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Abstract
Error-related negativity (ERN), an electroencephalogram (EEG) component 
following an erroneous response, has been associated with the subjective motivational 
relevance of error commission. A smaller EEG event, the correct response negativity 
(CRN), occurs after a correct response. It is unclear why correct behavior evokes 
a neural response similar to error commission. CRN might reflect suboptimal 
performance: in tasks where speed is motivationally relevant (i.e., incentivized), a 
correct but slow response may be experienced as a minor error. The literature is 
mixed on the relationship between CRN and response time (RT), possibly due to 
different motivational structures, tasks, or individual traits. We examined ERN and 
CRN in a go/no-go task where correctness and speed were encouraged using a points-
based feedback system. A key individual trait, regulatory focus, describes a person‘s 
tendency to seek gains (promotion focus) and avoid losses (prevention focus). Trait 
regulatory focus was measured, and participants were randomly assigned to one of 
three conditions: points gain, points loss, and informative-only feedback. Participants 
committed too few errors to reliably model ERN effects. CRN amplitude related to 
RT in all feedback conditions, with slower responses having larger CRN. Participants 
with stronger promotion focus had a more exaggerated RT/CRN relationship in 
the point gain condition, suggesting that regulatory fit influences the motivational 
relevance of speed and thus the negative subjective experience and CRN for slower 
responses. These findings are consistent with the claim that CRN reflects RT when 
RT is motivationally relevant and that the CRN/RT relationship reflects the degree 
of subjective motivational relevance.
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1  |   INTRODUCTION

The error-related negativity (ERN; Gehring et al., 1993), also 
known as the error negativity (Ne; Falkenstein et al., 1990, 
1991), and the related correct response negativity (CRN) are 
components of the electroencephalogram (EEG) that arise 
immediately following an overt response, typically peaking 
within 100 ms of a response (Gehring et  al.,  2011). When 
the response is in error, the subjective value or affective and 
motivational significance of the error is reflected in the am-
plitude of the ERN relative to baseline (Boksem et al., 2006; 
Hajcak, 2012; Hajcak et al., 2005; Legault & Inzlicht, 2013; 
Segalowitz & Dywan, 2009; Weinberg et al., 2012) with a 
more negative ERN associated with more motivationally 
significant errors. When the response is correct, a CRN is 
observed (Vidal et al., 2000). The CRN is less well-studied, 
but its amplitude appears to reflect subjective uncertainty 
in the response correctness (Scheffers & Coles,  2000), re-
sponse strategy evaluation (Bartholow et  al.,  2005), atten-
tional control or effortful vigilance (Matsuhashi et al., 2021; 
van Noordt et al., 2015, 2016), and/or motivation to respond 
correctly (Imhof & Rüsseler, 2019), with a larger (more neg-
ative) CRN associated with more uncertainty, suboptimal 
strategy, greater attention or vigilance, and higher motiva-
tion, respectively. The CRN appears to have many proper-
ties in common with the ERN, and some evidence indicates 
that they share a common neural generator in the anterior 
cingulate (Roger et al., 2010); however, others have pointed 
out that approaches showing a common source use meth-
ods that are likely to obscure source differences (Endrass 
et al., 2012), and other methods point to the ERN and CRN 
having non-identical neural generators (Endrass et al., 2012; 
Vocat et al., 2008), although there is general agreement that 
both ERN and CRN have a common peak over fronto-central 
electrode sites.

In some cases, the CRN amplitude is observed to relate 
to response time, such that slower responses are associated 
with a larger CRN (Luu et al., 2000). The CRN is pronounced 
when associated with a correct response falling after an ex-
plicit response deadline (Heldmann et al., 2008), so a rela-
tion between CRN amplitude and response time might be 
due to a deadline or to general pressure to respond quickly 
(Coles et  al.,  2001), although this relationship might rely 
on the presence of external pressure to respond quickly 
(Vidal et  al.,  2003). This relationship could also arise as a 
result of partial error commission (Masaki & Segalowitz, 
2004; Matsuhashi et al., 2021), wherein a participant begins 
to make an error, represses that initial response, and then 
makes the correct response. This process would lead to both 
a slower response time and a larger CRN. However, other 
work has shown a larger CRN associated with faster respond-
ing (Valt & Stürmer,  2017). The apparent inconsistency in 

the relationship between CRN amplitude and response time 
could be due to methodological differences. For example, 
stimulus-evoked activity could mask differences in CRN am-
plitude for responses at different times relative to stimulus 
onset, and different baseline subtraction methods could also 
impact results. Moreover, under the hypothesis that CRN, 
like the ERN, reflects the subjective value of a response, dif-
ferences in task structure, instructions, and feedback could 
also mediate the relationship between CRN and response 
time. Specifically, when fast responding is of high motiva-
tional relevance, we expect CRN amplitude to be positively 
associated with response time (RT), such that longer RTs are 
associated with more negative CRNs. We furthermore expect 
that increased motivational regimes (resulting from individ-
ual traits and a match between individual traits and reward 
structures) should exaggerate this relationship between CRN 
and RT.

In this report, we explore the relationship between the 
CRN amplitude, RT, and dispositional factors that are ex-
pected to modulate the subjective importance of responses 
through regulatory fit (Higgins,  1998, 2000; Maddox & 
Markman, 2010; Shah et al., 1998). Regulatory fit builds on 
regulatory focus theory (Higgins et al., 2001), which posits 
two general self-regulatory foci: promotion and prevention. 
Promotion focus describes an individual's tendency to attend 
to opportunities to use eager strategies and achieve gains. 
Prevention focus describes an individual's tendency to engage 
in opportunities to use vigilant strategies and prevent losses. 
When the goals and affordances of a given task or situation 
align with the individual's regulatory focus, that individual 
is said to be in regulatory fit. Regulatory fit enhances the 
subjective value of activities, leading to increases in effort-
ful engagement with those activities (Cooper et  al.,  2015). 

Highlights

•	 The correct response negativity is a response-
related component of the EEG arising when a 
correct response is issued.

•	 We show that in a task with explicit feedback 
about response time, the correct response negativ-
ity is larger with slower responses.

•	 We also show that this relationship between re-
sponse time and negativity is affected by individ-
ual regulatory focus and the framing of response 
time feedback.

•	 These findings are consistent with the view that 
the correct response negativity reflects the subjec-
tive and objective value of the speed of a response.
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Regulatory fit can influence self-reported measures of states 
such as motivation (e.g., Idson et al., 2004) and observable 
behavior in or performance on a task (e.g., Files et al., 2019; 
Worthy et al., 2007).

In the present study, we measured participants' preven-
tion and promotion strengths with the Regulatory Focus 
Questionnaire (RFQ; Higgins et al., 2001) and randomly as-
signed them to carry out a speeded go/no-go task with post-
trial feedback framed in terms of point gains, point losses, or 
an informative-only control. In all conditions, the instructions 
emphasized the need to respond quickly on the go trials and 
to withhold responses on the no-go trials. The 2-point-based 
feedback conditions assigned equal weight to speed and ac-
curacy on the go trials and assigned much more weight to 
accuracy on no-go trials. Regulatory fit theory would predict 
that participants with stronger prevention strengths would 
be more motivated and engaged by point loss-based feed-
back, and those with stronger promotion strength would be 
more motivated and engaged by point gain-based feedback. 
However, because response speed feedback was given on 
every go trial, response speed was expected to be at least 
somewhat motivationally relevant for all participants.

To preview the results, we found a strong effect of re-
sponse time on CRN amplitude such that slower RTs resulted 
in more negative CRNs, and this effect was stronger for more 
promotion-oriented people in the gain-framed condition. We 
interpret these findings as consistent with the hypothesis that 
CRN reflects response time when it is motivationally relevant, 
and that this relationship also reflects subjective motivational 
relevance resulting from alignment between promotion ori-
entation strength and a gain-framed task (i.e., regulatory fit).

2  |   METHOD

2.1  |  Participants

Inclusion criteria were normal or corrected-to-normal visual 
acuity, normal color vision, and not having experienced neu-
rological trauma. The voluntary, fully informed, written con-
sent of participants in this research was obtained as required 
by Title 32, Part 219 of the CFR and Army Regulation 70-25. 
All human subjects testing was approved by the Institutional 
Review Board of the US Army Research Laboratory under 
protocol 17-166. Our target sample size was 90, which we 
selected to match the sample size in our previous work using 
a similar paradigm (Files, Pollard, et  al.,  2019). For that 
study, the sample size was expected to be sufficient to find 
a medium-to-large effect size in a 3  ×  2 between-subjects 
design based on an a priori sensitivity analysis. One hundred 
and twenty-one participants (50 F and 67 M, four declined 
to answer), recruited via electronic message boards in Los 
Angeles, CA, met all inclusion criteria and completed the 

experiment. The mean age was 31.9  years (range 18–65). 
Data that were unusable due to experimenter error (10), tech-
nical problems (10), and excessive noise (3) were removed. 
An additional seven participant data sets were excluded be-
cause they had exceptionally high false alarm rates, suggest-
ing inattention or a misunderstanding of instructions (a false 
alarm rate of 83% or higher on 10 or more blocks), leaving a 
total of 91 usable data sets.

2.2  |  Procedure

After giving informed consent, participants were screened 
for normal color vision (Ishihara 14-plate test) and visual 
acuity (better than 20/40 in each eye with a Snellen 20' chart). 
Participants then took a set of questionnaires including the 
regulatory focus questionnaire. Past work has found the in-
ternal consistency (Cronbach's alpha) for the promotion scale 
and the prevention scale of the regulatory focus questionnaire 
to be .73 and .80, respectively, and the test-retest reliability 
(Pearson product moment correlation) to be .79 and .81, re-
spectively (Higgins et al., 2001).

The EEG cap and electrodes were applied, and then the 
participant was seated in a cool, dimly lit, acoustically iso-
lated booth approximately 0.75  m from a computer mon-
itor display. Three minutes of resting baseline data were 
collected, followed by providing instructions for the task. 
Participants were assigned to the gain-framed, loss-framed, 
or control feedback condition, and the instructions described 
how performance feedback would be displayed. Assignment 
to feedback condition was random, although after elimination 
of unusable datasets, the distribution was not equal across 
all conditions (26 gain, 35 loss, and 30 control). All anal-
yses (see following sections) do not rely on equal variance 
or equal n assumptions. After the participant passed a two-
question comprehension check, the task began.

The task was a go/no-go task using computer-rendered 
images of human characters. The images were taken from 
preexisting simulated wartime environments used in past re-
search and were meant to be ecologically valid for military 
contexts. We used a similar task in a previous study (Files, 
Pollard, et al., 2019), although the number and timing of tri-
als differs here. The go stimulus was a computer-rendered 
character holding a rifle. The no-go stimulus was a similar 
character not holding a rifle. Stimuli were presented in ran-
domized positions and at a random scale. Participants were 
instructed to respond as quickly as possible to the go stimu-
lus by pressing a button on a response box and to withhold 
responses to the no-go stimulus.

The task consisted of 20 blocks of 30 trials each (24 go 
and 6 no-go). Each stimulus was visible for 0.4 s, and feed-
back appeared 1 s after stimulus onset. Feedback was visible 
for 0.5  s, and then a fixation cross appeared for a variable 
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inter-stimulus interval lasting between 1 and 2 s (uniform dis-
tribution). Stimuli were presented with a randomized scaling 
factor, so they were between 1° tall by 0.4° wide and 4.0° 
tall by 1.6° wide and at a location selected randomly from a 
rectangle centered on the display area that subtended 29° of 
visual angle by 2.1° of visual angle. On a randomly selected 
half of stimulus presentations, the image was mirror-reversed.

The trial feedback depended on the type of trial and the 
response time. For the gain and loss conditions, number of 
points gained or lost were displayed in green if the response 
was correct or red if the response was incorrect. Go trials 
were worth up to 60 points with 30 of those being for re-
sponding before the deadline at 1  s and 30 for speed, such 
that faster responses gained more or lost fewer points. No-go 
trials were worth 180 points. In the control condition, a green 
check was displayed with a response speed meter for correct 
responses and a red X was displayed for incorrect responses. 
On the right of the screen, a bar showed cumulative infor-
mation about the block. In the gain condition, the bar began 
empty and filled up showing cumulative point gains. In the 
loss condition, the bar began full and emptied showing cumu-
lative point losses. In the control condition, the bar filled after 
each trial regardless of response as a measure of progress 
through the block. After each block, summary feedback was 
presented breaking down speed and accuracy for go trials and 

accuracy for no-go trials. Summary feedback was presented 
as points gained, points lost, or as percent accuracy and speed 
in ms in the gain, loss, and control conditions, respectively.

Figure 1 shows the single-trial timeline, the curve relating 
response time to number of points, and the stimulus images 
used in the experiment.

After the task, participants filled out the Intrinsic 
Motivation Inventory (Ryan,  1982) as a subjective motiva-
tion measure. Participants then completed a second task (de-
scribed elsewhere) and an exit questionnaire. For full details 
of the procedure, including details of tasks and question-
naires not reported on here, please see https://osf.io/vzw4n/. 
Overall, the experiment took 2–3 hr.

2.3  |  EEG recording and reduction

EEG was recorded using a BioSemi Active 2 (input imped-
ance 300 MOhm @ 50 Hz) setup with 64 active sintered Ag/
AgCl electrodes placed in an electrode cap using a modified 
10-10 arrangement. Additional electrodes were placed on the 
mastoids, outside the external canthi of the eyes and above 
and below the left eye. To ensure adequate contact between 
electrodes and the scalp, DC offsets were required to be sta-
ble and no more than 30 µV from zero. Data were sampled at 

F I G U R E  1   Method. The trial timeline (a) shows the timing of events within a single trial, including the fixation-only period separating trials 
which randomly varied from 1–2 s (uniform distribution). The timeline also shows feedback as it appeared in the gain, loss, and control conditions. 
Participants could respond any time between stimulus onset and 1 s after onset. The response time points curve (b) shows that response speed was 
rewarded (or not penalized) for responses faster than 452 ms. The go stimulus and no-go stimulus images (c) were rendered images of the same 
underlying 3D model in the same pose with different clothes and holding a rifle or not

https://osf.io/vzw4n/
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2,048 Hz with an online 5th order cascaded integrator-comb 
digital filter (−3 dB at 400 Hz) and were down-sampled to 
512 Hz for storage.

Raw data were high-pass filtered at 0.2  Hz and band-
stop filtered at 60 Hz both using second-order Butterworth 
filters. Noisy channels were identified by visual inspection 
and interpolated using neighboring electrodes, and then data 
were re-referenced to the average. Independent components 
analysis (Bell & Sejnowski, 1995) with PCA reduction was 
used to remove components representing eye blinks and eye 
movements. Cleaned data were divided into non-overlapping 
segments of 0.5 s. The FFT for each channel was computed, 
and channel pair spectral correlations were computed and av-
eraged to characterize the cross-channel spectral correlation 
for each segment. Segments with a cross-channel spectral 
correlation more than 1.8 standard deviations from the mean 
over all segments were marked as bad. Following cleaning, 
data were low-pass filtered at 30 Hz with a two-pass sixth-
order Butterworth filter. In subsequent event-related anal-
yses, epochs overlapping bad segments were rejected from 
analysis.

A standard approach to computing ERN amplitude is to 
subtract response-locked EEG for correct responses from 
response-locked EEG for errors. This approach, resulting in 
the ΔERN, was considered inappropriate for the present ex-
periment, because the response time distributions for false 
alarm responses were generally faster than the distributions 
of correct responses, and there was heterogeneity in response 
time distributions across participants. The ΔERN would not 
be free of stimulus-evoked activity, because false alarms 
were more likely to occur during early visual responses to 
stimulus onset, but correct responses tended to occur later 
in visual processing of the stimulus onset and after stimu-
lus offset. Moreover, the ΔERN can obscure effects that are 
due to changes in only the ERN or CRN (Meyer et al., 2017). 
Although the ΔERN has been shown to be more robust when 
its use is appropriate (Olvet & Hajcak, 2009a), here we ex-
tracted ERN and CRN separately.

CRN waveforms were extracted by first subtracting from 
each correct response trial the average over all of that par-
ticipant's correct responses. This was meant to subtract out 
stimulus-evoked potentials, leaving response-related poten-
tials and noise. We then extracted a response-related epoch 
from 500 ms before that trial's button press to 500 ms post-
response. This resulted in a CRN waveform for each correct 
response. These CRN waveforms were baseline corrected 
over 500–400  ms pre-response. ERN waveforms were ex-
tracted in the same way, but because false alarms were rel-
atively rare, the stimulus-evoked activity was based on the 
average of all no-go trials. Past work has shown that as few 
as six error trials are sufficient for characterizing the ERN 
(Olvet & Hajcak, 2009a), but we carried out a subject-level 
internal consistency analysis (Clayson et al., 2021) with data 

from participants with six or more usable trials to select par-
ticipants with internal consistency greater than .8 (Clayson & 
Miller, 2017).

To characterize ERN and CRN amplitudes, we visual-
ized the grand mean ERN and CRN waveforms at electrode 
FCz and selected windows around the respective negative 
peaks of plus and minus 50 ms. We used the average ampli-
tude over that time window to characterize single-trial ERN 
and CRN, rather than the peak amplitude within it, because 
the average over time is an unbiased estimate of component 
amplitude (Luck, 2005). Electrode FCz was selected based 
on previous work showing that the ERN is largest there 
(Gehring et al., 2011). Past work using different stimuli has 
shown that split-half reliability for ERN is .84 and CRN is 
.98 using area measures on FCz, and test-retest reliability 
is .70 for ERN and .82 for CRN with a 2-week test interval 
(Olvet & Hajcak, 2009b) and with a 1.5–2.5 year test interval 
is .67 for ERN and .75 for CRN (Weinberg & Hajcak, 2011). 
Reliability analyses of the present data are included below.

2.4  |  Data analysis

Behavioral data were analyzed using Bayesian reduced-rank 
multivariate regression (Files et  al.,  2019) implemented in 
Stan (Carpenter et  al.,  2017; Gelman et  al.,  2015). For the 
ERN and CRN data, there were several possible predictors 
and interactions of relevance, so we opted to include them 
all in a model with regularization to avoid overfitting. The 
regularization approach was to use regularized horseshoe pri-
ors (Piironen & Vehtari, 2017) on the regression coefficients, 
which shrinks most coefficients toward zero but allows some 
to be relatively large. A random intercept for each participant 
was used to partially account for individual variability, and 
Student's t-distributed error terms limited the influence of ex-
treme values. Specifically,

Here, Yk is either ERN or CRN for trial k from partici-
pant j in condition i. The symbols T ,�,� +, and � represent 
Student's t, normal, half-normal and gamma distributions, 
respectively. Coefficients Bi and predictors Xk are P-vectors, 

Yk ∼ T
(

�, BT
i
Xk + Ij, �g

)

,

Bi ∼�
(

0,Σi

)

,

Ij ∼�
(

I0, �I

)

,

� ∼ � (2, 1∕10) ,

�g ∼�
+ (0, 1) ,

�I ∼� (0, 1) .



6 of 16  |      FILES et al.

where p = 11 is the number of predictors in the model. The 
predictors were response time, promotion strength, preven-
tion strength, number of errors, and all two- and three-way 
interaction terms not involving both promotion and preven-
tion strengths. The standard deviation, Σi, of the prior on the 
regression coefficients Bi was specified following (Piironen 
& Vehtari, 2017),

Here, also, �̃i and �i are P-vectors, C = 3 is the number 
of conditions in the experiment, N is the total number of 
trials. The expected number of non-zero coefficients, p0,  
was set to 9. The hyper-parameters �0 and s express the 
prior belief that coefficients that are not zero will follow 
a Student's t distribution with �0 = 20 degrees of freedom 
and scale s = 1. The effect of these priors is to keep most 
coefficients close to zero but allowing some to be relatively 
large. ERN, CRN, and all predictors were z-transformed 
prior to analysis. The symbol � + represents the half-
Cauchy distribution.

Models were fit using the RStan interface (Stan 
Development Team, 2018) to Stan version 2.18.0. We used 
eight independent chains with 8,000 warmup iterations and 
1,000 post-warmup iterations per chain. Chain mixing was 
assessed with R̂, with the criterion that R̂ for all parameters 
was less than 1.05. All parameters achieved an effective sam-
pling ratio greater than 0.1.

For internal consistency and fixed-effects dependability 
analysis, we fit the same model but with the addition of a 
mean-zero random coefficient on response time, that is, 
Yk ∼ T

(

�, BT
i
Xk + bjrtk + Ij, �g

)

 with the same prior on bj as 
on Bi. We computed subject-level variance components and 
computed the internal consistency coefficient as a function of 
number of trials, nj, from that subject and the error variance, 
�2

e,j
, from that subject's trials:

We computed internal consistency for each participant 
and retained for modeling only those with internal consis-
tency of .8 or greater.

Similarly, we computed variance components for group-
level estimates to identify the number of participants needed 
to obtain dependable fixed effects estimates as a function of 
number of subjects, S:

where n̂ is the harmonic mean number of trials per subject and 
S is the number of participants.

Code and data to reproduce these analyses are publicly 
available at https://osf.io/7jbnd/.

3  |   RESULTS

Participant characteristics by experimental condition ap-
pear in Table  1. Additional details about the participants' 
characteristics are available online at https://osf.io/h8u2z/. 
Distributions of prevention and promotion strength are shown 
in Figure 2. Cronbach's alpha for RFQ promotion was .62, 
95% bootstrapped CI [0.47, 0.73] using percentile bootstrap 
and 5,000 repetitions. Cronbach's alpha for RFQ prevention 
was .79, 95% bootstrapped CI [0.71, 0.85].

Behavioral performance generally improved over the 
course of the experiment (Figure 3). A reduced-rank multi-
variate regression was run to see whether regulatory focus 
interacted with feedback framing to affect changes in task 

Σi = diag
(

%�i,1�,%�i,2�,…%�i,P�
)

�̃
2

i
=

c2�2

i

c2 + �2

i
�2

,

c2 ∼ �
−1

(

�0

2
,
�0s2

2

)

,

�i ∼�
+ (0, 1) ,

� ∼�
+
(

0, �0

)

,

�0 =
p0

PC − p0

�g
√

N
.

Ŷj,k = BT
i
Xj,k + bjrtj,k + Ij

�2

m
= Var

(

Ŷk

)

�2

e,j
= Var

(

Yj,k − Ŷj,k

)

�j =
�2

m

�2
m
+ �2

e,j
∕nj

Ŷk = BT
i
Xk + bjrtk + Ij

�2

G
= Var

(

BT
i
Xk

)

�2

s
= Var

(

bjrtk + Ij

)

�2

e
= Var

(

Y − Ŷ
)

�G (S) =
�2

G

�2

G
+

�2
s
+�2

e
∕n̂

S

https://osf.io/7jbnd/
https://osf.io/h8u2z/
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performance or self-reported motivation. Initially, the model 
was fit with one latent dimension. Adding additional latent 
dimensions did not reliably improve the model fit as assessed 
with a Pareto-smoothed importance sampling approximation 
of leave-one-out cross-validation of expected log predictive 
density (Vehtari et al., 2019).

This analysis produced posterior distributions for the co-
efficients projecting the predictors onto a latent performance 
measure as well as for coefficients projecting that latent per-
formance measure onto the observed performance measures 
(Figure 4). For reasons of identifiability, one of the coeffi-
cients in the model is fixed to be positive (here, the coef-
ficient associated with RFQ prevention), but the posteriors 
for all other coefficients overlap with zero, so we cannot 
claim with confidence to know the sign of any relationships 
between regulatory focus and performance or self-reported 
motivation.

Variance components, subject internal consistency, and 
fixed effects reliability estimates with posterior 95% credi-
ble intervals, along with additional details of the reliability 

analysis, are available in an online supplement, https://osf.io/
wuzc2/ for CRN and https://osf.io/vsp3q/ for ERN. The inter-
nal consistency analysis of the CRN data found that four par-
ticipants' data produced internal consistency measures lower 
than .8. For the ERN data, of the 77 subjects with six or more 
trials, 25 participants' data produced internal consistency 
measures lower than .8. The CRN fixed effects dependabil-
ity analysis indicated dependability (mean and 95% credible 
interval) of .90 [.85, .93], .93 [.89, .95], and .92 [.88, .94] 
for gain, loss, and control groups, respectively. ERN fixed 
effects dependability was .56 [.21, .80], .68 [.31, .87] and .60 
[.24, .83] for gain, loss, and control groups, respectively. All 
collected data are represented in group summaries, but the 
four participants with low internal consistency were excluded 
from statistical modeling of CRN data. Because of the low 
internal consistency of ERN among so many participants and 
the low fixed-effects dependability of the ERN data, we do 
not present statistical modeling of the ERN data.

Trial counts, waveform characteristics, and performance 
characteristics per group appear in Table  2. Grand average 
waveforms and scalp maps appear in Figure 5. The peak of 
the ERN waveform occurred at 59  ms after response. The 
grand mean ERN amplitude averaged from 9 to 109  ms 
relative to response was −5.90 μV with standard deviation 
4.59 μV, computed from 77 subjects contributing mean 16.8, 
SD 0.8 trials; participants with fewer than six usable false 
alarm trials were not included. The peak of the CRN wave-
form occurred 20 ms post response. The grand mean CRN 
amplitude averaged from −30 to 70 ms was −1.17 μV with 
standard deviation 0.76 μV computed from 91 subjects con-
tributing mean 257, SD 79.3 trials.

Posterior summaries of the coefficient terms for the CRN 
model are in Figure 6. In all three conditions, the posterior 
distribution for the coefficient associated with response time 
was concentrated well below zero. The median and central 
95% credible intervals were −0.15 [−0.23, −0.12], −0.17 
[−0.26, −0.14] and −0.08 [−0.12, −0.05] for gain, loss, and 
control, respectively. These show that as response time in-
creases, the CRN becomes more negative assuming an av-
erage promotion strength, prevention strength, and number 
of errors. CRN waveforms by response time and condition 

Sample characteristics

Gain-framed 
group

Loss-framed 
group

Control feedback 
group

N N N

Participants 26 35 30

Sex 8F, 18M 20F, 15M 15F, 15M

m SD m SD m SD

Age 28.1 11.7 31.2 11.2 32.6 14.6

Promotion strength 4.0 0.6 3.8 0.5 3.8 0.6

Prevention strength 3.3 0.9 3.5 0.9 3.2 0.8

T A B L E  1   Participant characteristics

F I G U R E  2   Regulatory Focus Questionnaire (RFQ) promotion 
and prevention subscale scores were weakly correlated (r(89) = 0.175, 
95% CI [−0.047, 0.374]). Marginal panels show univariate 
distributions. Colors indicate feedback framing to which participants 
were randomly assigned. Data are jittered to reveal tied data points

https://osf.io/wuzc2/
https://osf.io/wuzc2/
https://osf.io/vsp3q/
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appear in Figure  7. Other coefficients also had posteriors 
concentrated far from zero. In the gain condition, the interac-
tion of RT with promotion strength (−0.05, [−0.09, −0.01]) 
showed that the slope relating RT to CRN was steeper for in-
dividuals with stronger promotion strength and shallower for 
individuals with weaker promotion strength, given an average 
number of errors. A graphical summary of the relationship 
between RT, promotion strength, and feedback framing is in 
Figure 8. To further characterize the relationship between RT 
and CRN, we computed Pearson product moment correla-
tions between response time and CRN for each participant, 
ignoring other predictors. In the gain condition, median cor-
relation was r = −.15, 25th and 75th percentiles [−.22, −.04], 

in the loss condition it was r = −.15 [−.22, −.07], and in the 
control condition it was r = −.06 [−.16, .00]. Moreover, the 
posterior of the three-way interaction between RT, promo-
tion strength, and error number was concentrated in the pos-
itive direction, although the 95% credible interval included 
zero (0.01, [−0.01, 0.15]), suggesting that the promotion-
associated-steepening of the slope relating RT to CRN might 
be exaggerated in individuals who committed fewer errors 
and moderated in those who committed more.

The interaction of RT with RFQ promotion was smaller 
in the loss than the gain condition and the central 95% credi-
ble interval included zero (−0.01, [−0.05, 0.00]). The three-
way interaction of RT, number of errors, and RFQ promotion 
strength in the loss condition was somewhat larger compared 
with that in the gain condition (0.08, [0.02, 0.14]). Unlike in 
the gain condition, in the loss condition, there was a positive 
interaction of RT with error number (0.02, [0.00, 0.04]), such 
that the slope of the line relating RT to CRN amplitude was 
shallower in those who committed more errors and steeper 
in those who committed fewer. In the control condition, the 
three-way interaction of RT, error number, and RFQ promo-
tion was negative (−0.01, [−0.04, 0.00]), in contrast to the 
largely positive corresponding effects in the gain and loss 
conditions.

4  |   DISCUSSION

The hypothesis that the CRN reflects the value of a response 
was supported. In all conditions, more negative CRNs were 
associated with longer RTs. This is consistent with the idea 
that the CRN tracks the subjective value of a response, as 
participants were instructed to respond as quickly as pos-
sible, feedback after each go trial indicated the speed of 
the response, and we directly rewarded speed. In the gain 
and loss conditions, speed was explicitly rewarded (tied to 
points), whereas in the control condition, speed was not as-
sociated with points. The point-based conditions established 
a task in which responding slowly was functionally equiva-
lent to commission of a minor error, even when an accurate 
response was given. The effect of RT on CRN amplitude was 
considerably smaller in the control condition compared with 
the gain and loss conditions, as would be expected if reward-
induced motivation led the participants to more strongly per-
ceive slowness as a minor form of error.

Our findings could also be consistent with a mechanism 
based on partial-error effects. If a participant were to initiate 
an erroneous motor response, correct it, and then ultimately 
respond accurately (Masaki & Segalowitz, 2004; Matsuhashi 
et al., 2021), this could result in a relationship between slower 
RT and larger amplitude CRN. Such a scenario would be 
consistent with the hypothesis that CRNs represent a nega-
tive subjective valuation of suboptimal responding. A subtle 

F I G U R E  3   Hit rate (a) and mean response time (b) improved 
over the course of the task blocks, whereas correct rejection rate stayed 
approximately the same (c). Lines indicate group mean values pooled 
over three successive blocks, and shaded regions show bootstrapped 
95% confidence regions. Colors indicate experimental condition

(a)

(b)

(c)
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difference is that the suboptimal responding discussed by 
Masaki and Segalowitz (2004) and Matsuhashi et al. (2021) 
takes the form of a partial error, as measured by a motor re-
sponse initially directed toward an incorrect button press or 
button release. The experience of the partial error leads to a 
CRN, whereas the correction of this partial error slows RT. 
The relationship between CRN amplitude and RT may thus 
be due to “farther along” motor errors both being experienced 
as more erroneous and also taking longer to rectify.

However, this is unlikely to be the best explanation for 
our findings. In our study design, there was no incorrect but-
ton to press on go trials. Participants had to withhold button 
presses (not move) on the no-go trials. Any partial errors (in-
appropriate motor initiations) could thus only be experienced 
on the no-go trials and thus cannot explain the CRN versus 
RT relationship we found in our go trials. It is possible that 
an erroneous non-motor process, perhaps perceptual or in-
hibitory, that occurs before a successful button press might 
be perceived by the participant as a partial error and might 
also take extra time to resolve, a situation analogous to the 
motor findings. Disentangling this mechanism from the per-
ception of slowness itself as a form of error would require 
additional focused research, perhaps involving the inclusion 
of no-feedback conditions, eye-tracking, and muscle sensors.

The observation that more negative CRNs were associ-
ated with longer RTs is also consistent with the hypothesis 
that CRN is a marker of attentional control or heightened vig-
ilance on certain trials (Matsuhashi et al., 2021; van Noordt 
et al., 2015, 2016). Under this hypothesis, trials on which a 
participant focused more attention, for whatever reason, are 
likely to have larger amplitude CRN (van Noordt et al., 2015, 
2016) and to involve slower RT; a participant need not sub-
jectively experience suboptimal responding as an error for 

this to occur. However, in our paradigm, the only reason or 
motivation that was systematically varied was the degree to 
which optimal responding was subjectively rewarded. We 
varied the subjective reward value of optimal responding by 
explicitly rewarding speed in some conditions and by placing 
participants in different degrees of regulatory fit. Without 
a motivation component, the attentional control hypothesis 
alone would not predict that points-based feedback or reg-
ulatory fit would affect the RT versus CRN relationship. 
These interventions explicitly change motivation parameters 
and the subjective value of response speed. If changes in at-
tentional control occurred in our participants, these changes 
likely occurred alongside, or in response to, motivational and 
subjective factors. It is possible that attention is a mediat-
ing factor through which motivational or subjective value 
differences influence RT and/or CRN. Additionally, if atten-
tion and motivation are non-mutually-exclusive phenomena 
(i.e., different levels of analysis), neurologically or psycho-
logically, then these hypotheses are not in conflict. Future 
research can work to disentangle these elements or establish 
mediating effects.

The effects of regulatory focus we observed were small 
and at the edge of the sensitivity afforded by our data, as ev-
idenced by the proximity of the credible interval to zero, but 
we interpret them as providing converging evidence for the 
relevance of motivation to the RT versus CRN relationship. 
The general regulatory fit hypothesis that alignment between 
regulatory focus and situational factors—here, feedback 
framing—should lead to increased subjective value was par-
tially supported. Specifically, stronger promotion focus was 
related to a more extreme relationship between RT and CRN 
in the gain-framed feedback. This result is consistent with 
stronger promotion orientation leading to a relative increase 

F I G U R E  4   Posterior distribution summaries for (a) coefficients projecting predictors onto the latent performance variable and (b) coefficients 
projecting the latent performance variable onto the outcomes. Summaries show the central 95% (thin lines) 50% (thick lines) and mean (diamonds) 
of the posterior samples. Predictors were RFQ promotion, RFQ prevention, indicators for Gain-framed condition and Loss-framed condition, and 
their interactions. Outcomes were initial log odds-transformed correct rejection (CR), change in log odds CR, change in response time (RT), and 
response to the intrinsic motivation inventory effort/enjoyment subscale (IMIe). The coefficient associated with prevention strength is constrained 
to be positive by the model

(a) (b)
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in the subjective value of fast responses and a corresponding 
decrease in the subjective value of slow responses. A similar 
but less pronounced pattern arose in the loss feedback condi-
tion and was absent in the control condition.

Past work has shown that reward-related activity in the 
ventral striatum of the basal ganglia is related to promotion 
orientation strength in a gains-oriented task, such that stron-
ger promotion orientation is associated with less reward-
related activity (Scult et al., 2017). The authors offered two 
possible explanations for this result: if people with a stronger 
promotion orientation experience smaller subjective reward, 
it could motivate those people to actively seek and attend to 
opportunities for larger rewards. Another possibility is that 
the relationship between objective gains and subjective re-
ward is exaggerated with stronger promotion orientation. 
This could lead a person with relatively strong promotion 
orientation to experience larger subjective reward from gains 
and to experience smaller subjective reward from non-gains 
relative to a person with weaker promotion orientation (Scult 
et al., 2017).

In our study, the main effect of promotion strength on 
CRN amplitudes was concentrated around zero, so it does not 
seem that the sensitivity to point gains or losses is generally 
increased or decreased with promotion strength. However, 
the interaction of promotion strength with RT suggests that 
promotion strength is associated with an increased sensitivity 
to rewards that are larger or smaller than average, consistent 
with an exaggerated relationship between gains and reward-
related neural activity (Scult et al., 2017). That the interac-
tion of promotion strength with response time was strongest 
in the gain-framed feedback condition is consistent with the 
predictions from the general regulatory fit hypothesis that 
alignment between regulatory focus and situational factors—
here, feedback framing—should lead to increased subjec-
tive value. However, other results predicted by the general 
regulatory fit hypothesis were not obtained. No behavioral 
effects of regulatory fit were observed, and there were no 
effects of prevention focus on the CRN or the loss-framed 

condition. The absence of effects of prevention strength in 
the CRN is also consistent with the lack of effect of preven-
tion strength on reward-related activity in the basal ganglia 
(Scult et al., 2017).

In the loss-framed condition, there was a small positive 
coefficient on the interaction between RT and number of er-
rors, such that the overall relationship between RT and CRN 
was flattened in those participants who committed more 
than the average number of errors and was exaggerated in 
those who committed fewer. The relationship between RT 
and CRN amplitude also interacted with the number of er-
rors in the loss-framed feedback condition (and to a lesser 
extent in the gain-framed condition): the interaction of RT, 
number of errors, and promotion orientation was associated 
with a positive coefficient on the CRN. This means that for 
individuals with an above-average promotion strength and/
or an above-average number of misses, slower RTs were as-
sociated with less negative CRNs (i.e., smaller subjective 
value). These interactions are complicated, but motivational 
factors might offer a tentative explanation. The task instruc-
tions and structure created a trade-off between speed in the 
go trials and accuracy on the no-go trials. Some participants 
might have been more motivated to try to find a balance that 
yielded fewer false alarm errors but slower correct responses, 
whereas others might have tended toward faster responses. 
Regulatory fit theory would predict that people with a stron-
ger promotion orientation in the loss-framed condition might 
have found the feedback non-motivating or irrelevant and dis-
engaged from the task.

False alarm errors were relatively rare, so there was in-
sufficient data to reliably model the relationship between 
ERN, regulatory focus, and feedback condition. In our ex-
periment, participants with as many as 18 usable ERN tri-
als were found to not meet our internal reliability criterion. 
This contrasts with past work obtaining reliable ERN es-
timates from as few as six trials (Olvet & Hajcak, 2009b), 
highlighting the importance of evaluating reliability on a 
per-experiment basis (Clayson, 2020).

Performance characteristics

Gain-framed 
group

Loss framed 
group

Control 
feedback group

m SD m SD m SD

Correct response negativity

Trials 258.54 93.32 257.5 81.32 255.00 65.47

ERP amplitude −1.33 0.92 −1.18 0.66 −1.02 0.70

Hit response time (s) 0.40 0.07 0.43 0.05 0.46 0.61

Miss count 22.46 52.70 10.57 30.85 12.10 22.03

Error response negativity

Trials 16.16 11.57 17.00 8.54 17.14 11.02

False alarm response time (s) 0.35 0.07 0.36 0.05 0.40 0.06

False alarm count 33.40 15.68 31.70 12.91 32.55 16.95

T A B L E  2   ERP and performance 
summary
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Although possibly due to the low number of ERN trials, 
the topographies of the ERN and CRN we observed were not 
very similar, possibly suggesting different sets of neural gen-
erators. These two patterns bear a striking similarity to those 

reported by Endrass and colleagues (2012; see their Figure 4), 
who support a two-process model of response-related activ-
ity. In that account, two patterns of neural generators contrib-
ute differentially to the CRN and the ERN, with one pattern 

F I G U R E  5   ERN grand average waveform (a) and scalp map (b) and CRN grand average waveform (c) and scalp map (d). Waveforms shown 
are from electrode FCz, indicated with a red dot on the scalp maps. Waveforms are aligned to the button press at time zero. Note the differences 
in scale between the four panels. Shaded regions in (a) and (c) are 99.9% bootstrapped confidence intervals (10k repetitions). Vertical dashed 
lines in the waveform plots indicate the time windows of 50 ms before and after their respective peaks used both for summarizing ERN and CRN 
amplitudes and for generating the scalp maps

(a) (b)

(c) (d)

F I G U R E  6   Posterior summaries of regression coefficient parameters relating standardized CRN amplitude to standardized response time 
(RT), RFQ promotion strength, RFQ prevention strength, number of miss errors (ErrN), and their interactions. Thin and thick lines show central 
95% and 50% credible intervals. Diamonds show the median of the posterior sample
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possibly reflecting response correctness and task difficulty, 
and the other reflecting outcome-independent response mon-
itoring. The current study was not aimed at disentangling 
these two possible generators or their functional significance, 
but the possibly distinct topographies of the CRN and ERN 
are consistent with the hypothesis that the CRN and ERN 
have distinct neural generators.

4.1  |  Practical implications

Designers typically add game-like elements to an experience 
(sometimes referred to as gamification) with the intention 

of increasing the motivational relevance of that experience 
for its users (Nacke & Deterding, 2017; Sailer et al., 2017). 
The success of this approach in improving objective out-
come measures is mixed; in a meta-analysis, 61% of studies 
showed a positive average effect of gamification (Seaborn 
& Fels, 2015). One possible explanation for the inconsistent 
success of gamification is that it takes a one-size-fits-all ap-
proach (Files, Pollard, et al., 2019; Hanus & Fox, 2015), but 
different people respond differently to the addition of differ-
ent game elements.

In past work with a similar paradigm, we showed that 
regulatory focus prevention strength was associated with dif-
ferential performance under gain, loss, or no-points feedback 
(Files, Pollard, et al., 2019). Here, we show that a neural cor-
relate of subjective motivation was associated with regula-
tory focus promotion strength also in a feedback-dependent 
relationship. However, we observed no strong effects on 
performance of regulatory focus or feedback framing in the 
present study. This behavioral difference is likely due to dif-
ferences in the task structure between the two experiments. 
Both used a go/no-go structure, but in the present study, the 
response deadline was relaxed (1 s vs. 0.5 s), stimulus onset 
time was jittered, and there were fewer trials. These differ-
ences led to the experiments affording different strategies, 
and task strategic affordances are relevant for regulatory fit 
(Dijk & Kluger, 2011; Spiegel et al., 2004).

So although we show support for the hypothesis that in-
dividuals differ in their responses to point-based feedback, 
the relationship between feedback framing, regulatory focus, 
motivation, and task performance is complex. More work is 
needed before generalizable design principles for individual-
ized gamification can be offered. However, we see regulatory 
focus as an easy to measure, promising possible predictor of 
an individual's response to the addition of point-based game 
elements.

Another possible practical implication for the present 
findings would be to use the CRN amplitude as an implicit 
reporter of subjective motivation in the context of a brain-
computer interface. We asked participants to rate their sub-
jective motivation, and we saw no effect of regulatory focus 
or feedback framing on reported motivation. This could sug-
gest that the CRN effects do not actually reflect subjective 
motivation, or it could suggest that after-the-fact subjective 
reports might not be a very sensitive measure (Fulmer & 
Frijters,  2009). Either way, the effects on CRN amplitude 
were robust but small in magnitude. As such, we do not see 
CRN amplitude as a promising implicit reporter of subjective 
motivation in practical contexts. However, future work might 
sharpen or enhance this effect, yielding a more practically 
useful signal. CRN might be an implicit reporter of attention 
(Matsuhashi et al., 2021; van Noordt et al., 2015, 2016) more 
broadly. Future studies could look at relationship between 
CRN values and various measures of attention.

F I G U R E  7   Correct response negativity waveforms on electrode 
FCz for the three feedback conditions. For visualization purposes, fast 
and slow response waveforms are separated by median split at 0.418 s. 
All waveforms are aligned to the button press at time zero. Shaded 
regions show bootstrapped 95% confidence regions (10k repetitions). 
Waveforms for Gain, n = 26, average 152.0 and 106.5 trials in fast and 
slow, respectively; Loss, n = 35, average 134.7 and 122.9 trials in fast 
and slow, respectively; and Control, n = 30, average 100.9 and 154.1 
trials in fast and slow, respectively. In all conditions, slower responses 
are associated with a larger correct response negativity
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4.2  |  Limitations

In addition to the low number of false alarm trials, there are 
some other aspects of this study that could limit the general-
izability of the findings. The feedback manipulation we used 
was between-subjects, so we cannot definitively rule out 
group differences arising due to sampling error. Our smallest 
group size was 24, which is somewhat larger than the aver-
age group size reported in a recent survey of methodology in 
event-related potentials studies (Clayson et al., 2019), but it 
is not so large as to eliminate concerns about sampling error. 
Indeed, the participants assigned to the gain condition were 
slightly younger and included more males compared with the 
other groups. The relationships between regulatory focus, 
number of errors, RT, and CRN are fairly small effects, and 
they differed by condition. However, the relationship be-
tween CRN and RT was found in all groups and was of com-
parable size in both the points-based feedback groups, which 
might partially assuage concerns about the smallish sample 
size per group on the reliability of that particular finding.

The stimuli we used were naturalistic, rather than abstract. 
This could potentially limit the generalizability of our find-
ings to other kinds of stimuli. The post-task questionnaire 
asked participants to indicate, via free-text response, how 
they felt about the activity and what they found exciting or 
agitating about it. Most participant responses were short and 

indicated positive or negative emotions when succeeding or 
failing respectively during the go/no-go task. One response 
indicated strong emotions resulting from the stimuli used: 
“when I wrongly clicked on the civilian, I felt I was shoot-
ing innocent people.” This is intriguing, because we did not 
describe the study activity to participants as a shooting task 
but rather as identification of possible threat versus non-
threat stimuli. With the current data, we are unable to address 
whether participants' emotional response influenced task 
performance or the associated response-evoked potentials. 
We note, however, that several practical applications of the 
go/no-go task involve stimuli with strong emotional associ-
ations (Biggs et al., 2015; Hamilton et al., 2019; Houben & 
Jansen, 2011; Houben et al., 2011) in order to achieve eco-
logical validity.

4.3  |  Conclusion

Here, we demonstrated a strong association between re-
sponse time and CRN amplitude, and this effect was 
larger when response time was explicitly rewarded (i.e., 
associated with points-based rather than with informative 
feedback). We suggest that the RT/CRN relationship de-
pends on response time being motivationally relevant, with 
large amplitude CRNs representing a subjective reaction 

F I G U R E  8   Graphical summary of relationship between correct response negativity (CRN), response time (RT), and regulatory focus 
promtion strength. Upper panels show lines of best fit between RT and CRN for each participant. These lines are fit with ordinary least squares 
without controlling for any other covariates. Line color indicates the indivdiual's promtion strength. Lower panels show the slopes of the lines in 
the upper panels against the corresponding participant's promotion strength score. Slopes were generally negative reflecting a more negative CRN 
as RT increased. The black line in the lower panel is the ordinary least squares line of best fit to the group data, illustrating the more negative slope 
associated with stronger promotion strength in the gain condition, less so in the loss condition, and absent in the control condition
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to commission of what may be perceived as a miniature 
error—a slower-than-desired response. The observation 
that an increase in regulatory focus promotion strength 
is associated with a steeper RT/CRN relationship in the 
points-gain condition possibly reflects an exaggerated sub-
jective valuation of points for individuals with stronger 
promotion focus in a state of regulatory fit.
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