Q L G TA

Ch15 A * * * * * * * * * * * * G * * * * * G Q * * * * * * * * TA

Asterisks indicate identical amino acids and gaps indicate deletions/insertions with respect to the reference repeat A. Amino acids at position 20 are in bold and underlined. Association of

TR according to presence (TP) or absence (TA) of Rhipicephalus microplus on the farm.
1The association was statistically significant by Chi square, Yates corrected test (p < 0.05).

Based on the data set provide by Repeat Analyzer

we found 22 new strains. The strains τ -10-15 and

α-β-β-β-Γ were most prevalent (Table 2). We found

circulation of more than one genotype in ten A. marginale

outbreaks (10/30).

In 46.7% (28/60) of our samples, the strains had the amino

acid glycine (G) at position 20 of the MSP1a tandem repeat,

40% (24/60) had G and aspartate acid (D), 10% (6/60) had

glutamic acid (E), and only 3.3% (2/60) had a mixture of

E and G (Table 2). The data presented in the study are deposited

in the Genbank repository, accession numbers OP382972-

OP383031.

Phylogenetic analysis

The results of phylogenetic analysis using MSP 1a amino

acid sequences demonstrated the heterogeneity of the strains

found in this study. Most of our sequences were closely related

to sequences from Brazil. The phylogenetic tree showed a cluster

that agreed with the structure of the tandem repeats. A large

part of our sample was grouped into five clusters related to

the tandem repeats β, B, τ , Γ , and E. Twelve, 5, 16, 5, and 6

samples were grouped based on the tandem repeats β, B, τ , Γ ,

and E, respectively, with 93, 97.4, 92.8, 99.7, and 100 support

values (Figure 2).
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TABLE 2 Characterization of Anaplasma marginale strains according to the combination of tandem repeat.

N Combination of TR AA position 20′ Previously describe

strains (countries/state)

9 τ -10-15 G G G Yes (Argentina/Chaco, Villa

Angela; Brazil/ Parana, São Paulo,

Lins; México/Nayarit, Santiago

Ixcuintla)

6 α-β-β-β-Γ G G G G D Yes (Argentina/Santa Fe;

México/Nayarit, Santiago Ixcuintla,

Jalisco Tapalpa; Brazil/São Paulo,

Goías, Mato Groso do Sul)

4 E-ru6-ru6 E E E New

4 Γ -γ-9-3-5-9-3-15 D D D G D D G G New

3 EV7-10-15 G G G New

3 τ -15-15 G G G New

3 α-β-β-β-F G G G G G Yes (Brazil/ Rio de Janeiro)

3 F-β-β-Γ -γ G G G D D New

2 τ -154 G D New

2 E-ru6-ru6-ru6 E E E E New

2 T-B-B-B-M D D D D G Yes (Cuba/La Habana, Mayabeque)

2 3-3-ru6 G G E New

2 4-15-15-15-15 G G G G G New

1 Ph21-62-61 G D G New

1 34-13-13-τ -38 D D D G G New

1 B-Q-B-M-Q-B-M D D D G D D G New

1 162.3-Ch15-F-F-F-F G G G G G G New

1 B-M D G New

1 F-m-M-M-M-M G G G G G G New

1 9-3-5-9-3-15 D G D D G G New

1 τ 15 10 15 G G G G New

1 F-F-F-4 G G G G New

1 3-F-100 G G G New

1 F-F-100 G G G New

1 F-F-F-F G G G G New

1 B-B-B-C D D D G Yes (USA/South Dakota Platte,

Washington)

1 B-B-M D D G Yes (Argentina/Santa Fe, Pilar,

Salta)

1 τ -15 G G New

60

The amino acid at position 20′ of each TR is shown. New and previously described strains are shown.

n, number of samples; TR, Tandem repeat; AA, amino acid.

Statistical analysis

Statistical analysis of tandem repeats using phi correlation

was performed considering the presence or absence of R.

microplus. We classified the repeats into two classes: TR

found in the presence (TP) or absence (TA) of ticks.

Only the repeats Γ , β, α, and γ were found in the

TA, with a statistically significant correlation (p < 0.05;

Table 1).

Discussions

Bovine anaplasmosis caused by A. marginale is one of the

main parasitic diseases transmitted biologically or mechanically

by vectors, which causes significant losses to the livestock

industry. It is highly prevalent in tropical and subtropical

regions (7, 27, 32, 33). As observed in this study, the bovine

anaplasmosis mainly affects adult animals, which is consistent

with several reports (1, 34, 35). In contrast, young cattle often
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FIGURE 2

Maximum likelihood (ML) phylogenetic tree of A. marginale

strains based in partial MSP1a amino acid sequences. The

(Continued)

FIGURE 2 (Continued)

analysis involved 114 amino acid sequences (strains found in this

study were highlighted in yellow). The ML phylogenetic tree was

midpoint rooted and only SH-aLRT support values >80 are

shown. The branch lengths are drawn to scale with the bar at

the bottom indicating amino acid substitution per site.

Combinations of tandem repeats are shown in parenthesis.

evolve into subclinical diseases, responding more efficiently and

developing a rapid immune response (36, 37).

Several studies worldwide have been conducted to

characterize A. marginale strains, for which the major surface

protein genes are widely used (15). MSP1a is one of the six

MSP-reported proteins and has been described as a model

molecule for the analysis of A. marginale genetic diversity

(14, 26). This protein is involved in the adhesion of A. marginale

to bovine erythrocytes and ticks gut cells. It plays an important

role in cattle infection, tick transmission, and development of

bovine immunity against A. marginale (3). The major surface

protein 1a gene has a molecular size between 630 and 1,200

bp (24). This length polymorphism in MSP 1a is due to the

variation in the number of TRs (12). The sizes of the sequenced

samples were within this range.

During strain genotyping based on the microsatellite

structure, we observed that genotype E was the most prevalent.

These results are consistent with previous results for strains

foundmainly in Brazil (19, 20, 38), Argentina (18) and Colombia

(39). Other genotypes frequently observed in our work were G

and H. Studies carried out in Brazil (São Paulo and Maranhão)

reported that genotype H was the most frequently found in

beef and dairy cattle (21, 22). However, the genetic diversity

of circulating strains in the equatorial zone, comprising the

countries of Ecuador, Mexico, Cuba, and subtropical countries

such as South Africa and the USA, are different, with G and C

being the main genotypes (15, 27, 40).

The work carried out by Estrada-Peña et al., (14) reports

that clusters of microsatellite-genotyped strains were observed

according to the geographic region. Furthermore, the same

author described that SD-ATG length (between 19 and 29

nucleotides) of the MSP1a microsatellite has been correlated

with expression of the gene, which affects pathogen infection

and transmission of A. marginale. The expression of MSP1a is

lower in variants with an SD-ATG distance of 19 nucleotides,

while those with a distance of 23 and 29 nucleotides have

higher MSP1a gene expression (14). In our study, 88% (53/60)

of the strains corresponded to genotypes with a distance of 23

nucleotides, suggesting that these A. marginale strains may have

high infectivity.

In addition, in this study, based on the information provided

by Repeat Analyzer 22 new strains were found. The τ -10-15 and

α-β-β-β-Γ strain was overrepresented, whichmay be because we
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worked with clinical cases. It is possible that this strain is more

pathogenic than the other strains reported. Theses strains have

been previously described as the most prevalent strain in cattle

in Brazil, Argentina and México (4, 20, 38). Correlation analysis

of the tandem repeats, based on the presence or absence of a tick,

revealed that only four repeats (Γ , β, α, and γ) were associated

(p < 0.05) with the absence of R. microplus, which suggests

that strains containing these repeats may be less adapted to tick

transmission. Similar studies carried out in Argentina observed

that repeat M was associated (p < 0.05) with the absence of R.

microplus (18). Due to the high genetic diversity of the strains

found in our region and the small number of samples analyzed,

more studies must be carried out to validate the provisional

results shown here.

The high genetic diversity of A. marginale in tick enzootic

regions facilitated the co-circulation of several strains during the

same outbreak. Argentinian studies have reported the presence

of more than one Anaplasma strain infecting the same animal

(18), as well as Barbosa et al. reported on work carried out in

Angus cattle in Brazil (22).

Previous work carried out by de la Fuente et al. (41)

demonstrated that tandem repeated peptides containing the

amino acids D or E at position 20 of their tandem repeats have

the ability to bind to tick cells. G-containing peptides do not bind

to tick cell extracts. In this study, we observed that 53.3% of our

samples contained D or E at position 20 of their tandem repeats,

whereas 46.7% had G. These findings indicate that >50% of the

strains that we characterized have the ability to bind to ticks cells

and be biologically transmitted, but the remaining proportion

does not. More studies are necessary to discover competent

vectors ofA. marginale strains that do not have the capacity to be

biologically transmitted by ticks, as tabanids, Stomoxys calcitrans

and other mechanical vector.

A phylogenetic tree revealed the co-circulation of different

A. marginale strains in Uruguay. This provides valuable

information on the distribution of strains, as reported in other

studies (5, 14). A cluster related to TR was observed, in

agreement with other reports (19, 42). Several of the strains

found in this study are related to strains from Brazil. This could

be attributed to Uruguayan cattle entering from southern Brazil

and northern Argentina (43), bringing with them R. microplus

ticks and different strains of A. marginale. These strains have

to adapt to different factors such as climatic conditions, host

breed, host immune response, population dynamics of ticks

and insects that transmit them, transportation of cattle, and

use of insecticides and acaricides (15, 41). This adaptation

most likely caused the strains to evolve and generate a wide

genetic diversity.

Further genetic studies based on the MSP1a protein are

imperative, as it has been described as the reference gene

for monitoring genetic diversity and evolution, an important

identity marker of Anaplasma marginale strains. It also provides

important information regarding the epidemiological behavior

of these species. Finally, as it is an immunoreactive protein, the

information provided here may be used for future studies on the

design of vaccines for the control of this disease.

Conclusion

This is the first study conducted in Uruguay to genetically

characterize A. marginale strains. Analysis of MSP1a revealed

the co-circulation of different strains identified in clinical

diseases in cattle. This study provides valuable epidemiological

information for understanding bovine anaplasmosis as well as

basic information for the design of potential vaccines for the

control and prevention of this disease.
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