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Molecular mechanics (MM) is a powerful tool to study the properties of molecular systems
in the fields of biology and materials science. With the development of ab initio force field
and the application of ab initio potential energy surface, the nuclear quantum effect (NQE) is
becoming increasingly important for the robustness of the simulation. However, the state-
of-the-art path-integral molecular dynamics simulation, which incorporates NQE in MM, is
still too expensive to conduct for most biological and material systems. In this work, we
analyze the locality of NQE, using both analytical and numerical approaches, and conclude
that NQE is an extremely localized phenomenon in nonreactive molecular systems.
Therefore, we can use localized machine learning (ML) models to predict quantum
force corrections both accurately and efficiently. Using liquid water as example, we
show that the ML faciltated centroid MD can reproduce the NQEs in both the
thermodynamical and the dynamical properties, with a minimal increase in
computational time compared to classical molecular dynamics. This simple approach
thus largely decreases the computational cost of quantum simulations, making it really
accessible to the studies of large-scale molecular systems.

Keywords: molecular dynamics, machine learning, nuclear quantum effects, path-integral molecular dynamics,
centroid molecular dynamics

INTRODUCTION

Molecular mechanics (MM) simulation is an extremely powerful tool in the studies of biomolecules
and material systems. In most situations, MM simulations are conducted with Born-Oppenheimer
approximation, with the atoms moving on an adiabatic electronic potential energy surface (PES). The
motions of the atoms on PES are typically governed by classical statistical mechanics and Newtonian
dynamics, so the nuclear quantum effects (NQEs) are often neglected. While many properties can be
computed with satisfactory accuracy at classical level, it has been shown that the NQE can be quite
essential in systems with light atoms (Wang et al., 2014; Markland and Ceriotti, 2018; Tuckerman
and Ceperley, 2018). One important example is that NQE may significantly alter the strengths and
the structures of the hydrogen bonding networks in aqueous solutions. Such effect brings profound
impacts to the understandings of many important biological problems such as enzyme activities and
DNA stabilities (Agarwal et al., 2002; Pérez et al., 2010). In materials science, it was also found that
NQEs play nonnegligible roles in many problems such as guest molecule adsorptions and thermal
transport simulations (Wahiduzzaman et al.,, 2014; Shulumba et al, 2017; Luo and Yu, 2020).
Existing evidences show that NQE is not only a specific problem existing in a small number of
systems, but a universal phenomenon that needs to be accounted for in most biological and materials
simulations.

Frontiers in Molecular Biosciences | www.frontiersin.org 1

May 2022 | Volume 9 | Article 851311


http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.851311&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/articles/10.3389/fmolb.2022.851311/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.851311/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.851311/full
http://creativecommons.org/licenses/by/4.0/
mailto:yu.kuang@sz.tsinghua.edu.cn
https://doi.org/10.3389/fmolb.2022.851311
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.851311

Wu et al.

Conventionally, NQEs can be partially incorporated into
classical MM through implicit ways. Ad hoc corrections can
be used for some systems: for example, water molecules are often
constrained to be rigid, simulating the freezing of the high-
frequency intramolecular vibrations at room temperature.
However, such techniques are highly specific to a certain type
of molecule and can lead to significant errors as it does not treat
all degrees of freedom consistently (Luo and Yu, 2020)
Meanwhile, the force fields most widely used nowadays in
molecular simulations (such as AMBER (Weiner et al., 1984),
OPLS (Jorgensen et al., 1984, 1996), and CHARMM (Brooks and
Karplus, 1983; MacKerell et al., 1995; MacKerell Jr et al., 2000)
were developed empirically to reproduce the experimental results.
Since the real world is quantum in nature, it can be argued that
these empirical force field parameters are trained with quantum
effects incorporated implicitly, legitimating their usages in
classical MM simulations. However, we note that in the
conventional force field training process, it is often difficult to
fit both the small cluster ab initio data and the bulk experimental
data simultaneously. Therefore, in order to obtain a balanced
performance in bulk, one often needs to sacrifice the accuracy of
the potential in the small clusters. Besides the long-range many-
body interactions, the negligence of NQE in bulk simulations is
potentially one of the major reasons causing this dilemma. Due to
this problem, the conventional empirical force fields are often not
reliable in the details of the PES, which limits its transferability
and its predictive power. Therefore, in the past decade, it has
becoming increasingly popular to construct accurate force fields
from ab initio data directly without any experimental inputs (Lee
etal., 1995; Martin et al., 1995, 95; McDaniel et al., 2012; Xu et al.,
2018). For the systems that are affordable, ab initio MD (AIMD),
including both Born-Oppenheimer MD (BOMD) and Car-
Parinello MD (CPMD) (Car and Parrinello, 1985), are also
frequently performed with the ab initio calculations being run
on the fly to compute the PES. For these nonempirical MM
simulations, NQE becomes an important issue with universal
concerns and should be addressed explicitly in the simulation.

Most main stream NQE methods that are widely used in large-
scale simulations are originated from Feynman’s path-integral
formula (Feynman, 1998; Feynman et al., 2010). One simple
technique is the Feynman-Hibbs correction (FHC) (Sesé, 1992,
1995; Guillot and Guissani, 1998; Feynman et al., 2010), in which
atoms are smeared as in free-particle limit and the quantum
correction is given by convoluting the PES with Gaussian
distributions. In a pairwise additive potential, FHC also leads
to a pairwise additive correction, which are only related to the
high order derivatives of the pairwise interactions. Although
being heavily approximated, FHC has been widely used in
complicated simulations (e.g., Grand Canonical Monte Carlo
simulations (Kowalczyk et al, 2005; Fischer et al, 2009;
Durette et al.,, 2016; Ahmed et al, 2017, 2019)) due to its
simplicity. However, FHC can be erroneous in many systems
(as we will show in this work), and it can be difficult to implement
for a general many-body potential. A more advanced method is
the path-integral molecular dynamics (PIMD) (Berne and
Thirumalai, 1986; Tuckerman and Martyna, 2000), which
simulates a quantum particle using a classical “ring-polymer,”
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realizing the mathematical connection between the partition
functions of the two systems. In order to describe the
dynamics, PIMD is further succeeded by techniques such as
ring-polymer molecular dynamics (RPMD) (Craig and
Manolopoulos, 2004) and centroid molecular dynamics
(CMD) (Cao and Voth, 1994a; 1994b; 1994c; 1994d; 1994e).
All these methods can generate the exact quantum Boltzmann
distribution when using large number of beads, but they are also
much more expensive to run compared to classical MD. The large
computational cost of PIMD roots in two facts: first, it utilizes
multiple (typically 32-64) beads to represent one atom, so the
number of energy and force evaluations it needs is much more
than that of a classical simulation; and second, the hard spring
potential between the neighboring beads requires a much smaller
timestep for time integration. Tremendous efforts have been
made to accelerate PIMD (including RPMD and CMD): for
example, algorithms such as contraction (Markland and
Manolopoulos, 2008b, 08, 2008a) or high-order PI(Pérez and
Tuckerman, 2011; Kapil et al., 2016) reduces the number of beads
effectively, and advance integrators were developed to allow the
use of larger timesteps (Ceriotti et al., 2010). These efforts have
made PIMD gradually enter the mainstream of MD simulations,
but it is still much slower than the standard classical MD.
Techniques such as contraction also relies on a subjective
partition of the potential into fast and slow varying parts,
which is sometimes not so straightforward to perform.
Consequently, it is still relatively rare to see PIMD (and the
related RPMD/CMD methods) being used on large systems (e.g.,
in biomolecule simulations) in conjunction with expensive many-
body potentials (e.g., multipolar polarizable force fields, or even
ab initio potentials).

In this work, using water as example, we will demonstrate how
machine learning (ML) techniques can be utilized to accelerate
the CMD simulation. CMD is an important category of path-
integral method, which essentially coarse grains each ring-
polymer into a single site located on the centroid of the
polymer. The centroids move on an effective potential of
mean force (PMF), which are conventionally sampled on-the-
fly using explicit ring-polymers. The masses of the intra-polymer
modes are set to be light, so the centroid and the intra-polymer
motions are decoupled and the centroid motions can be
considered as adiabatic. Rigorous adiabatic CMD usually
requires a much smaller timestep, and the computation of the
centroid PMF is also time consuming. However, noticing that the
difference between the centroid PMF and the original PES
(i.e., the quantum correction to the PES) is localized, it can be
learned using localized ML models quite efficiently.

In the recent few years, we witness a rapid development of ML
techniques in MM simulations. A variety of ML techniques,
including BPNN (Behler and Parrinello, 2007), EANN (Zhang
et al, 2019, 2021), SchNet (Schiitt et al, 2018, 18), and
DeepPotential (Zhang et al.,, 2018, 18), have been applied to
develop accurate high-dimensional PES. All these models
decompose the total energy into a sum of localized atomic
energies, which are then predicted using neural networks with
input features designed to describe the local environment of each
atom. While such approaches have become increasingly popular
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in force field development, their applications on the description
of NQE are relatively rare. Liu et al. developed the method called
equilibrium continuity dynamics with the aim of calculating the
quantum time correlation function in Wigner phase space, and
accelerated this approach using ML techniques (Liu et al., 2021).
However, to the best of our knowledge, the ML-facilitated path-
integral methods (in particular, CMD) have not been thoroughly
investigated. In this work, through analytical and numerical
methods, we will rigorously quantify the locality of the CMD
quantum force correction in molecular systems. Due to this
locality, the CMD quantum force correction is actually much
easier to model using ML methods compared to regular PES. We
will show that a robust quantum force correction can be trained
efficiently on very small cluster PIMD samples in molecular
systems. Using this method, we can perform CMD simulations
with a speed similar to the conventional classical MD, really
making the quantum simulations accessible to the studies of
large-scale biological and materials problems.

METHODS
Path-Integral Based Methods

According to Feynman, the quantum partition function of a particle
can be expressed in a path integral form, which, after discretization,
is analogous to the classical partition function of a ring-polymer. For
example, in the one-dimensional case (Tuckerman, 2010):

Q=Tr [e’m ]

ph
= $ Dx(1) x exp{ _1 Jof dr- [%xz (1) + U(x('r))”

n
P

= del coodxp x exp{ - %Z[%(xkﬂ - xi)? +%U(xk):| }
P

= Qp

XP+1=XP

1

In here, Qp stands for the geometric part of the partition
function of a classical cyclic ring polymer with P beads. U (x) is
the PES employed in the simulation, computed using either force
field models or ab initio approaches. Exact quantum Boltzmann
distribution can be obtained by taking P — eo. In practice, we use
limited number (typically P equals to 32 or 64 in room
temperature) of slices to represent the continuous path of
x (7). The conjugate momentum of the bead positions x; can
be introduced in a variety of ways, leading to different flavors of
path-integral-based methods such as RPMD, PA-CMD (partially
adiabatic-CMD) (Hone et al., 2006), and CMD etc. In particular,
CMD coarse grains the intra-ring vibrational modes and focuses
on the physical motion of the geometric center of the ring-
polymer (i.e., the “centroid”):

2)
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When the motion of the centroid and the intra-ring vibrations
are decoupled, the centroid can be considered as moving on an
adiabatic PMF (denoted as U, (x) ), with the effective quantum
centroid force defined as:

— dUc (xo)
Fc (Xo) - = dxo
¢ Dx (1)8 (xc — x0) eXp{—S/h}[ _ W] 3)

¢ Dx (1)8 (x, — x,) exp{-S/h}
CF (i) =,

II

Here, the action S is simply:
S= J dr - [358 (1) + U(x(T))] 4)
0

In principle, one can conduct either MD or MC to sample the
bead (xy) distributions while keeping the centroid positions (x.)
fixed, then find the adiabatic centroid force by averaging the
forces on the beads. But such scheme is computationally
inefficient. Therefore, a common practice is to propagate all
the motions simultaneously, but to set the masses of the intra-
ring vibrations to be lighter, so these motions are decoupled from
the physical centroid motion. However, such scheme requires a
much smaller time step compared to regular classical MD
simulations, thus causing extra computational cost.

Another simple alternative was proposed by Feynman and
Hibbs (Feynman, 1998), when they proved that in a variational
sense, the optimal effective classical potential K (x) that accounts
for NQE is a Gaussian convolution of the underlying physical
potential U (x):

6mkT 6mkT(x — x')’
:’:hz del'U(xl)eXp[_n/l(fL)z)C)] (5)

K(x) =

It is interesting to observe that the Gaussian kernel features a
width of ¢ = V1?/12mkT , which happens to be the width of the
ring-polymer bead distribution in the free particle limit
(i.e., U(x)=0). Therefore, FHC can be viewed as an
approximation to CMD when the shape of U does not affect
the shape of the ring-polymer significantly.

When the underlying potential is pairwise additive and
spherically symmetric (ie, U= ) u(r;;) ), Eq. 5 leads to a
quite simple correction to the btiginal pairwise interactions.
This correction, truncated at second order, can be written as:

uFH(r,-j) = u(rij) +ﬂ_h2 azu(rij) 2 au(rij)

6
24‘1/1 ar,z] T,‘j ar,‘j ( )

Here, y = W represents the reduced mass of the two
interacting atoms. FHC provides an extremely simple solution to
the NQE problem, avoiding the expensive explicit sampling of the
ring polymer geometry. Therefore, FHC is widely used nowadays
in complicated simulations such as the GCMC, which are often
performed to compute the adsorption of gas molecules in porous
materials. However, for a general many-body potential (e.g., ab
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initio PES), FHC does not give a simply analytical formula as
given in Eq. 6, and cannot be easily computed without explicit
MC sampling. Therefore, even though both CMD and FHC offer
an effective quantum correction to the physical potential
formally, neither of them can be conducted easily on a general
many-body PES.

Machine Learning Techniques and Model
Locality

In this work, we will use the embedded atom neural network
(EANN) technique to learn the quantum centroid force
correction (Cao and Voth, 1994a; Feynman et al., 2010):

AF(x0) = Fc (x0) = F(xo) @)

EANN, like many other popular ML methods, assumes that
the total energy (in this work, the centroid PMF) can be written as
a sum of atomic energies:

U= Zu(f) ®)

And each atomic energy u, is a function of its local environment,
the information of which is encoded in an atomic feature vector
j‘a. Neural networks (NN) are then employed to fit the
complicated many-body function u, (j‘a). Different ML
methods differ in the ways of constructing j‘a, but the basic
mathematical structure showed in Eq. 8 is always retained. One
limitation of this scheme is that j‘u can only encode the local
atomic environment within a certain range r., and the
computational cost of the ML model increases rapidly with
increasing r.. Many deficiencies of the ML methods
manifested in the molecular force field development problem
root in this limitation. Therefore, the ML technique is in natural
favor of extremely localized problems, which require smaller
distance cutoffs, thus resulting in more efficient training
processes and faster computational speeds.

In this work, we will show that in molecular systems, the
quantum centroid force correction (AF.) happens to be an
extremely localized target, so ML is a natural tool to learn this
target. At first glance, it may not be very obvious why the machine
learned quantum force correction is more efficient than the plain
CMD. The training data collection could be painful: we need to fix
the centroids at different geometries, and for each geometry, we
have to run a thorough PIMD or PIMC simulation to fully
converge the centroid force. This fully adiabatic procedure has
been shown to be less efficient than the state-of-the-art CMD
algorithm, which runs the ring-polymer dynamics on-the-fly
using extended Lagrangian methods. However, in molecular
systems, if the quantum force correction is localized enough,
we can train the correction on small molecule clusters and apply it
to bulk simulations. Such an approach brings a huge gain on
computational efficiency, especially for potentials that are
expensive to evaluate. Multipolar polarizable force fields (such
as AMOEBA) and ab initio potentials are two typical examples: In
the former case, bulk calculations involve the time-consuming
multipolar Ewald summation, while cluster calculations with a

Machine Learning Centroid Molecular Dynamics

simple cutoff scheme are much faster to run. In the latter case, the
computational cost of regular DFT calculations scales as O (N?),
thus the bulk PIMD is also much harder to perform compared to
small cluster sampling. Therefore, with the development of the
new generation of accurate many-body force fields, it is becoming
increasingly beneficial to train the NQE correction on small
molecular clusters while using it in bulk simulations.

Computational Details

In this work, we use water as our test example, with both
q-TIP4P/F (Habershon et al., 2009) and AMOEBA (Ren and
Ponder, 2003) force fields. The two force fields were selected due
to the following reasons: 1) Both of them are not too expensive to
run, so we can obtain the rigorous bulk PIMD benchmark data at
a reasonable cost; 2) The two force fields represent two distinct
categories of PES. The q-TIP4P/F force field is one of the
conventional force fields with simple point charges and
Lennard-Jones interactions, which are completely spherical
symmetric and pairwise-additive. Meanwhile, AMOEBA
features multipole moments and explicitly polarizable atoms,
thus it resembles a more general many-body PES. Therefore, it
is interesting to compare the performances of the localized ML
model on both cases, in order to examine the generality of the
method.

For each force field, we first performed a bulk (1,000 water)
NPT PIMD simulation at the corresponding condition (1 bar,
300 K or 100 K), and randomly drew 2000 cluster configurations
from the bulk trajectory. Each cluster was consisted by one central
water molecule and seven nearest molecules, so we guarantee that
the first solvation shell of the central water was fully included.
These water octamers were then used to generate the training
data: with centroid positions fixed, we ran 1 ns PIMD simulation
to sample the bead distribution, so the averaged centroid force is
converged within 0.2 kJ/(mol A). To examine the width of the
ring-polymer, we also performed 1 ns PIMD simulations on a
smaller bulk system (with 216 water) with a density of 0.997 g/ml
at different temperatures. All the sampling simulations
mentioned above were conducted using the OpenMM 7.4.0
program, with modifications made to enable the fixed-centroid
PIMD simulations. All sampling simulations were performed
using 0.5 fs timestep and a Langevin thermostat with a 1.0 ps™"
friction constant. We used 32 beads at 300 K and 64 beads at
100 K, and the cutoff distance for the nonbonded interaction was
set to 9 A.

Once the averaged centroid forces were collected, their
differences with the classical forces (i.e., AF.) were used to
train an EANN model. The maximum angular momentum in
the EANN model was set to 2, and 11 Gaussian Type Orbitals
(GTOs) were used in the radial dimension. We used two hidden
layers in the network, with 20 neurons in each layer. All the
parameters in EANN were trained using the hybrid extreme
machine learning and Levenberg-Marquardt (ELM-LM)
algorithm, with the convergence criterion for the loss function
set to be 0.1.

The trained EANN model was then used in combination with
the original force field to perform the machine learning CMD
(ML-CMD) simulations. For validation, the simulation results
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were compared to the PIMD, RPMD, and the PA-CMD results, and
all the production runs were conducted using the i-PI 2.2 program.
In PA-CMD simulations, the lower limit of internal modes is set to
648 THz to ensure the adiabaticity between the centroid mode and
the intra-ring modes, and the timestep was set to be 0.02 fs.

RESULTS

Locality of the Quantum Force Correction
As we discussed in the theory section, the locality of the AF. is
the key to the success of the ML models, and thus the key to
the success of this work. Note that the quantum force
correction is due to the smearing of the atom into a cyclic
ring-polymer, so the correction would vanish if the size of the
ring-polymer is small enough compared to the interaction
range. Therefore, it is both interesting and necessary to
rigorously quantify the distribution width of the ring-
polymer at different conditions. Starting from Eq. 1,
without losing generality, we assume that the centroid is
located at x. =0, then expand and truncate the potential
energy U around x. at the second order:

Q= JDX(T) exp{ —% Jih dr- [5x + %U”xz]} 9)

In here, U" = ‘3272] is the force constant of the potential at point
x. along dimension x. Fourier transforming x (the n = 0 term is
dropped since we assume that x, = 0):

x(1) = Ze"“’"fxn

| n#0 (10)
L 3,-2,-1,1,2,3,...)

n_ﬁh T et b > YAy &y Iy e

and we can rewrite Eq. 9 as:
Q:JDx(T)eXp —QZ[mw2+U"]|x * (11)
2 £ " "

Therefore, the distribution of x, is merely independent
Gaussian distributions with the second moments:

1 1
maw? +U"]  mp[w? + «?]

) =g (12)

And in here, the intrinsic vibrational frequency of the atom
fan _ U”
is: w =5

Therefore, the total second moment of the distribution of x
can also be written as a sum of all Matsubara frequencies:

- 1 & 1
(@)=Y (x) = o Y v (13)
nto nto

Define the dimensionless quantity ¢ as:
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FIGURE 1 | The width of the ring-polymer predicted by Eq. 15 at
different temperatures (calculated using = 670 cm™), plotted along the side
with the FHC and QHO widths. The PIMD simulation results are also plotted in

the figure using open circles.

Phw
2

t= (14)

Then the second moment of the ring-polymer bead
distribution is:

(x*y = pi’ i;

4m*m = o+t
n#0 (15)

2
= jf;m [ - % + %coth(nt)]

Apparently, the locality of the ring-polymer is determined by
both the temperature and the curvature of the underlying potential.
In the high temperature limit (3 — 0, t — 0 ), Eq. 15 approaches
the limit of % , which is exactly the width used in the convolution
kernel of FHC. When the temperature is high, the quantum effect is
weak, so the ring-polymer is more similar to a classical particle with a
very narrow width. In this case, the potential is smooth enough in the
relevant neighborhood of the centroid, with the effects of its
curvature being negligible. Therefore, the shape of the ring-
polymer can be approximated well assuming the free-particle
limit, and FHC can be viewed as an excellent approximation to
CMD in the high-temperature region. However, in low temperature
region, FHC fails miserably as it predicts a singular behavior with the
distribution width going to infinitely large. Meanwhile, Eq. 15 in the
low temperature limit (f — oo, t — o) gives a asymptotic value of
(x*) = 5, which is exactly the distribution width of the ground
state of a quantum harmonic oscillator (QHO). This is also not
surprising, since the particle should only populate the vibrational
ground state in the low temperature limit. It can be further proved
that both the QHO and the FHC widths are rigorously the upper
bounds of the actual distribution width. The most delocalized (thus
the most problematic) dimension is the one that involves the lowest
frequency mode of the lightest atom.
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In Figure 1, using liquid water as example, we plot the widths
of the H atoms given by the square root of Eq. 15, in conjunction
with the values given by the FHC and the QHO formula, as well as
the PIMD simulation results. The intrinsic frequency w is set to be
670 cm™", which is approximately the frequency of the librational
mode (i.e., the lowest frequency mode) of H in liquid water and
ice (Tong et al.,, 2016). As it is shown, the analytical results agree
with the simulation results in the entire temperature range,
validating the utilization of Eq. 15 in the estimation of the
bead distribution width. Numerically, bounded by both the
QHO and the FHC limits, the average width of the H atoms
is below 0.15 A at all temperatures, showing that the PIMD bead
distribution in a typical condensed molecular system is indeed
extremely localized.

Using the results of the bead distribution width, we can
roughly estimate the magnitude of the quantum force
correction at a certain range. Let us consider a pair of
particles interacting with Coulombic force (the force with the
slowest decay rate in molecular systems), and evaluate how the
quantum correction to the magnitude of the force decays with
increasing distance. For convenience, without writing down the
charges explicitly, we assume that the magnitude of the classical
force between the two particles is:

1
And let us assume the three-dimensional ring-polymer bead
shifts for particle i and particle j are X; and X;, respectively.
Both X; and X; are with respect the centroids, thus we have:
Gy = (&) =0,

Then, the averaged quantum force correction, truncated at
second order, is:

AF:<;>_L:<;>_L
Rez-z|/ K Mreag/ ¥
(s (RR) - 1 ) a7
o)) (o)

Hence the relative correction is:

ATf - %(4<(ﬁ~A?¢)(ﬁ : Ax)> - <A?c : Afc>) (18)

Considering Ax =7i-AX is simply the one-dimensional
projection of AX along the direction of R, and
(AR - AX) = {Ax?), we have:

o< (4(03%) - (A%))

1 (CARCHREICEN

The largest force correction happens when the direction of R
(i.e., i) coincides with the lowest frequency mode (the librational

AF 1
_z
(19)
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mode) of hydrogen. Therefore, we can simply use the librational
frequency and Eq. 15 to evaluate the upper bounds for {x?) and
(x?) According to Cauchy-Schwarz inequality, we further have:

[{xixj| < (xf)(x?) = {x?). Therefore, we have:

AF _12
TR 20

This inequality could be further improved, realizing that the
correlation ({x;x;») also decays as 1/R® (see supporting
information for more analysis to the position and force
correlations). However, Eq. 20 is already good enough for the
following numerical analysis.

In this work, we use a cutoff distance of 4 A for our ML model,
and at this distance, Eq. 20 gives a relative force correction as
small as 2% at all temperatures. Furthermore, both analytical and
numerical analysis indicate that the correlation between the force
corrections decays fast with respect to interatomic distance.
Therefore, it is strongly indicated that the quantum force
correction is an extremely localized phenomenon and can be
tackled using a very small localized ML model.

It is noted that previous studies (Rognoni et al., 2021) show the
vibrational modes of liquid water is highly nonlocal. While there
are certainly nonlocal NQE existing in aqueous systems, such
result is not necessarily contradictory to our findings in this work.
In here, we focus on the locality of the centroid force correction:
just like localized force can lead to nonlocal vibrational modes,
local force correction can certainly give rise to global NQE in bulk
systems.

Force Tests

Using the water octamer PIMD centroid forces as training data,
we train the EANN model with a small cutoff of 4 A, and test its
validity in both bulk and surface water systems. We examine the
accuracy of the EANN model on the quantum force corrections
for both Q-TIP4P/F and AMOEBA potentials, and the test results
are shown in Figure 2. Excellent agreement between the fitted
and the reference data are achieved in all cases, showing the great
success of the methodology. This result is in consistent with our
analysis in the last section, showing that the quantum force
correction is virtually fully determined by the structure of the
first solvation shell. Water octamer clusters that contain one fully
solvated water molecule and seven surface molecules is all it needs
to obtain a model that is transferrable to both bulk and surface
environments. Such extrapolation capability does not rely on the
pairwise additivity of the underlying potential, and is extremely
important for PES that is difficult to evaluate (such as AMEOBA).

Thermodynamic Properties

After examining the centroid force correction, we investigate the
performance of the EANN model in the bulk ML-CMD
simulations. We first investigate the centroid radial
distribution functions (RDFs) for both O-O and O-H atom
pairs, and the results are plotted in Figure 3. It is noted that
the RDF reported here is not the regular RDF reported in
literature, but the RDF computed by centroid positions.
Although in principle, there is no essential technical
difficulties to train the PMF of one bead (instead of the
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FIGURE 2 | Quantum force corrections predicted by the EANN model, plotted against the reference data computed using PIMD: (A) Results in bulk water with
g-TIP4P/F force field. (B) Results in surface water with g-TIP4P/F force field. (C) Results in bulk water with AMOEBA force field. (D) Results in surface water with
AMOEBA force field.

centroid) such that the real RDF can be obtained. Apparently,
compared to pure classical MD, the machine learned quantum
force correction reduces the error on the centroid RDFs
significantly compared to the exact PIMD simulation. It is
further observed that the NQE on the centroid RDFs are more
significant in the AMOEBA simulations compared to the
q-TIP4P/F simulations, and our correction is also more
effective in AMOEBA. For both force fields, the quantum
centroid RDF is generally less structured compared to the
classical results, and such effect is accurately captured by the
EANN model.

Besides the liquid structure, we further examine the NQEs on
the system pressure (or, equivalently, the system density), and the
results are shown in Figure 4. In this part, we performed the
reference PIMD simulations using the more efficient OpenMM
program, while the ML-CMD was conducted using i-PI for
convenience. To rule out the potential numerical differences
caused by different programs, we computed the classical
baselines using both codes. The classical pressures computed
by both OpenMM and i-PI are in excellent agreement, proving
that the different integrators and thermostat implementations in
the two codes do not affect our simulation results significantly.
With the classical baselines established, it is clearly shown in
Figure 4 that ML-CMD reproduces the exact PIMD results with a
reasonable accuracy. Small overestimations can be observed in

both the low-density and the high-density ends, potentially
because that the EANN model was trained at 0.998 g/ml, so
the model error is slightly larger when the density deviates from
this density. In summary, it is shown that in both the centroid
RDF and the pressure tests, the ML force correction trained by
only small cluster data can reproduce the bulk PIMD results
accurately, proving the capability of our methodology in the
studies of thermodynamic properties.

Dynamic Property

As we discussed in the theoretical background section, the ML-
CMD method is theoretically equivalent to adiabatic CMD, so it
should also be able to capture the NQE in dynamic properties at
CMD level of theory. We thus computed the self-diffusion
constant of bulk water using classical MD, PA-CMD, and ML-
CMD, the results of which are listed in Table 1. The effective mass
used in PA-CMD is small enough such that the PA-CMD
simulation we perform is a good approximation to the
rigorous adiabatic CMD. Once again, the ML-CMD agrees
with PA-CMD within the statistical uncertainty, validating our
methodology.

Computational Cost
To verify that ML-CMD indeed possesses significant advantages
in computational efficiency, we compare the running speeds of
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classical MD, T-RPMD, PA-CMD, and ML-CMD in Table 2.
AMOEBA force field is employed, and all simulations are run
using i-PI, with one RTX 2080 graphic card, 8 CPU cores, and

TABLE 1 | The self-diffusion constants from classical MD, PA-CMD, and ML-CMD
simulations, respectively. The last digit in the parenthesis marks the
uncertainty.

Classical MD PA-CMD ML-CMD

Diffusion constant (A2/ps) 0.193 (4) 0.224 (5) 0.220 (4)

80 GB of memory. The EANN model has not been implemented
in CUDA platform, so this part of the calculation is performed on
a separate CPU client, while all other calculations are run on
GPU. Comparing ML-CMD with classical MD, we can see that
even with a slow CPU implementation, the extra computational
time due the EANN model is minor. Because of the extremely
short cutoff distance (4 A) we use, the EANN model is rather
small and is very fast to evaluate. Meanwhile, both T-RPMD and
PA-CMD are orders of magnitude slower than ML-CMD and
classical MD, due to two major reasons. First, both simulations
have to propagate the motions of 32 replicas of the system, which
means at least 32 times slower due to more energy and force
evaluations. Second, the timestep has to be smaller in both
T-RPMD and CMD to maintain the stability of the
simulations. We do acknowledge that a better integrator can
be employed so a larger timestep is possible for at least T-RPMD,
and techniques such as contraction can help to decrease the
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TABLE 2 | The simulate resources and time costs of different methods.

Machine Learning Centroid Molecular Dynamics

Classical MD T-RPMD PA-CMD ML-CMD
Clients 1 on GPU 32 on GPU 32 on GPU 1 on GPU and 1 on CPU
GPU card 1 1 1
CPU cores 8 8 8
Memory (MB) 80,000 80,000 80,000 80,000
Steps 20,000 100,000 500,000 20,000
Step length (fs) 0.5 0.02 0.5
Simulation length (ps) 10 10 10
Time (h) 0.2 40 0.3

number of beads employed in force evaluation. All these
techniques can alleviate, but not cure the heavy computational
cost of path integral simulations. In comparison, ML-CMD is by
far the simplest, and the most straightforward way to achieve the
classical-like simulation speed, circumventing the complicated
and highly specialized techniques used in PIMD.

CONCLUSION AND OUTLOOK

In this work, through both analytical and numerical approaches,
we analyze the locality of the centroid force corrections in typical
molecular systems such as bulk water. A general formula is given
to quantify the locality, and it was found that at ambient
condition, the NQE on the forces decays to less than 0.5% at
the range of 4 A. Exploiting this locality, we are able to train a
reliable ML model to predict the NQE force correction, utilizing
only small cluster training data. For a PES that is expensive to
evaluate (e.g., polarizable force field or even ab initio potential),
such locality is particularly important as the force correction in
bulk system can be difficult, or even impossible to compute. Also
due to the locality, the model is high transferrable to different
physical environments, and applicable to both pairwise additive
force fields and general many-body potentials. The ML model is
formulated as a simple correction term to the classical forces and
energies, thus is straightforward to implement and easy to use in
complicated simulations such as GCMC. The ML-CMD
simulation, which uses the ML quantum force corrections in
combination with the classical forces, reproduces both the
thermodynamics and the dynamics of adiabatic CMD. Thanks
to the extreme locality of the model, the ML-CMD simulation
runs as efficient as classical MD, which is much faster compared
to both RPMD and CMD. The computational cost of ML-CMD is
not significantly higher than FHC, while ML-CMD is formulated
more rigorously and is more accurate compare to FHC.
Therefore, the localized ML-CMD is considered to be an
excellent approach to incorporate NQEs in the simulations of
large biological and materials systems.

Meanwhile, we note that there are a few scenarios that the
locality of the ML-CMD could be broken. One typical example
is the proton tunneling under low temperature: Eq. 15 holds
only when the curvature of the underlying PES is positive,
which is not the case in the transition state region of a
chemical reaction. At high temperature, the locality is still

enforced by the FHC limit, but in low temperature, the locality
of the proton at the transition region could be a problem.
More detailed analysis is needed to quantify the necessary
cutoff range of the ML model in these cases, which is left to
future work. Nevertheless, in most nonreactive molecular
system simulations (e.g., protein folding, drug molecule
binding etc.), our method serves as a both robust and fast
alternative to the rigorous PIMD and adiabatic CMD
simulations.
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