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While there is convincing evidence on the role of Aire-positive medullary thymic epithelial
cells (mTEC) in the induction of central tolerance, the nature and function of post-Aire
mTECs and Hassall’s corpuscles have remained enigmatic. Here we summarize the
existing data on these late stages of mTEC differentiation with special focus on their
potential to contribute to central tolerance induction by triggering the unique pro-
inflammatory microenvironment in the thymus. In order to complement the existing
evidence that has been obtained from mouse models, we performed proteomic
analysis on microdissected samples from human thymic medullary areas at different
differentiation stages. The analysis confirms that at the post-Aire stages, the mTECs lose
their nuclei but maintain machinery required for translation and exocytosis and also
upregulate proteins specific to keratinocyte differentiation and cornification. In addition, at
the late stages of differentiation, the human mTECs display a distinct pro-inflammatory
signature, including upregulation of the potent endogenous TLR4 agonist S100A8/
S100A9. Collectively, the study suggests a novel mechanism by which the post-Aire
mTECs and Hassall’s corpuscles contribute to the thymic microenvironment with potential
cues on the induction of central tolerance.

Keywords: Hassall’s corpuscles, medullary thymic epithelial cells, AIRE, thymus, central tolerance, S100A8,
S100A9, TLR4 – Toll-like receptor 4
INTRODUCTION

The thymus is a primary immune organ required for T cell development. The maturation process of
the developing T cells, the thymocytes, involves somatic recombinations to randomly generate
functional T cell receptors that in principle can recognize all possible antigenic determinants
[reviewed in (1)]. Thus, in order to avoid the escape of potentially harmful, self-reactive T cell
clones, these clones need to be either eliminated physically or changed functionally before their exit
from the thymus. These processes, collectively known as central tolerance induction, take place in
the thymic medulla and comprise negative selection and thymic regulatory T cell (Treg) induction.
Both negative selection and Treg differentiation are believed to rely on T-cell receptor (TCR)-
org April 2021 | Volume 12 | Article 6355691
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derived signal strength (2), which in turn depends on the
availability and affinity of self-peptides in the thymus and is
regulated by a range of co-stimulatory molecules expressed on
antigen presenting cells (APC) (1, 2). Therefore, the
development of efficient and self-tolerant T-cells depends on
complex interactions between a range of different thymic cell
types and is shaped by the local microenvironment (3).

As opposed to all other organs, a specific feature of the thymic
microenvironment is a constitutive low-grade expression of
proinflammatory mediators, inflammatory cytokines and
chemokines even under physiological conditions (4–6) (covered
in detail below). There is accumulating evidence that this low-grade
inflammatory signaling may play a role in thymocyte development.
Indeed, the recent data suggest that the tonic inflammation can
affect the final stages of single positive T cell development as well as
thymic Treg generation via mobilization of thymic dendritic cells
(7, 8). Hence, the tonic pro-inflammatory microenvironment in
the thymus has the potential to affect central tolerance induction
and to shape the resulting repertoire of peripheral T cells and
Tregs. The cellular and molecular mechanisms leading to this
unique phenomenon, however, are not fully understood. Below we
will summarize the current knowledge together with some novel
evidence that these inflammatory signals are provided by the
medullary thymic epithelial cells (mTECs) at the very late stages
of their differentiation.
CENTRAL TOLERANCE INDUCTION AND
mTEC DIFFERENTIATION

Although the developing thymocytes comprise the majority of
the cellular mass of the thymus, their proper development is
directed by the non-hematopoietic thymic stroma including the
thymic epithelial cells and fibroblasts as well as by the non-
thymocyte hematopoietic compartment including the APCs, i.e.
the dendritic cells, B cells and macrophages (3). In regard to the
induction of central tolerance, a central role is played by the
mTECs that have a unique property to express a huge variety of
different genes and proteins including the ones whose expression
is otherwise restricted to a certain peripheral cell or tissue type
(9). This ectopic gene expression is largely controlled by a
transcriptional regulator Aire and is critical for the induction
of central tolerance to these self-proteins either by directing the
self-reactive thymocyte clones to apoptosis (i.e. negative
selection) or directing them toward the Treg lineage (10–12).
Accordingly, mutations in Aire result in a defect in central
tolerance in humans as well as in mice and rats affecting both
of these arms of central tolerance (10, 13, 14). In addition to the
well-characterized role in ectopic antigen expression, Aire has
been proposed to control a number of other functions including
regulation of thymic chemokines (15–17) and mTEC maturation
(18). Regardless of the precise mechanism, however, the end-
result of Aire-deficiency is a defect in central tolerance, which
may precipitate in autoimmunity.

Due to the central role of Aire expressing mTECs in thymic
tolerance induction, there has been a lot of interest in the Aire+
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mTEC lineage differentiation and mTEC differentiation in
general [reviewed in (19)]. It is now widely accepted that at
least during fetal development both the cortical as well as the
medullary epithelial cells are derived from a single bipotent
progenitor (20, 21), while the existence of the bipotent
progenitor in the adult thymus has remained controversial.
After receiving a signal yet to be identified, some of the
progenitors are directed toward the mTEC lineage and
upregulate the proliferation marker Ki67 (22) to become more
populous and can still give rise to different mature mTEC
lineages. Recent advances in single-cell transcriptomics in mice
(22–26) and humans (27) have highlighted the heterogeneity of
these functionally diverse thymic cells and although minor
differences exist between the results, most of the respective
studies agree that in mice the mature mTECs can be divided
into four subpopulations: 1) mTEC I, characterized by the
dependency of lymphotoxin (LT)b signaling, high expression
of CCL21 and lack of MHCII expression (28, 29); 2) mTEC II,
characterized by RANK-dependency and high expression of
Aire, MHCII and thousands of tissue-restricted genes (30, 31);
3) mTEC III, known as post-Aire cells or corneocyte-like mTECs,
which express low/mid MHCII and whose gene expression
profile resembles late-stage keratinocytes/corneocytes (see
below); and 4) mTEC IV, known as thymic tuft cells, which
express IL-25 and whose gene expression profile resembles
intestinal tuft cells (23, 24). Single-cell analysis of the human
thymus confirmed these four main mTEC subpopulations but
added mTEC-myo and mTEC-neuro as two additional
subpopulations present in humans but not in mice (32).
THE AIRE+ mTECS, POST-AIRE mTECS
AND HASSALL’S CORPUSCLES

As it is at the Aire+ (mTEC II) stage, where the mTECs express
thousands of self-antigens, MHCII and co-stimulatory molecules
CD80 and CD86, this population in particular has been
profoundly studied as a central player in central tolerance
induction. As these cells represent a functionally mature post-
mitotic cell population they were, until quite recently, also
considered the endpoint of the Aire+ lineage existence.
However, several fate-mapping and single cell transcriptomics
approaches have identified that the differentiation of mTECs
extends beyond the Aire+ differentiation stage to become the
mTEC III (25, 31, 33–35). At this post-Aire stage, the cells down-
regulate Aire together with most of the Aire-dependent proteins
and lose accordingly their ability to express a broad range of
ectopic genes. In addition, these cells downregulate the
machinery required for direct antigen presentation including
MHCII and the co-stimulatory molecules (31, 34) and depend
from this point on the APC-mediated cross-presentation to
present the expressed proteome to the developing thymocytes.
At the same time, the post-Aire cells become enriched for
proteins classically associated with end-stage keratinocytes,
such as involucrin (Ivl) (36), Lekti (37), and a variety of
different keratins (31), obtaining a corneocyte-like phenotype.
April 2021 | Volume 12 | Article 635569

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Laan et al. Post-Aire Populations and Pro-Inflammatory Signaling
In addition to the conventional mTECs described above, the
thymic medulla contains unique structures called Hassall’s
corpuscles (HCs). These structures, firstly characterized in
1846 by Arthur Hill Hassall (38) in human thymi have, after
their initial description, been found in several other mammals
(39) but as well as in bird and fish species (40, 41). In humans,
the HCs appear as a concentric merged cluster of unnucleated
cells with a typical diameter of 20-100 mm and are present in
large quantities already by the 28th week of prenatal development
(42). As the size and numbers of HCs shrink together with age-
related thymic involution (43) and thymic hyperplasia in
myasthenia gravis or lymphomas are characterized by
increased numbers of HCs (44, 45), their abundance seems to
be related with thymic activity. As the size of HCs, on the other
hand, correlates with the size of the thymus (39, 46), they are
relatively hard to detect in smaller rodents such as mice and
usually require antigen-specific immunostainings to visualize
(18). Although the function and nature of the HCs have been
studied and speculated since their discovery, it has been
established only quite recently that these unique structures
represent the final differentiation stage of the Aire+ lineage
(19). The evidence comes from studies showing retention of
Aire reporters in the HCs once the Aire itself has been already
down-regulated (34), from studies showing further upregulation
of corneocyte-associated proteins in the HCs (18, 34), and are
indirectly also reinforced by the fact that the HCs are nearly
missing in the Aire KO mouse (18). Further support comes from
human studies showing that in thymomas the presence of HCs is
restricted to the subtypes with Aire expression (47) and that in
patients with Down syndrome, the presence of the third copy of
the chromosome 21 (where the AIRE gene is located) results in
increased numbers of Aire positive cells together with enlarged
Hassall’s corpuscles (48).

Collectively, the current data corroborate the conclusion that
following the Aire+ (mTEC II) stage, the differentiation to post-
Aire mTECs (mTEC III) and further to the HCs represent the
final steps of the Aire+ lineage. Regarding the function of the
post-Aire stages, however, the corresponding data is rather
scarce. Because of their natural location in the thymic medulla,
i.e. the site of central tolerance induction, most of the proposed
functions have been related to their specific expression-pattern of
self-proteins. For example, post-Aire cells/HCs have been
reported to express keratinocyte-restricted and pemphigus
related autoantigens Dsg-1 and Dsg-3 (34, 49, 50) but also
proinsulin (51), an autoantigen in type 1 diabetes.
TONIC INFLAMMATORY SIGNALING,
LATE-STAGE mTECS, AND CENTRAL
TOLERANCE INDUCTION

Inflammation, characterized by increased production of
inflammatory cytokines and chemokines, is a biological
response to harmful stimuli such as pathogens and tissue
damage. In this sense, the thymus seems to be a unique organ
with constitutive production of pro-inflammatory mediators
Frontiers in Immunology | www.frontiersin.org 3
even under physiological conditions (4). A steady-state
expression of type 1 interferons (IFN) has been shown in
mouse mTECs and dendritic cells using an IFNb reporter (6)
and the secretion of type 1 IFN has been demonstrated in normal
human thymi without any pathological stimulus (5). Although
the precise upstream stimuli and functional consequences of this
phenomenon are still largely unknown, there is increasing
evidence that the post-Aire cells and HCs may play a role
behind this specific feature of the thymic microenvironment,
and that this in turn may modulate the induction of central
tolerance. Thus, HCs have been shown to express thymic stromal
lymphopoietin (TSLP) (52), which in turn is known for its
capability to convert the conventional T cells to Tregs (52, 53)
and can accordingly potentially promote the thymic Treg
induction. Also, a recent study connected the senescence-like
phenotype of HCs to IFNa production from thymic DCs and
suggested that the lack of the low-grade inflammatory signaling
results in impaired development of single-positive thymocytes
(7). Another recent study showed the importance of Toll-like
receptors and the resulting MyD88 signaling in mTECs for the
expression of several inflammatory cytokines, DC recruitment
and Treg induction (8). The evidence supporting the role of post-
Aire mTECs and HCs in the induction of the pro-inflammatory
microenvironment comes from the Aire KO mouse which, on
the one hand, lacks post-Aire cell populations (18) but on the
other hand, has reduced expression of several constitutively
expressed inflammatory mediators (7) as well as functional
defects both in negative selection and Treg induction (10, 11).
THE PROTEOME OF HUMAN LATE-STAGE
mTECS AND HCS DISPLAYS A PRO-
INFLAMMATORY SIGNATURE

Therefore, there is an increasing amount of evidence that at least
in mice the post-Aire cells and HCs may contribute to the tonic
inflammatory signaling in the thymic medulla, which in turn
may play a role in the induction of central tolerance. We aimed
to complement these findings with data obtained from human
thymi and chose to analyze the proteomic pattern during mTEC
maturation, as HCs are known to lose their nuclei and related
transcriptional machinery. Accordingly, we microdissected three
distinct morphological thymic areas (see Figure S1): 1) thymic
medulla (labeled as mTECs throughout the proteomics section)
2) the epithelial layer immediately surrounding the HCs and
characterized by flattened nuclei (labeled as late mTECs) and
3) the HCs to characterize the changes in the mTEC proteome
during three consecutive differentiation stages. The mTEC
population is likely to include all different mTECs but the
mTEC III ( i .e . non-mTEC III) whereas the easi ly
distinguishable late-mTECs and HCs correspond to mTEC III
and HCs, respectively. The dissection was performed from three
thymi of patients (one year 2 months, one year 7 months, and
two years 7 months old) undergoing cardiac surgery. The
collected samples were analyzed by nano-LC/MS/MS and the
raw data processed by MaxQuant, followed by the differential
April 2021 | Volume 12 | Article 635569

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Laan et al. Post-Aire Populations and Pro-Inflammatory Signaling
analysis of the detected proteins and pathway analysis for the
changed protein groups (see supplementary materials for
detailed description). In addition, we compared this data
obtained from thymi to the one obtained from three consecutive
differentiation stages of human epidermal keratinocytes collected
from healthy grown-up individuals: 1) stratum basale 2) stratum
spinosum and 3) stratum granulosum + stratum corneum, in
order to detect parallels in mTEC vs keratinocyte late-
stage differentiation.

We were able to detect 1095 unique proteins in mTECs, 1026
in late mTECs and 880 in the HCs. Samples from all thymic areas
were markedly enriched for keratins comprising between 5-7
different keratins among the top ten most abundant proteins in
all samples. On the other hand, the peptides of thymocyte-specific
markers CD4 and CD8 were undetectable in all samples whereas
CD3 was detected at very low levels (four orders of magnitude
lower than the top keratins) in two out of nine samples. Thus,
although a minor contribution from hematopoietic cells can’t be
excluded, the detected proteome mostly reflects the changes
occurring in the thymic stromal compartment.

Among the unique proteins detected, the keratins, serpins, and
S100A family were represented by 42, 14 and 9members, respectively
(Figure S2). There was a significant upregulation of 37 and down
regulation of 38 proteins during the final stages of mTECmaturation
(Figure 1; Table S1). As expected, the loss of nuclei and compaction
of epithelial tissue was reflected by significant downregulation of
several proteins with nuclear expression (23 out of 38, Table S1) and
by downregulation of several proteins known to be highly expressed
in the extracellular matrix (Figures 1, 2; Table S1).

Remarkably, despite the progressive loss of nuclei, the late
stages of mTECs were characterized by upregulation of several
proteins related to protein translation, folding and intracellular
transport (Figures 1, 2; Table S1). These characteristics also
showed up to be significantly altered in the pathway analysis
under the cytoplasmic ribosomal complex pathway (Figure 1).
In addition, there was significant enrichment of proteins
involved in exocytosis and extracellular exosome generation
(Figure 1). As the mTEC-derived exosomes have been shown
to carry the keratinocyte-specific autoantigens DSG-1, DSG-3 as
well KRT5 and KRT14 (54), the data is compatible with the view
suggesting that even after losing their MHCII expression, the
post-Aire mTECs and HCs may actively contribute to the
induction of central tolerance by synthesis and exocytosis of
self-proteins for cross-presentation.

During the final stages of keratinocyte differentiation, we were
able to detect 1015 unique proteins in stratum basale, 1092 in
stratum spinosum and 718 in stratum granulosum + stratum
corneum. Regarding the comparison between the final stages of
mTEC and keratinocyte differentiation, we saw several protein
groups and pathways being affected similarly in those two
different cell types (Figures 1, 2; Table S1, S2). In addition to
the expected loss of nuclei and epithelial compaction, the late
stages of differentiation were similarly characterized by
preferential upregulation of proteins involved in extracellular
exosome generation, leukocyte mediated immunity, exocytosis
and endopeptidase activity (Figures 1, 2; Table S1, S2). Also, in
Frontiers in Immunology | www.frontiersin.org 4
the thymus and skin, the late stages of differentiation were
characterized by increased expression of two auto-antigens,
EPPK1 and A2ML1 (Figures 1, 2), previously associated with
autoimmune skin blistering (55, 56). Altogether, our data
confirmed the previously known parallels in mTEC vs
keratinocyte differentiation and suggested that at the late stages
of differentiation the mTECs can indeed express keratinocyte-
specific antigens to be cross-presented by myeloid APCs to the
developing thymocytes.

Most importantly, the late-stage mTECs and HCs displayed a
clear upregulation of several proteins usually connected to
inflammatory processes (Figures 1, 2; Table S1). This increase
in inflammatory proteins was reflected in the pathway analysis
showing enrichment for proteins related to leukocyte mediated
immunity, immune effector processes and innate immune
system (Figure 1) . Str ikingly , among the induced
inflammatory proteins were S100A8 and S100A9 and,
accordingly, the iNOS-S100A8/A9 complex pathway (Figure
1). These S100A proteins, known mainly for their Ca++
binding properties (57), have recently been shown to form a
heterodimeric complex, that in turn, through binding and
activating TLR4 (57, 58), can induce the expression of several
proinflammatory cytokines and mediators. As we also saw an
upregulation of the TLR4 binding related processes at the late
stages of mTEC differentiation (Figure 1), our data strongly
suggest that post-Aire mTECs and HCs may play a role in the
induction of tonic inflammatory signals by constitutive
expression of the endogenous TLR4 agonist, S100A8/A9.
DISCUSSION

The escape of imperfectly selected T cells from the thymus to the
periphery has long been considered as a potential mechanism in
the development of autoimmune diseases. The thymocyte
selection processes are highly dependent on their cross-talk
between different thymic cell populations capable of expressing
and presenting ectopic proteins to the developing thymocytes (1,
3). Consequently, the signals behind cellular migration,
activation, differentiation and communication in the thymus
are of critical importance in the development of T cell
repertoire in the periphery.

Therefore, the low-grade constitutive expression of type 1
IFNs in the thymus is highly relevant as both the survival of
thymocytes (59) as well as induction of thymic Tregs (60) have
been shown to depend on signaling through IFNAR, the receptor
for type 1 IFNs. Likewise, the expression of MHC and co-
stimulatory molecules on APCs is dependent on inflammatory
signals as is their activation and migration to the site of
inflammation (61–63). Since TLR4 signaling through IRF3
activation on the other hand is a well-characterized inducer of
type 1 IFNs (64), the expression of the endogenous TLR4 agonist,
S100A8/A9 by post-Aire mTECs and HCs bears the potential to
act as an upstream initiator of a constitutive inflammatory
cascade capable of modifying all critical counterparts of the
thymic cross-talk.
April 2021 | Volume 12 | Article 635569
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FIGURE 1 | Results of the differential analysis. (A) Volcano plots of differential analysis. The x- and y-axis of the volcano plot show log2 of fold change (FC) and
negative log10 of p-values respectively. There are altogether 6 volcano plots for each groupwise comparison shown in the title of the plot. The first source material
name in the title always corresponds to the reference group and thus positive log2 FC indicates an increase in the later differentiation stage compared to the earlier.
Proteins with adj. p-value ≤ 0.05 are colored red, proteins with adj. p-value >0.5 and ≤ 0.1 are colored blue and a selection of them are named by their underlying
genes. Only some top genes are shown by names, for full list of genes please see Table S1, S2. The results of functional enrichment analysis of genes with adj. p-value ≤ 0.1
are visualized by Manhattan plots (B, C) that correspond to significant gene sets in the thymus and epidermis respectively. More specifically, these plots convey information
about Gene Ontology (GO) with “MF” describing the molecular functions of the gene products, “BP” the biological processes in which they are involved in and “CC” the cellular
component where the gene products are located. In addition, there are molecular pathways in which gene sets are enriched in (KEGG, REAC, WP), putative transcription
factor binding sites (TF), information about targeted miRNAs (MIRNA), protein complexes (CORUM, HPA) and associated human diseases (HP). For further information please
see g:Profiler (https://biit.cs.ut.ee/gprofiler). (D) shows further information about the selected GO terms in (B, C). Some highly significant functional terms are not included in
(D) due to virtual overlap with a functional pathway with even more significant p-value.
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The proposed role of post-Aire cells/HCs in creating the pro-
inflammatory microenvironment by the expression of S100A
family members is also supported by previous studies. Thus, in
mice the post-Aire cells isolated by using a specific reporter are
characterized by high expression of a variety of inflammatory
genes, including S100A9 (7), whereas the single cell
transcriptomics analysis in humans indicates S100A9 in the
top 20 most highly expressed genes in the post-Aire (TEC III)
population with several other (DEFB1, ANXA1, CXCL17)
inflammation-related genes also belonging to the top 20 list (27).

Alternatively to its role as a TLR4 ligand, S100A8/S100A9
may have intracellular functions in mTECs as they form an
LPS-inducible, heterotrimeric complex with iNOS, which elicits
Frontiers in Immunology | www.frontiersin.org 6
S-nitrosylation of GAPDH and a family of other proteins (65)
A subsequent relocation of S-nitrosylated GAPDH to the
nucleus triggers the cell stress response and apoptosis (66).
mTECs constitutively express iNOS, which is upregulated
after the contact with self-antigens or with thymocytes
activated by TCR stimulation (67), and the expression of
S100A8 and S100A9 genes is induced by AIRE (68, 69). We
have earlier reported the blockage of AIRE-induced cell death by
inhibiting the S-nitrosylation and nuclear translocation of
GAPDH (70), suggesting that Aire may mediate the nuclear
translocation of GAPDH by so far unknown mechanisms,
and induce NO-induced cellular stress and apoptosis in
post-Aire mTECs.
FIGURE 2 | Similarities of protein levels between epidermis and thymus with respect to the differentiation stages and organized based on the localization or function
of proteins. The log2 intensity levels (LFQ) of 22 proteins are shown in all samples. The x-axis corresponds to the source material that is denoted as differentiation
stage. The differentiation stages 1, 2, 3 correspond in case of thymus to the mTEC, late mTEC, HC and in epidermis stratum basale, stratum
spinosum and stratum granulosum + stratum corneum. The loess regression lines connect the values in those stages representing the change in protein levels
during differentiation. Figure’s first line shows proteins that are more specific to the epidermis, the second line corresponds to the nuclear proteins, the third one to
inflammation related proteins, the fourth line to the translation associated proteins and final fifth one to the collagens.
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Another intriguing topic related to these findings is the
previously shown lack of tonic inflammatory signaling in the
Aire KO mouse (7) together with the defect in the differentiation
of post-Aire populations and the development of autoimmune
phenotype (10). Although the role of Aire in regulating mTEC
maturation has been established years ago (18, 35), the block in
differentiation in Aire KO mouse has mostly been connected to
impaired expression of ectopic proteins as a potential
mechanism behind the development of autoimmunity.
However, as summarized above, there is now an increasing
amount of evidence that the developmental block also results
in decreased inflammatory signaling in the thymus that seems to
be related to the lack of post-Aire mTECs and HCs. As the post-
Aire cells and HCs appear immediately after Aire expression
during mouse fetal development (34) and are present in high
numbers during fetal and perinatal development in humans (42),
the local environment modified by these post-Aire populations
has the potential to refine the Aire-induced tolerance within
the time window when Aire`s effect is the strongest, i.e.
during the perinatal stage of development (11, 71). By contrast,
another interesting phenomenon, the age-induced inflammatory
signaling (26, 32, 72), appears much later when Aire’s expression
is severely down-regulated (73) and is, accordingly, less likely to
have an effect in Aire-related changes. It remains to be
determined whether alteration of the final steps in mTEC
differentiation or fine-tuning of the inflammatory thymic
microenvironment proves to be a useful target for the
treatment of autoimmunity caused by Aire-deficiency or
possibly for other defects in central tolerance induction.
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