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Abstract

There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether

GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using

additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal

cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is

significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reac-

tion, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root

ganglias, but not in the spinal cord, of mice with chronic itch. Few GRPþ immunostaining signals were detected in spinal

sections following dorsal rhizotomy and GRPþ cell bodies were not detected in dissociated dorsal horn neurons.

Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing

peptide receptor-positive (GRPRþ) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of

GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small

percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have

contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression

in dorsal root ganglia neurons.
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Introduction

Many earlier studies have demonstrated the specificity of
gastrin-releasing peptide (GRP) antibodies by radio-
immunoassay and immunohistochemistry (IHC) after
dorsal rhizotomy or antibody absorption, and have con-
cluded that GRP-positive (GRPþ) fibers, or GRP con-
tent in the spinal cord, are predominantly of peripheral
origin.1–5 In addition, it was shown that GRP antibody
does not cross-react with substance P (SP), and that
GRP is present in dorsal root ganglia (DRGs) of cat,
dog, rat, and monkey.2–7

After more than a decade of relative dormancy, the
identification of GRP as an itch-transmitting peptide in
DRGs has reignited considerable interest in GRP expres-
sion.8–12 We propose that GRP is a key itch-specific
neuropeptide in sensory neurons that is released from
primary afferents to activate postsynaptic GRPR in the
spinal cord in response to nonhistaminergic stimuli.12–16

Consistent with this notion as well as with many earlier
studies, several other laboratories have independently
shown that the GRP antibody recognizes a distinct
subset of DRG neurons mostly using 1:1000 or 1:4000
dilution.17–20 Moreover, GRP is up-regulated in DRGs
of mice and monkeys with chronic itch12,13,21,22 and a
portion of GRPþ neurons are distinct from SPþ neurons
in DRG.18,23 More recently, 3-D synaptome analysis
using high-voltage electron microscopy and chemical
anatomy revealed that the electron-dense GRPþ vesicles
are present in presynaptic afferents contacting postsy-
naptic neurons with the electron-dense postsynaptic den-
sities in the spinal cord.24

On the other hand, conflicting results on GRP expres-
sion in DRGs using the GRP antibody have also been
reported (Table 1). Most notably, some researchers were
unable to detect specific GRP immunostaining in DRGs.
The issue was raised about the dilution of the antibody
(Immunostar) used in the studies. Solorzano et al.25

showed that at 1:1000 dilution GRP immunostaining is
widespread in DRGs, similar to several previous stu-
dies.26,27 On the other hand, using 1:1000 dilution,
Fleming et al.28 showed only 1.79% of DRGs are posi-
tive for GRP, the smallest percentage ever reported.
While Solorzano et al.25 argued that at 1:4000 dilution,
GRP antibody is specific but could not detect any stain-
ing in DRG, Kiguchi et al.17 recently showed distinct
staining in a small subset of DRGs using the same
1:4000 dilution.

Detection of Grp mRNA by in situ hybridization
(ISH) in DRGs also remains controversial. Although
we were able to observe Grp expression in DRGs by
ISH,12,29 others could not detect positive signals.25,28,30,31

Moreover, two groups did not detect Grp mRNA in
DRG by RNA-seq.32,33 While several laboratories
detected Grp mRNA by reverse transcription polymerase
chain reaction (RT-PCR) using single cell method,26,27

Solorzano et al.25 argued that the detections are due to
de novo expression in DRG neuron culture conditions.
On the other hand, it has been reported that Grp mRNA
was detectable from uncultured DRGs by RT-PCR,28,30

qRT-PCR12 and a cDNA microarray study34 (Table 1).
Two recent studies argued that the widely used GRP

antibody cross-reacts with SP25,33 because GRP
immunostaining is reduced in mice lacking Tac1.25 In
contrast, others showed specific GRP and SP double
immunostaining in DRGs, arguing against this
possibility.18,27

These discrepancies in the literature prompted us to
revisit the issue, with a focus on potential reasons that
may explain some of the inconsistent results and newly

Table 1. Previous studies on detection of GRP expression in

DRG.

Method GRP expression References

IHC/IF (WT) þ (lab derived) 2, 3, 4

þ (1:1000); IS 16, 20, 28

þþþ (1:1000); IS 26, 29

þ (not indicated) 19

þ (1:500); IS 13, 23

þþþ (1:100); SCBT 27

þ (1:1000, 1:2000); Assaypro 18

þþþ (1:1000), - (1:4000); IS 25

þ (1:4000); IS 17

IHC/IF

(Grp KO)

� (1:1000); IS 29

� (1:500); IS 13

þþþ (1:1000), �(1:4000); IS 25

ISH � (bases 212–634) 28

� (coding region, bases

115–554)

25

� (not indicated) 30, 31

þ (bases 149–707) 12

RT-PCR gel

electrophoresis

þ (weak band) 28

þ (single cell) 26, 27

qRT-PCR þ (trace amount) 30

þ 12

þ (low levels) 25

RNA-Seq – 33

� (single cell) 32

cDNA Microarray þ 34

� not detected or absent, þ detected and/or distinct staining pattern,

þþþ widespread staining pattern; IHC/IF antibody dilutions are indicated

in parentheses; ISH Grp mRNA region used for antisense probe indicated in

parentheses (NCBI accession NM_175012.4), IS: Immunostar; SCBT: Santa

Cruz Biotechnology.
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raised concerns. Specifically, we set out to critically
evaluate the cross-reactivity of the GRP antibody with
SP. Because the majority of studies investigating Grp
mRNA expression in DRGs were not done in a quanti-
tative and comparative manner, we also examined this
issue relative to the expression of other genes using RT-
PCR and RNA-seq. Our studies and survey of the
related literatures highlight technical caveats that
should be considered for the detection of GRP protein
and Grp mRNA.

Materials and methods

Animals

Male mice between 7 and 12 weeks old were used for
experiments. C57BL/6 J mice were purchased from the
Jackson Laboratory (http://jaxmice.jax.org/strain/
013636.html). C57BL/6 J mice, GRPR-eGFP BAC
Transgenic mice from MMRRC (i.d. 036178), Grp
KO,13 Tac1 KO,35 BRAFNaV1.8,13, and their respective
wild type (WT) littermates were used. All mice were
housed under a 12 h light/dark cycle with food and
water provided ad libitum. All experiments were per-
formed in accordance with the guidelines of the
National Institutes of Health and the International
Association for the Study of Pain and were approved
by the Animal Studies Committee at Washington
University School of Medicine.

Ablation of TRPV1þ fibers

C57BL/6 J mice were treated with resiniferatoxin (RTX)
(25 ng in 5 mL, intrathecal) as previously described, with
a modification in the dose of RTX.36 Seven days after
RTX injection, mice were perfused, and lumbar spinal
cord tissues were collected for immunostaining.

Dorsal rhizotomy

C57BL/6 J male mice were used for unilateral rhizotomy
at spinal lumbar level L4–L6.13 Briefly, laminectomy was
performed to expose the L4–L6 dorsal roots, which were
sharply transected. Animals were perfused, and the
lumbar spinal cord tissues were collected 14 days after
the dorsal rhizotomy for immunostaining.

Xerosis (dry skin) model

The AEW (acetone-ether-water) dry skin model was
implemented as described.37,38 Briefly, the nape of mice
was shaved and a mixture of acetone and diethyl ether
(1:1) was applied with a cotton pad on the neck skin for
15 s, followed immediately by a 30 s distilled water appli-
cation. This regimen was administered twice daily for

eight days. Littermate control mice received water only
for 45 s on the same schedule. Spontaneous scratches
were counted for 60min on the morning following the
last AEW treatment. On day 8, AEW-treated mice dis-
played 150–300 scratching bouts in 60min. Cervical and
thoracic DRG and spinal cord tissues were isolated and
processed for IHC, ISH, and RT-PCR and qRT-PCR.

Immunohistochemistry

Mice were anesthetized (ketamine, 100mg/kg and
Xylazine, 15mg/kg) and perfused intracardially with
PBS pH 7.4 followed by 4% paraformaldehyde (PFA)
in PBS. Tissues were dissected, post-fixed for 2–4 h, and
cryoprotected in 20% sucrose in PBS overnight at 4�C.
Tissues were sectioned in OCT using a cryostat micro-
tome. IHC was performed as described.14 Briefly, free-
floating frozen sections at 20 mm thickness were blocked
in a 0.01M PBS solution containing 2% donkey serum
and 0.3% Triton X-100 followed by incubation with pri-
mary antibodies overnight at 4�C, washed three times
with PBS, secondary antibodies for 2 h at room tempera-
ture, and washed again three times. For biotin-conju-
gated secondary antibodies, sections were next
incubated with avidin-conjugated fluorophores and
washed three times. Sections were mounted on slides
and approximately 100 mL FluoromountG (Southern
Biotech) was placed on the slide with a coverslip.
Fluorescein isothiocyanate (FITC)-conjugated Isolectin
B4 from Griffonia simplicifolia (IB4, 10 mg/mL; L2895,
Sigma) or the following primary antibodies were used,
rabbit anti-GRP (1:500–1:4000; Immunostar, 20073, lot
#1420001), rabbit anti-calcitonin gene-related peptide
alpha (CGRPa) (1:5000; Millipore, AB15360), guinea
pig anti-CGRPa (1:1000; Peninsula Labs, T-5027),
guinea pig anti-SP (1:1000; Abcam, ab10353, lot#
GR29977-17), guinea pig anti-transient receptor poten-
tial cation channel subfamily V member 1 (TRPV1)
(1:1000; Neuromics, GP14100), and chicken anti-GFP
antibody (1:500; Aves Labs, GFP-1020). For GRPR/
GRP/SP triple staining, a total of 10 adult GRPR-
eGFP male mice and chicken anti-GFP antibody
(1:500; Aves Labs) were used. The secondary antibodies
were FITC-, Cyanine 3 (Cy3)-, Cy5 donkey anti-guinea
pig (1:500; Millipore) or Alexa 594 conjugated donkey
anti-rabbit or anti-guinea pig IgG (1:500, Jackson
ImmunoResearch), or biotin-SP-conjugated donkey
anti-rabbit or anti-chicken IgG (1:400, Jackson
ImmunoResearch) and Neutravidin-conjugated Alexa
Fluor488 (1:1000, Life Technologies), Third
antibody—FITC-avidin (1:1000; Vectorlabs).
Fluorescent Images were taken using a Nikon Eclipse
Ti-U microscope with CoolSnapHQ CCD Camera
(Photometrics). Staining intensities for each section
were quantified by an observer blinded to the group or
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genotype using ImageJ (version 1.34e, NIH Image) as
previously described.13

DRG and spinal dorsal horn neuron cultures

Primary cultures of DRGs and spinal dorsal horn neu-
rons were prepared from seven-weeks-old C57BL/6 J
mice.13 Mice were sacrificed, DRGs and dorsal horn of
spinal cord were dissected out and incubated, separately,
in Neurobasal-A Medium (Gibco) containing 30 ml
papain (Worthington) at 37�C for 20min, and an
additional 20min digestion at 37�C for DRGs with col-
lagenase type 2 (Worthington). Enzymatic digestion was
stopped by adding another 2mL Neurobasal-A medium.
After washing with the same medium for three times,
gentle trituration was performed using flame polished
glass pipette until the solution became cloudy. The hom-
ogenate was centrifuged at 500� g for 5min, and the
supernatant was discarded. Cell pellets were resuspended
in culture medium composed of Neurobasal medium
(Gibco, 92% vol/vol), fetal bovine serum (Invitrogen,
2% vol/vol), HI Horse Serum (Invitrogen, 2% vol/vol),
GlutaMax (2mM, Invitrogen, 1% vol/vol), B27
(Invitrogen, 2% vol/vol), Penicillin (100mg/ml) and
Streptomycin (100mg/ml) and then plated onto 12-mm
coverslips coated with laminin and poly-ornithine
for 1 h.

GRP immunostaining on dissociated DRG neurons
and dorsal horn neurons was performed as previously
described.39 Cells were fixed in 4% paraformaldehyde
for 1 h at room temperature and blocked in blocking
buffer (PBS containing 2% normal donkey serum and
0.3% Triton X-100) for 1 h at room temperature.
Cells were then incubated with rabbit anti-GRP anti-
body (ImmunoStar, 1:1,000) and mouse anti-NeuN
antibody (EMD Millipore, 1:1,000) in blocking buffer
overnight at 4�C. After washing, cells were incubated
with Cy3-conjugated donkey anti-rabbit secondary
antibody (1:1000) and FITC-conjugated donkey anti-
mouse secondary antibody (1:1000) for 1 h at room
temperature.

Immuno-electron microscopy

Immuno-electron microscopic studies were performed as
previously described.40 Briefly, for GRPR/GRP or
GRPR/SP double staining, cross sections of lumbar
spinal cord of adult GRPR-eGFP mice were double
immune-labeled by guinea pig anti-SP antibody
(1:2000; Incstar) or rabbit anti-GRP antibody (1:1000;
Immunostar) and chicken anti-GFP antibody (1:500;
Aves Labs) using immunogold–silver method and immu-
noperoxidase method, respectively. For GRP/SP double
staining, cross sections of lumbar spinal cord of adult
C57BL/6 J mice were double immuno-labeled by guinea

pig anti-SP antibody (1:2000; Incstar) and rabbit
anti-GRP antibody (1:1000; Immunostar) using
immunogold–silver method and immunoperoxidase
method, respectively. Furthermore, 50-nm-thick ultra-
thin sections were cut and examined with a JEM-1400
electron microscope (JEM, Tokyo, Japan). The digital
micrographs were captured by VELETA
(Olympus,Tokyo, Japan).

In situ hybridization

ISH was performed as previously described,41 using a
digoxigenin-labeled cRNA (Roche) antisense probe for
Grp (bases 149-707 of Grp mRNA, NCBI accession
NM_175012.4) and Tac1. Briefly, on-slide frozen cervical
and thoracic DRG sections at 20 mm thickness were
incubated with Proteinase K (50 mg/mL) buffer for
10min, incubated in prehybridization solution for 3 h
at 65�C and then incubated with Grp or Tac1 probe
(�2 mg/mL) in hybridization solution overnight at
65�C. After SSC stringency washes and RNase A
(0.1 mg/mL for 30min) incubation, sections were incu-
bated in 0.01M PBS with 20% sheep serum and 0.1%
Tween blocking solution for 3 h and then incubated with
anti-digoxigenin antibody conjugated to alkaline
phosphatase (0.5 mg/mL, Roche) in blocking solution
overnight at 4�C. After washing in PBS with 0.1%
Tween, sections were incubated in NBT/BCIP substrate
solution at room temperature for 2–16 h for colorimetric
detection. Reactions were stopped by washing in 0.5%
paraformaldehyde in PBS. Bright field images were taken
using a Nikon Eclipse Ti-U microscope with a Nikon
DS-Fi2 Camera. ISH-positive and negative neurons
were quantified by an observer blinded to the group or
genotype using ImageJ (version 1.34 e, NIH Image) as
previously described.13

Western blot

Cervical and thoracic DRGs were dissected on ice and
quickly frozen in �80�C. Samples were removed into a
microcentrifuge tube containing ice-cold sample buffer
(20mM Tris-HCl [pH 7.4], 1mM dithiothreitol, 10mM
NaF, 2mM Na3VO4, 1mM EDTA, 1mM EGTA, 5mM
microcystin-LR, and 0.5mMphenylmethylsulfonyl fluor-
ide), and homogenized by sonication. Homogenates were
centrifuged at 12,000� g for 30min at 4�C. The super-
natant was used for analysis. Protein concentration was
determined using BCA assay (Thermo Scientific). For
each sample, 10 mg of total protein were separated on
SDS NuPAGE Bis-Tris 4–12% gels (Life Technology)
in MES running buffer (Life Technology) and trans-
ferred to polyvinylidene fluoride membrane (Life
Technology). The blots were blocked in 5% bovine
serum albumin in PBS and 0.1% Tween 20 for 1 h at
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room temperature and incubated with rabbit anti-GRP
(ImmunoStar, 1:5000), or rabbit anti-Actin (Sigma,
1:50,000) for 16 h at 4�C. This was followed by 1 h incu-
bation in donkey horseradish peroxidase-linked second-
ary antibodies (Santa Cruz, 1:2500). Immunoblots were
developed with the enhanced chemiluminescence
reagents (Thermo Scientific). Band intensities were mea-
sured using Kodak 1D (version 3.6) and Actin served as
internal control for normalization.

Reverse transcription polymerase chain reaction

RT-PCR was performed as previously described.39 Mice
were sacrificed. DRG and spinal cord tissues were
quickly dissected and rapidly frozen in dry ice. Total
RNA was isolated and genomic DNA was removed in
accordance with manufacturer’s instructions (RNeasy
plus mini kit; QIAGEN). Single-stranded cDNA (total
of 20 mL per sample) was synthesized from 1 mg RNA by
using High Capacity cDNA Reverse Transcription Kit
(Life Technologies). Gene expression of Grp and Tac1
was determined by real-time PCR (StepOnePlus; Applied
Biosystems). Specific intron-spanning primers were
designed with the NCBI Primer-BLAST. The primers
used are:

Actb (NM_007393.3): 5’-TGTTACCAACTGGGACG

ACA-3’;

5’-GGGGTGTTGAAGGTCTCAAA-3’; amplicon size:

166 bp.

Gapdh (NM_008084.2): 5’-CCCAGCAAGGACACTG

AGCAA-3’;

5’-TTATGGGGGTCTGGGATGGAAA-3’; amplicon

size: 93 bp.

Grp (NM_175012.3): 5’-TGGGCTGTGGGACACT

TAAT-3’; 5’-GCTTCTAGGAGGTCCAGCAAA-3’;

amplicon size: 146 bp.

Tac1 (NM_009311.2): 5’-GTGGCCCTGTTAAAGGCT

CT-3’; 5’-TGCCCATTAGTCCAACAAAGGA-3’;

amplicon size: 85 bp.

Real-time PCR was carried out with FastStart
Universal SYBR Green Master (Roche Applied
Science). All samples were assayed in duplicates. PCR
(heating at 95�C for 10 s and 60�C for 30 s) were per-
formed. Data were analyzed using Comparative CT
Method (StepOne Software v2.2.2.), and the expression
of target mRNA was normalized to the expression of
Actb and Gapdh.

RT-PCR with 2% agarose gel electrophoresis was
performed using Taq DNA Polymerase (New England
Biolabs) with 2 mL cDNA as a template per reaction.
Reactions were optimized by running annealing tem-
perature and cycle gradients with no-RT (�RT) and
no-template (H2O) samples as negative controls.

The following intron-spanning primer pairs and PCR
parameters were used:

Actb: 5’-GATGACGATATCGCTGCGCTGGTCG-3’;

5’-GCCTGTGGTACGACCAGAGGCATACA-3’;

amplicon size 447 bp. Parameters: 95�C 5min, [95�C 40 s,

55�C 40 s, 72�C 40 s] for 21 cycles, 72�C 10min.

Grp: 5’-AGTCGAGAGCTCTGAGGGTT-3’; 5’-CCCT

TGTCGTTGTCCCTTCA-3’; amplicon size 491 bp.

Parameters: 95�C 5min, [95�C 40 s, 61.4�C 40 s, 72�C

40 s] for 35 cycles, 72�C 10min.

Nppb (): 5’-CTTTATCTGTCACCGCTGGG-3’;

5’-AGGAGGTCTTCCTACAACAACTTC-3’; amplicon

size 329 bp. Parameters: 95�C 5min, [95�C 40 s, 55�C

40 s, 72�C 40 s] for 28 cycles, 72�C 10min.

Tac1: 5’-GAGAGCAAAGAGCGCCCAG-3’; 5’-AAG

AGCCTTTAACAGGGC-3’; amplicon size 329 bp.

Parameters: 95�C 5min, [95�C 40 s, 55�C 40 s, 72�C

40 s] for 24 cycles, 72�C 10min.

RNA-seq library preparation

Three adult male C57BL/6J mice were sacrificed by
decapitation. Cervical and thoracic DRGs were dissected
out and snap frozen on dry ice. Total RNA was
extracted using RNeasy Plus Micro Kit (Qiagen) follow-
ing manufacturer’s instructions. RNA concentration and
quality was examined using Agilent Bioanalyzer Chip.
RNA integrity numbers were above 8.50. Library prep-
aration was performed with Epicentre Ribozero Gold kit
(Clontech) according to manufacturer’s protocol. cDNA
was then blunt ended, an A base was added to the 3’
ends, followed by the ligation of Illumina sequencing
adapters to the ends. Ligated fragments were then ampli-
fied for 12 cycles using primers incorporating unique
index tags. Fragments were sequenced on an Illumina
HiSeq-2500 using single reads extending 50 bases.
Sequencing depth was 55-60M reads per sample.

RNA-seq data acquisition, quality control, and
processing

RNA-seq reads were aligned to the GRCm38.76 assem-
bly from Ensembl with STAR version 2.0.4 b.42 Gene
counts were derived from the number of uniquely aligned
unambiguous reads by Subread:featureCount version
1.4.5. Transcript counts were produced by Sailfish ver-
sion 0.6.3. Sequencing performance was assessed for
total number of aligned reads, total number of uniquely
aligned reads, genes and transcripts detected, ribosomal
fraction known junction saturation and read distribution
over known gene models with RSeQC version 2.3. All
gene-level and transcript counts were then imported into
the R/Bioconductor package EdgeR and TMM normal-
ized to adjust for differences in library size. Genes or
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transcripts not expressed in any sample were excluded
from further analysis. Performance of the samples was
assessed with a spearman correlation matrix and multi-
dimensional scaling plots. Generalized linear models
with robust dispersion estimates were created to test
for gene/transcript level differential expression. The fit
of the trended and tagwise dispersion estimates were
then plotted to confirm proper fit of the observed mean
to variance relationship where the tagwise dispersions
are equivalent to the biological coefficients of variation
of each gene. Differentially expressed genes and tran-
scripts were then filtered for FDR adjusted p values
less than or equal to 0.05.

To enhance the biological interpretation of the large set
of transcripts, grouping of genes/transcripts based on func-
tional similarity was achieved using the R/Bioconductor
packages GAGE and Pathview. GAGE and Pathview
were also used to perform pathway maps on known signal-
ing and metabolism pathways curated by KEGG.

GRP protein sequences

Amino acid sequences were obtained from NCBI nucleo-
tide database. The following Genbank Accession num-
bers are for each species:

Mouse: NM_175012.4, Rat: NM_133570.5,
Chimpanzee: XM_001142106.3, Human: NM_002091.3,
Dog: XM_861026.3, Rabbit: XM_008261475.1, Guinea
Pig: XM_003474134.3, Sheep: NM_001009321.1, Cow:
NM_001101239.1, Horse: XM_001489303.1, Chicken:
NM_001277900.1.

Statistics

Values are reported as the mean� standard error of the
mean (SEM). Statistical analyses were performed using
Prism 6 (v6.0 e, GraphPad, San Diego, CA). For
comparison between two groups, unpaired or paired
two-tailed t test was used. Normality and equal variance
tests were performed for all statistical analyses. p< 0.05
was considered statistically significant.

Results

GRP antibody specifically detects GRP in DRGs and the
spinal cord

GRP is initially translated as a 148 amino acid prepro-
peptide that is further processed into smaller biologically
active peptides comprising 27 (GRP1–27) or 10 amino
acids (GRP18–27).

43 Comparison of GRP18–27 across spe-
cies reveals that GRP is highly conserved across many
species with no differences in the last seven amino acids
(WAVGHLM) (Table 2), suggesting that this region is
important for its function.

Comparison of GRP18–27 with bombesin (toad), as
well as neuromedin B (NMB) and SP, reveals some
distinct regions (Table 3). The majority of the GRP anti-
bodies are raised against the seven amino acids
WAVGHLM which are identical between GRP and
bombesin. A recent study suggested that the GRP anti-
body is only specific at high dilution (1:4000), and GRP
could not be detected in DRGs.25 To address the discre-
pancies between this study and the others, we first
repeated IHC using the GRP antibody at 1:500 and
1:1000 dilutions. Consistent with our previous stu-
dies,13,29 at both dilutions, GRP was clearly detected in
wild type (WT) dorsal horn (Figure 1(a) and (c)) but
nearly absent in Grp knockout (KO) (Figure 1(b)
and(d)). However, at 1:4000, GRP was nearly undetect-
able in WT dorsal horn compared to lower dilutions
(Figure 1(e)), while staining was again absent in Grp
KO (Figure 1(f)). In DRG tissues, results were similar
to dorsal horn. At 1:500 (Figure 1(g) and (h)) and 1:1000
(Figure 1(i) and (j)), GRPþ DRG cell bodies were clearly
visible in WT but absent in Grp KO. At 1:4000
(Figure 1(k) and (l)), GRPþ DRG cell bodies were not
detectable in either WT or Grp KO. Based on these
results, we conclude that the GRP antibody is specific
and capable of detecting GRP in DRG and spinal cord
tissues. Our results from different antibody dilutions,
though, may vary with different production lots. For

Table 2. Comparison of amino acid sequences of GRP18–27

across species.

Mouse GSHWAVGHLM-amide

Rat GSHWAVGHLM-amide

Chimpanzee GNHWAVGHLM-amide

Human GNHWAVGHLM-amide

Guinea Pig GNHWAVGHLM-amide

Cow GNHWAVGHLM-amide

Sheep GNHWAVGHLM-amide

Horse GNHWAVGHLM-amide

Chicken GSHWAVGHLM-amide

Blue amino acids are conserved across different peptides or across species.

Red mino acids indicate differences.

Table 3. Comparison of amino acid sequences of mouse

neuropeptides.

GRP18–27 GSHWAVGHLM-amide

Bombesin (toad) pEQRLGNQWAVGHLM-amide

Neuromedin B GNLWATGHFM-amide

Substance P RPKPQQFFGLM-amide

Green amino acids are conserved across different peptides. Red amino

acids indicate differences.
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all further staining experiments in this study, we used the
1:1000 dilution.

Many studies have examined GRP expression by
IHC, whereas Western blot has not been used. Next,
we examined the specificity of the GRP antibody using
Western blot analysis of DRG protein homogenates
(Figure 1(m)). Although this antibody recognizes several
non-specific large sized bands, an approximately 16 kDa
band that is equivalent to the size of the full length of
GRP prepro-protein was detected in WT but absent in
Grp KO (Figure 1(m), red arrow). In Grp KO tissues, a
faint band was visible, but its molecular weight is slightly
larger than GRP band in WT and thus considered to be
non-specific. These results indicate that the GRP anti-
body from Immunostar can be used to specifically
detect GRP in DRGs by Western blot.

Ablation of primary afferent terminals in the dorsal
horn eliminates most of GRP protein

Conflicting results have been reported concerning the
expression of GRP protein in DRGs: Fleming et al.28

showed that the GRP antibody is specific at 1:500 dilu-
tion with approximately 2% of DRGs positive for GRP,
while Solorzano et al.25 indicated otherwise. Moreover,
an earlier study showed that intrathecal capsaicin injec-
tion not only ablated TRPV1þ afferents but also ablated
GRPþ afferents in the dorsal horn,5 whereas the
Solorzano et al.25 study did not indicate any difference
in GRP staining in the dorsal horn following capsaicin
injection.

To further investigate the origin of GRP in dorsal
horn, mice were intrathecally injected with

Figure 1. Specific detection of GRP in spinal cord dorsal horn and DRG tissues. (a)–(f) Lumbar dorsal horn IHC images of GRP antibody

staining at different dilutions. At 1:500 dilution, GRP is clearly detected in WT (a) but nearly absent in Grp KO (b) littermates. At 1:1000

dilution GRP is still detected in WT (c) but absent in Grp KO (d). However, at 1:4000 dilution GRP is barely detected in WT (e) and still

absent in Grp KO (f). (g)–(l), DRG IHC images of GRP antibody at varying dilutions. At 1:500 dilution, GRPþ DRG neuron cell bodies are

clearly detected in WT (g) but almost absent in Grp KO (h) littermates. At 1:1000 dilution GRPþ neurons are still detected in WT (i) but

absent in Grp KO (j). However, at 1:4000 dilution GRPþ neurons are barely detected in WT (k) and still absent in Grp KO (l). (m) Western

blot showed that GRP antibody (1:5000) recognized a band at approximately 16 kDa in WT DRGs, which was not detected in Grp KO

DRGs. A nonspecific band (�30 kDa) was also shown in all samples. (a)–(l) n¼ 3 mice per genotype and 10 sections per group. (m) n¼ 2

mice per genotype and 20–24 DRGs per animal. Scale bar¼ 100 mM.
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resiniferatoxin (RTX), a potent TRPV1 agonist, to
ablate TRPV1þ afferents. Previous studies have demon-
strated that RTX reliably ablates TRPV1þ afferents,
while not affecting TRPV1þ DRG cell bodies.36

Because approximately 80% of GRPþ DRG neurons
express TRPV1,16 RTX-injection should abolish most
of the GRP staining in dorsal horn. Quantitative ana-
lysis of TRPV1 staining confirmed almost complete
ablation of TRPV1þ afferents in dorsal horn of RTX-
injected mice compared to saline-injected control
(Figure 2(a)–(c)). Similarly, GRP staining within the
same section was nearly abolished in the dorsal horn
of RTX-injected mice (Figure 2(d)–(f)). Double IHC
images showed an overlap in expression of TRPV1
and GRP in control mice that is eliminated by
RTX ablation of TRPV1þ afferents (Figure 2(g)
and (h)).

Four independent groups have recently used dorsal
rhizotomy of the lumbar spinal cord to evaluate the
origin of GRPergic fibers in mice and rats and reported
conflicting results.13,16,18,25,28 Given the inconsistencies
and the importance of a complete surgery, it is import-
ant to show images of the entire section of the lumbar
dorsal horn, both ipsilateral and contralateral sides, a
gold standard in the field. It is worth noting that two
of these studies that supported the majority of GRP as
being derived from the dorsal horn did not show the
entire section of the spinal cord, making their results
difficult to evaluate and interpret.25,28 In contrast, we
and other researchers showed consistent findings in the
spinal cord of mice and rats.13,18 To further improve the
quality of immunostaining for evaluation and to see if
our previous finding could be reproduced, one person
from our lab performed unilateral rhizotomy, whereas
another person carried out double IHC studies on the
spinal cord sections. CGRP staining demonstrated
almost complete ablation of CGRPþ afferents in the
ipsilateral dorsal horn compared to contralateral
(Figure 2(i) and (j)), suggesting efficient rhizotomy.
Consistent with recent studies in mice and rats,13,18

GRP staining within the same section was also nearly
abolished (Figure 2(k) and (l)). Merged GRP/CGRP
image showed significant overlap in expression that is
lost in the ipsilateral dorsal horn (Figure 2(m)). Taken
together, the RTX-mediated TRPV1 fiber ablation and
rhizotomy results support the notion that most of GRP,
as well as TRPV1 and CGRP, in the dorsal horn is of
primary afferent origin. It cannot be excluded, though,
that small amounts of these peptides and channels in the
dorsal horn may originate from spinal cord interneurons
or from other sources such as descending projections.
For example, previous studies suggested that GRP is
expressed in neurons of the lateral parabrachial
nucleus,44 a region which has been shown to project dir-
ectly to the spinal cord dorsal horn.45

GRP is detectable in DRG, but not dorsal horn,
primary cultures

To examine if there are GRPþ neurons in the dorsal
horn, we dissected out DRGs and dorsal horn of the
spinal cord, acutely dissociated DRG and dorsal horn
neurons and cultured the neurons for GRP and NeuN
double IHC (Figure 3(a)). We found that about 3.8% (6/
157) of NeuNþ DRG neurons were GRPþ (Figure 3(b)).
However, we were unable to find any GRPþ dorsal horn
neurons (Figure 3(b)). These results suggest that GRP
protein is not expressed in dorsal horn neurons or the
expression level falls below the detectable limit.

GRP expression partially, but not completely, overlaps
with substance P in DRG neurons

Although GRP and NMB share five of the seven amino
acids in their C-terminal regions (Table 3), several pieces of
evidence indicate that the GRP antibody does not recog-
nize NMB: despite overlapping expression, NMB is also
detected in non-peptidergic neurons.40 In contrast, SP only
has homologywithGRP in the last two amino acids (Table
3), with the last one, methionine (M) shared by many
neuropeptides. Thus, it is unlikely that one amino acid
would make the GRP antibody recognize only SP even
though there is cross-reactivity. Indeed, it has been demon-
strated that GRP and SP antibodies also recognized neu-
rons singularly expressing either SP or GRP.3,18

We revisited this issue by performing double IHC on
DRG neurons from WT and Grp KO mice (Figure 4).
Both GRP (Figure 4(a)) and SP (Figure 4(c)) were
detected in the subset of WT DRG neurons. In contrast,
while GRP was absent in Grp KO mice (Figure 4(b)), SP
expression was not affected in Grp KO mice (Figure
4(d)). Merged images (Figure 4(e) and (f)) show that
about approximately 50% of GRPþ neurons are SPþ

in WT DRG. A Venn diagram further illustrates the
GRP and SP neuron overlap and percentages in WT
DRGs (Figure 4(g)). Consistent with previous stu-
dies,13,16 the percentage of GRPþ neurons was approxi-
mately 8%, whereas the percentage of SPþ neurons was
approximately 12.5% of the total.

GRPþ and SPþ terminals make contacts with GRPRþ

neurons in dorsal horn

To examine whether SPþ or GRPþ terminals make con-
nections with GRPRþ neurons in the spinal dorsal cord,
triple IHC was performed for SP, eGFP, and GRP in
GRPR-eGFP mice. Some GRPRþ neurons and densely
SPþ and GRPþ terminals were found in the superficial
part (laminae I and IIo) of the spinal dorsal horn
(Figure 5(a)–(c)). Many SPþ or GRPþ fibers could be
observed making contacts with GRPRþ neurons

8 Molecular Pain 0(0)



Figure 2. Chemical or surgical ablation of primary afferent terminals eliminates most of GRP protein in the dorsal horn. (a)–(c) Lumbar

dorsal horn IHC images of TRPV1 staining from mice injected intrathecally with saline (a) or RTX (25 ng) (b) and normalized intensities (c)

indicate near complete ablation of TRPV1 signal in RTX-treated mice. (d)–(f) Comparison of GRP staining images from saline (d) and RTX

(e) groups and intensities (f) also show almost total ablation of GRP signal in RTX-treated mice. (g, h) Merged images indicate most GRP

staining overlaps with TRPV1 in saline control (g) which is mostly absent in RTX-treated mice (h). (i, j) A single lumbar dorsal horn image of

CGRP staining from dorsal rhizotomy mice of both contralateral and ipsilateral sides of the surgery (i) and normalized intensities of each

side (j) shows that rhizotomy eliminated nearly all CGRP signal in the ipsilateral side. (k, l) GRP staining image of rhizotomy contra- and

ipsilateral dorsal horn (k) and intensities (l) indicates an almost complete ablation of GRP signal in ipsilateral side compared with

contralateral. (m) Merged image shows significant overlap in GRP and CGRP staining in contralateral side that is eliminated in ipsilateral

side following rhizotomy. Scale bar¼ 100 mM. Data are presented as mean� SEM. n¼ 3 mice per group and 10 sections per group.

Unpaired t test in (c) and (f). Paired t test in (j), and (l), ***p< 0.001.
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(Figure 5(d)–(f)), and a few SP and GRP double-labeled
terminals could be found making contacts with GRPRþ

neurons (Figure 5(f)).
To examine the colocalization of SP and GRP in the

spinal dorsal horn, double immuno-electron microscopic
(Immuno-EM) for SPandGRPwereperformed in the lum-
bar cord. Some SPþ terminals identified by the silver-en-
hanced nanogold particles enhancement are colocalized
with GRPþ terminals revealed by the immunoperoxidase
reaction products (Figure 5(g)), and some axon terminals
only express GRP (Figure 5(h)) or SP (not shown). SPþ or
GRPþ terminals formed asymmetric synapses with
GRPRþ dendritic profiles (Figure 5(i)–(k)), and more
GRPþ fibers formed synaptic connections with GRPRþ

neurons than SPþ fibers (�2:1 GRP:SP contacts with
GRPR neurons). Although a majority of GRPþ fibers in
the dorsal horn are of primary afferent origin, it cannot be

excluded that some of the GRP-GRPR and SP-GRPR
contacts in the dorsal horn may be due to GRPþ or SPþ

descending projections from the brain asmentioned earlier.

Genetic deletion of Tac1 results in reduced peptidergic
expression in spinal cord dorsal horn

The Tac1 gene encodes the propeptide that is cleaved to
generate SP and three other neuropeptides of the tachyki-
nin family.46 Solorzano et al.25 showed that GRP expres-
sion is reduced in the spinal cord of Tac1KO mice, which
was interpreted as evidence for a presumed lack of specifi-
city of the GRP antibody. Because Tac1 KO mice also
exhibited deficits in expression of other antibody immunos-
taining,47,48 we speculated that an attenuated GRP expres-
sion may reflect broader abnormalities of gene expression
in the primary afferents of Tac1 KO mice.

Figure 3. Detection of GRP in acutely dissociated DRG neurons, but not dorsal horn neurons. (a) Illustration of DRG and dorsal horn

dissection and culture process. (b) IHC of acutely dissociated DRG neurons (upper row) and spinal dorsal horn neurons (lower row) using

rabbit anti-GRP (1:1000). Scale bar, 20mm.
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To examine whether lack of SP may influence expres-
sion of other molecular markers, we performed IHC
staining in spinal dorsal horn sections from WT and
Tac1 KO littermates. As expected, SP staining was
absent in Tac1 KO dorsal horn (Figure 6(a)–(c)).
Consistent with previous results,25 GRP staining was sig-
nificantly reduced in Tac1 KO compared to WT (Figure
6(d)–(f)). Remarkably, a small reduction, yet significant,
was observed for CGRP staining (Figure 6(g)–(i)), and
NPY staining was dramatically reduced (Figure 6(j)–(l))
in Tac1 KO relative to the control. However, the non-
peptidergic IB4-binding pattern and intensity was similar
in WT and Tac1 KO dorsal horn (Figure 6(m)–(o)).

Taken together, these results suggest that Tac1 is import-
ant for either expression and/or trafficking of neuropep-
tides in peptidergic primary afferents.

Optimized methods for detection of GRP in DRG

Considerable variations of GRP immunostaining have
been observed in DRG neurons, ranging from somewhat
widespread GRP staining25–27,29 to more distinct or
restricted staining.3,13,16,18,28 One study even described
two types of GRP neurons comprising low and high
level of expression.19 We compared two different staining
methods: either mounted on slides prior to antibody
incubation,25 or sections stained floating freely in PBS,
and mounted after staining. Using the same antibody,
on-slide staining resulted in a widespread staining pat-
tern for GRP (Figure 7(a)), whereas free-floating staining
of DRG sections revealed a more distinct and specific
pattern (Figure 7(b)). These results suggest that the dis-
crepancies can be attributed to differences in IHC proto-
cols rather than insufficient antibody specificity.

Concerning Grp mRNA expression in DRG, a few
studies reported negative ISH results,25,28,30 while our
recent study showed detectable ISH signal for Grp in
WT DRG neurons,12 which is comparable to GRP
IHC staining pattern. To optimize the methods for reli-
able GrpmRNA detection, we tested different incubation
times for color development of Grp ISH signals on WT
DRG sections. Grpþ signals were barely detectable after
4 h of incubation in NBT/BCIP colorimetric substrate
(Figure 7(c), arrows), but continuing incubation to 16 h
produced specific Grpþ signals (Figure 7(d), arrow-
heads). The fact that detection of Grp signals by ISH
requires a longer incubation time for color development
than most other probes suggests that Grp transcripts are
likely present in low copy number, rendering them diffi-
cult to detect by conventional protocols.

We next performed molecular expression analyses by
RNA-seq in DRGs from adult mice. Read length was set
at 50 bases with a sequencing depth in a range of 55–60
million single end reads to allow detection of low-abun-
dance transcripts such as Grp, according to the
ENCODE Consortium’s ‘‘Standards, Guidelines and
Best Practices for RNA-seq’’ (https://genome.ucsc.edu/
ENCODE/protocols/dataStandards/ENCODE_RNA
seq_Standards_V1.0.pdf). Transcript abundance is
expressed as FPKM (Fragments Per Kilobase of tran-
script per Million fragments mapped), which provides a
length and depth normalization to permit comparisons
both within and between samples.49 In this condition, we
detected the level of Grp transcripts in WT DRGs as
0.27� 0.0033 FPKM, which is lower than the level of
Npy (1.91� 0.47 FPKM), Mrgpra3 (3.87� 0.85
FPKM), Tac1 (18.45� 2.42 FPKM), and Nmb
(48.81� 9.33 FPKM) but very close to the level of Pdyn

Figure 4. GRP expression partially, but not completely, overlaps

with Substance P in DRG neurons. (a)–(f) Double IHC of DRG

sections was performed in Grp WT and KO mice. Images of

sections stained with GRP in Grp WT (a) and Grp KO (b). Images of

sections stained with SP in Grp WT (c), and Grp KO (d). Merged

images of GRP-SP staining in Grp WT (e) and Grp KO (f). (g) Venn

diagram of GRP-SP expression overlap in DRG. Green is GRPþ-

only neurons, red is SPþ-only neurons, and yellow is GRPþ-SPþ

neurons. Scale bar¼ 100 mm. n¼ 3 mice and 10 sections per

genotype.
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(0.13� 0.059 FPKM), Hrh1 (0.20� 0.023 FPKM), and
Mrgprx1 (0.57� 0.13 FPKM) (Table 4). Thus, Grp tran-
scripts in mouse DRGs can be detected by RNA-seq.
Moreover, its expression is even lower than Npy, a gene
whose mRNA expression often falls below the threshold
of detection by conventional ISH technique.

Finally, we performed RT-PCR followed by gel elec-
trophoresis to further analyze the abundance of Grp
transcripts in intact DRGs, as Grp became detectable
only at 532 cycles (Figure 7(e)), whereas Nppb, which
encodes B-type neuropeptide and Actb were observed
after 26 and 18 cycles, respectively (Figure 7(e)). This

Figure 5. GRPþ and SPþ fibers contacts on GRPRþ neurons in the superficial spinal dorsal horn. (a)–(c) Triple immunostaining of an

eGFPþ neuron (a), GRPþ (b), and SPþ (c) fibers in the superficial spinal dorsal horn. (d) Merged image of (a) and (b) showing GRPþ fibers

(arrows and arrowhead) contact with the GFPþ GRPR neuron. (e) Merged image of (a) and (c) showing SPþ fibers (arrows and arrowhead)

contact with the GFPþ GRPR neuron. (f) Merged image of (a), (b) and (c) showing close contacts between SPþ/GRPþ colocalized fibers

(arrowhead) and the GFPþ GRPR neuronal cell body. Scale bar¼ 10 mm for (a)–(f). (g)–(l), EM images of SPþ, GRPþ, and GRPRþ ultra-

structures. (g), SPþ (arrows, silver grains) and GRPþ (DAB reaction products) labels are colocalized in the same axon terminal (Ax). (h), A

GRPþ (DAB reaction products) single labeled axon terminal (Ax). SPþ axon terminal (Ax; DAB reaction products) makes asymmetric

synaptic contacts with GRPRþ dendritic profiles (Den; silver grains) (i, j). GRPþ (k; silver grains) and GRP� (l; no positive production) axon

terminals (Ax) make asymmetric synaptic contacts with GRPRþ dendritic profiles (Den; DAB reaction products). Arrowheads indicate

postsynaptic membranes. Scale bar¼ 0.2 mm for (g)–(l).
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finding is consistent with previous studies28,30 and con-
firmed the presence of Grp mRNA in uncultured DRGs.
It also underscores the fact that sufficient PCR cycles are
required for Grp detection.

Increased numbers of Grpþ, but not Tac1þ, neurons
and upregulation of Grp mRNA levels in dry skin-
induced chronic itch DRGs

SP-NK1R signaling has been implicated in itch transmis-
sion and development of chronic itch.23,50,51 However, it
remains unclear whether Tac1/SP expression in DRG
increases in chronic itch conditions. Therefore, we used
the AEW dry skin mouse model of chronic itch model to
assess the effects of chronic itch on Tac1 mRNA

expression in DRG. Grp expression was absent in
Grp KO neurons (Figure 8(a)) demonstrating that the
probe is specific for Grp. Consistent with our previous
studies,12 the percentage of Grpþ neurons was almost
doubled in DRG from dry skin mice compared to
water-treated control (Figure 8(b)–(d)). In contrast,
the percentage of Tac1þ neurons, which was unaffected
in Grp KO (Figure 8(e)), was comparable in DRG
between dry skin and the control mice (Figure 8(f)–
(h)). Lastly, we performed RT-PCR with gel electro-
phoresis to visualize Grp and Tac1 mRNA expression
with Actb as control, which clearly showed increased
band intensities for Grp in dry skin mice, whereas Tac1
in dry skin appeared similar to control (Figure 8(i)).
qRT-PCR was also performed that showed Grp

Figure 6. Apparent reduction of peptidergic markers in dorsal horn of Tac1 gene-deleted mice. (a)–(c) Lumbar dorsal horn IHC images

of SP staining in WT (a) and Tac1 KO (b) and normalized intensities (c) show loss of SP expression. (d)–(f) IHC images of GRP staining in

WT (d) and Tac1 KO (e) with normalized intensities (f) indicate a significant reduction in GRP signal in Tac1 KO. (g)–(i) CGRP staining

images in WT (g) and Tac1 KO (h) with intensities (i) also show a small, but significant, reduction in CGRP in Tac1 KO. (j)–(l), NPY staining

images in WT (g) and Tac1 KO (h) with intensities (i) indicates a large reduction in NPY signal in Tac1 KO. (m)–(o) IB4-binding images in WT

(m) and Tac1 KO (n) with intensities (o) show no apparent differences. Scale bar¼ 100 mM. Data are presented as mean� SEM. n¼ 3 mice

per genotype and 10 sections per group. Unpaired t-test in (c), (f), (i), and (l), *p< 0.05, **p< 0.01, ***p< 0.001.
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expression was increased approximately seven fold
in DRG from dry skin mice compared to
control (Figure 8(j)). A smaller, albeit statistically sig-
nificant, approximately 1.2 fold increase was detected
for Tac1 expression in dry skin DRG by qRT-PCR
(Figure 8(k)).

Dry skin-induced chronic itch in mice increases the
numbers of GRP, but not SP, positive neurons in the
DRG

Next, double IHC was performed to examine SP and
GRP expression in DRG sections of mice with dry skin

Figure 7. Optimized methods for GRP detection in DRG. (a, b) IHC images of GRP antibody (1:1000) from DRG on-slide section (a) and

free-floating section (b). (c, d) ISH images of DRG section incubated in NBT/BCIP substrate for 4 h (c) and 16 h (d). Arrows indicate Grpþ

neurons that were barely detected at 4 h. Arrowheads indicated Grpþ neurons that were detected after incubation of 16 h but not 4 h. (e)

Gel electrophoresis of Grp (upper image), Nppb (middle image) and Actb (lower image) RT-PCR products from DRGs using cycle gradient.

For no RT sample (�RT), reverse transcriptase was not added to RNA to amplify cDNA. For water sample, no cDNA was added to

reaction. DL, DNA ladder. Scale bar¼ 100mM.

Table 4. Gene expression level in DRGs as detected by RNA-Seq.
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itch. Compared to water-treated control (Figure 9(a)),
the percentage of GRPþ neurons in DRG was nearly
doubled in dry skin-induced chronic itch (Figure 9(b)
and (c)), consistent with the results from Grp ISH.
Also consistent with Tac1 ISH, the percentage of SPþ

neurons was similar in dry skin-induced chronic itch
DRG compared to control (Figure 9(d)–(f)). Merged
images (Figure 9(g) and (h)) indicate no significant dif-
ference in the percentage of double-positive neurons in
dry skin mice compared to control (Figure 9(i)) suggest-
ing ectopic expression of GRP in non-SP DRG neurons
in chronic itch. To further confirm the immunostaining
results, Western blot of DRG protein extracts was per-
formed using the GRP antibody (Figure 9(j) and (k)).
Western blot of dry skin DRG protein samples indicated
an apparent upregulation of GRP levels compared to
control (Figure 9(j)), and quantitative analysis showed
significant increase of GRP in dry skin DRGs (Figure
9(k)). Taken together, these data confirm previous results
that GRP protein is upregulated in chronic itch,12,13

whereas SP is not increased in chronic itch. There are

conflicting reports of SP expression related to chronic
itch. Some studies reported increases in SP skin fibers
and mast cells in human atopic dermatitis (AD) skin
and mouse AD models,51–53 whereas other studies
found reduced SP in AD skin.54,55 However, to our
knowledge, no other studies have investigated SP expres-
sion in DRG in dry skin-induced chronic itch conditions.
Our findings suggest that in dry skin-induced chronic
itch, SP expression in DRG is largely unaffected.

Neither Grp nor Tac1 expression are increased in
dorsal horn of mice with dry skin-induced chronic itch

While it is clear that Grp expression in DRG is upregu-
lated during chronic itch, the effect of chronic itch on
Grp expression in the dorsal horn has not be investi-
gated. This issue is important because, assuming Grpþ

dorsal horn neurons are important for chronic itch, one
would anticipate an upregulation of Grp mRNA in the
spinal cord of mice with dry skin itch. To examine this,
we performed Grp and Tac1 ISH and found that the

Figure 8. Increased Grpþ, but not Tac1þ, neurons and upregulation of Grp mRNA levels in Dry skin-induced chronic itch DRGs. (a)–(d)

Cervical DRG images of Grp ISH. Grp ISH is absent in Grp KO (a). Comparison of control (b) and dry skin (c) DRG indicates the percentage

of Grpþ neurons is nearly doubled in dry skin mice (d). (e)–(h) Cervical DRG images of Tac1 ISH. Tac1 ISH is unaffected in Grp KO (e).

Comparison of Tac1 ISH from control (f) and dry skin (g) shows no significant difference in percentage of Tac1þ neurons in DRG (h). (i) Gel

electrophoresis images of RT-PCR products also shows an increase of Grp mRNA in dry skin DRG samples compared to control and,

whereas Tac1 mRNA increase in dry skin DRG is less apparent and Actb levels appear similar between the two groups. No products were

detected in H2O and no-RT (�RT) samples, whereas RT samples had a single band detected for each mRNA. DL, DNA ladder. (j, k)

Quantitative RT-PCR results from control and dry skin DRG show a approximately 7 fold increase in Grp mRNA levels (j) and a

approximately 1.2 fold increase in Tac1 mRNA levels (k) in dry skin. Scale bar¼ 100 mM. Data are presented as mean� SEM. n¼ 3 mice per

group and 10–12 DRG sections per group in. n¼ 4–6 mice per group and 20–24 DRGs per animal in i-k. Unpaired t-test in d, h, j, and k. *

p< 0.05, ** p< 0.01, *** p< 0.001.
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number of Grpþ neurons in both cervical and thoracic
dorsal horn was similar in dry skin mice and controls
(Figure 10(a)–(f)). Tac1þ neuron numbers also appeared
unchanged in both cervical and thoracic dorsal horn
from dry skin mice compared to controls
(Figure 10(g)–(l)). qRT-PCR of cervico-thoracic spinal
cord cDNA also revealed no significant differences in
Grp (Figure 10(m)) or Tac1 (Figure 10(n)) expression
in dry skin mice compared to control.

Discussion

The specificity of the GRP antibody and cross-reactivity
with SP

In this study, we show that different IHC protocols could
have major effects on the staining outcome even though
the same GRP antibody was used. Regardless of the
method used, optimization of the procedure is a pre-
requisite for performing specific GRP immunostaining,

Figure 9. Dry skin-induced chronic itch increases GRPþ, but not SPþ, neurons in DRG. (a)–(c) Cervical DRG images of GRP staining.

Comparison of GRP staining from water-treated control (a) and AEW-treated dry skin mice (b) shows the percentage of GRPþ neurons in

DRG is nearly doubled in dry skin mice (c). (d)–(f) DRG images of SP staining. Comparison of SP staining from water-treated control (d)

and AEW-treated mice (e) shows no significant difference in percentage of SPþ neurons in DRG (f). (g)–(i) Merged images of GRP and SP

staining. Image from control (g) and dry skin (h) indicates some overlap in GRP and SP expression in DRG, yet the percentage of Doubleþ

neurons is not increased in DRG from dry skin mice (i). (j) (k) Western blot (j) and quantified data (k) showed that GRP protein level was

significantly upregulated (p¼ 0.0066) in DRGs of dry skin mice comparing to that of control mice. Scale bar¼ 100mM. n¼ 3 mice per

group and 10–12 DRG sections per mouse in (a)–(i). n¼ 4 mice per group and 20–24 DRGs per animal in (j) (k). **p< 0.01, ***p< 0.001,

unpaired t test in (c), (f), (i), and (k).
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as many pitfalls such as perfusion and the quality of
tissues may influence the outcome of IHC.56 Although
the GRP antibody is specific, it remains one of the most
difficult antibodies to work with in our experience. This
is also true for Grpr ISH, as many investigators are
unable to detect Grpr in the spinal cord. Thus, if distinct
GRP immunostaining cannot be achieved in DRG, it
would be difficult to interpret the results obtained from
spinal cord immunostaining or double IHC staining
(GRP vs. SP).

Our double IHC using GRP and SP antibodies is con-
sistent with studies in rats,18 as well as supported by EM
analysis revealing contacts not only between SPþ fibers
but also GRP/SP fibers and GRPR neurons. Although
SPergic fibers form contacts with GRPR neurons, it is
unlikely for SP to communicate with GRPR neurons
because they appear to lack NK1 receptor.16

Interestingly, capsaicin treatment could induce SP, but
not GRP, release from spinal cord slices.57 Conversely, it
is conceivable that GRP is selectively released from SP/

Figure 10. Grpþ and Tac1þ neurons, as well as mRNA levels, in the spinal cord are not increased in dry skin-induced chronic itch mice.

(a)–(c) Cervical dorsal horn images of Grp ISH. Comparison of Grp ISH from water-treated control (a) and AEW-treated dry skin (b) shows

no significant difference in the number of Grpþ neurons in cervical region (c). (d)–(f) Thoracic dorsal horn images of Grp ISH. Comparison

of Grp ISH from control (d) and dry skin (e) also shows no significant difference in the number of Grpþ neurons in thoracic region (f). (g)–(i)

Cervical dorsal horn images of Tac1 ISH. Comparison of Tac1 ISH from control (g) and dry skin (h) shows no significant difference in the

number of Tac1þ neurons in cervical region (i). (j)–(l) Thoracic dorsal horn images of Tac1 ISH. Comparison of Tac1 ISH from control (j)

and dry skin (k) also shows no significant difference in the number of Tac1þ neurons in thoracic region (l). (m) and (n) Quantitative RT-PCR

results from control and dry skin cervico-thoracic spinal cord show no significant differences in Grp mRNA levels (m) or Tac1 mRNA levels

(n). Scale bar¼ 100mM. n¼ 3 mice per group and 10–12 sections per mouse in (a)–(l). n¼ 5 mice per group in (m) and (n). Unpaired t test

in (c), (f), (i), (l), (m), and (n).
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GRPergic fibers, but SP does not, in response to prur-
itogenic stimuli. It is also possible that SP in GRPergic
fibers is selectively used to relay itch via NK1R
neurons.23

Grp mRNA and GRP protein expression in the
spinal cord

Of four recent independent investigations of the origin of
GRP in the spinal cord using the dorsal rhizotomy, two
studies, displaying both ipsilateral and contralateral side
of the spinal cord in their entirety in one image, pro-
duced highly consistent results.13,18 The other two,
which argue for endogenous expression of GRP in the
spinal cord, in fact were contradictory in respect to their
GRP immunostaining in DRGs.25,28 As aforementioned,
a reasonable explanation for inconsistencies is likely due
to the experimental protocols used rather than antibody
specificity. More recently, we found that specific GRP
immunostaining could be obtained using fresh DRG
tissue without perfusion (data not shown). Notably, the
finding that detection of Grp mRNA is refractory to ISH
is reminiscent of the absence of Npy mRNA signal as
examined by ISH in DRG.58

It has been known that not all mRNAs are translated
into protein and a gene transcript could be translated
into protein in one tissue but not the other. For example,
although temporal and spatial expression pattern of Grp
mRNA strikingly resembles that of GRP protein in lung
tissue, some Grpþ tissues were negative for GRP immu-
nostaining.59–63 Moreover, our unpublished data also
indicate that in the brain, not all Grp mRNA-expressing
areas are positive for GRP immunostaining. However,
we are unable to exclude with certainty that GRP, upon
translated by dorsal horn neurons, is rapidly degraded or
GRP intrinsic to the dorsal horn falls below the thresh-
old of IHC method we used. Such a possibility, however,
is still compatible with the conclusion that a majority of
GRPergic fibers in the spinal cord are of peripheral
origin. Moreover, the present study further supports
the notion the remaining GRPþ fibers in the dorsal
horn after the dorsal rhizotomy are perhaps of descend-
ing origin, because of the absence of GRPþ immunos-
taining in dissociated dorsal horn neuronal culture.

Several studies have used the Grp-eGFP line which
lack eGFP in DRGs as one of the evidence to argue
that GRP protein is abundantly expressed in the dorsal
horn but not in DRGs.25,30,64 As we noted previously,12

eGFP could be expressed even in knock-out mice with an
eGFP knock-in. Conversely, eGFP in transgenic or
knock-in mice may not be expressed in the regions
where endogenous mRNA or protein of the gene of
interest is present. While Grp-eGFP mice largely recap-
itulate endogenous Grp mRNA expression in the spinal
cord, it is worth noting that expression of eGFP reporter

protein only indicates eGFP mRNA transcription
(thereby a surrogate for Grp mRNA), but the translation
of the eGFP protein from eGFP mRNA cannot be used
for an indication of the translation of GFP protein from
GrpmRNA, because endogenous GrpmRNA, versus the
eGFP mRNA, may be subject to distinct translational
control.

Detection of Grp mRNA by RT-PCR, ISH, and RNA-seq

The present study indicates that the copy number of the
Grp transcript is much lower than Nmb, Tac1, and
Mrgpra3 (Table 4). Thus, sufficient PCR cycles and incu-
bation times for color development by ISH are also cru-
cial for signal detection. Although both Grp and
Mrgpra3 are expressed in small percentage of DRGs,
the level of Grp expression is approximately 90% lower
than that of Mrgpra3 according to RNA-Seq. This
explains why it is easier to detect Mrgpra3 than Grp.
Although RNA-seq has been widely used for high-
throughput profiling of gene expression, the technique
could be limited by its inability to detect rare or low
abundance of gene transcripts.65,66 A key challenge is
to increase the cell number rather than deeper sequen-
cing.67 For example, a single-cell RNA-seq has recently
been applied to DRG neurons, revealing remarkable
detailed transcriptome in a single-cell resolution. The
study, however, failed to detect Grp mRNA based on
average of 50 individual cells.32 Given the low copy
number of Grp transcripts expressed in very small per-
centage of DRGs, the reads for Grp mRNA could be
zero or fall into the baseline noise if not enough cells
are sampled. Other system errors which are inherently
associated with RNA-seq may also skew the value for
Grp mRNA.68 To increase mRNA capture efficiency and
overcome the limitation of single cells that can be
sequenced, a droplet platform has been recently devel-
oped, enabling deep sequencing of a large number of
cells instead of dozens or hundreds at a time.69 In this
regard, one may use Grp as a positive control to evaluate
the sensitivity and coverage of the gene expression profil-
ing with rare and low-copy number by RNA-seq.

The role of Grp mRNA vs. protein

The debate on the expression of GRP raises several inter-
esting issues that are worth considering here. Concerning
the specificity of the GRP antibody, a review of recent
literature indicates that several groups were able to
obtain specific GRP immunostaining in DRGs and
their results are highly consistent (Table 1). Despite the
demonstrated specificity of the GRP antibody, detection
of distinct GRP immunostaining in subsets of DRGs
remains challenging, as optimization of the immunos-
taining condition could be time-consuming. Some
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researchers may be unwilling to spend weeks or even
months on this. By contrast, it would be much easier
to obtain widespread immunostaining using the GRP
antibody if the condition is not optimized. Based on
our own experience, detection of Grp positive signaling
in DRGs by ISH is even more daunting, simply because
of the low copies of Grp mRNA. This raises interesting
questions that have puzzled some investigators. First,
why is Grp mRNA expressed in the dorsal spinal cord
if it is physiologically unimportant? One possibility is
that spinal Grp may reflect an ontogenetic/evolutionary
relic. Since the neural crest that gives rise to DRGs
emerges from the dorsal neural tube,70–72 many peptide
genes in DRGs might have co-opted from the dorsal
spinal cord and diverged to adopt novel functions,
whereas their roles in the spinal cord became diminished.
This enables the rapid and simple transduction of mod-
ality-specific information from the periphery to the
spinal cord. Similarly, many postsynaptic receptors in
the spinal cord crucial for relaying information encoded
by primary afferents-released peptides may still reside in
DRG, but they may have minimal functionality. Second,
why is Grp/Grpr mRNA expression so low relative to
some other genes if they are important itch genes? In
DRGs, existing data do not suggest a positive correlation
between abundance of a peptide and its physiological
importance. For example, Nppb is more abundantly
expressed than Grp in DRGs, but at least 10 times
higher amount of BNP is required to evoke scratching
behavior similar to that by GRP, even though the time
course of the slow onset of scratching behavior does not
support a direct activation of NPRA by BNP in the
spinal cord.12,17 From an evolutionary perspective,
GRP may have been adopted to alert the body of prur-
itogenic stimuli. Given the relatively high affinity of GRP
binding to its receptor, a transient and rapid release of
GRP protein stored at the terminals of primary afferents
should be sufficient to activate GRPR to evoke a few
bouts of scratches, sub serving the warning mechanism.
By contrast, a persistent and large amount of GRP
release may trigger vicious scratch-itch cycles, resulting
in a pathological itch condition.13,40 As such, there is a
need to minimize Grp mRNA in DRGs until GRP at the
terminal is largely depleted. Similar to Grp, NPY peptide
is present in the nerve terminals, but the level of its
mRNA expression is very low in DRGs according to
RNA-Seq, limiting its detection by ISH.58 Thus, the
level of Grp mRNA cannot be equated to that of GRP
protein. One can envision that upon acute pruritogenic
stimuli, GRP protein at the terminals could be rapidly
released, while Grp mRNA translation may proceed
slowly to maintain the level of GRP protein synthesis
at a normal physiological state.

In summary, using a combination of molecular, ana-
tomic, genetic, ISH, IHC, Western blot, RNA-seq, and

ultrastructure analysis approaches, we demonstrate the
presence of GRP in primary afferents as well as lack of
evidence for GRP protein synthesis intrinsic to dorsal
horn neurons. The present study indicates that the dis-
agreement on GRP expression in DRGs and the anti-
body specificity is likely due to different IHC protocols
used as well as low abundance of Grp mRNA in DRGs.
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