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 Abstract: P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding 
ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, 
Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the for-
mation of large membrane pores permeable for organic cations of up to 900 Da molecular size. The-
se pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at 
peripheral macrophages and microglial cells, the resident macrophages of the CNS. The co-
activation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane 
of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the pro-
inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the 
microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic 
glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify var-
ious neurodegenerative illnesses, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lat-
eral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such 
as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the 
prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic 
deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain 
penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the availa-
ble evidence still needs to be extended and validated by further clinical data. 
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1. INTRODUCTION 

Psychiatric diseases are typically characterized by a set of 
clinically pleomorphic symptoms with manifestations of 
emotional, cognitive, visceral, and behavioral limitations, 
severely restricting the life quality of afflicted patients. With 
the high rate of the accompanying disability/death and, in 
most cases, with their chronic occurrence, they cause im-
mense socioeconomic burden [1]. Generally, most mental 
disorders are considered to be a result of the combination of 
different factors and individual susceptibility. However, their 
pathophysiology is thought to potentially share a related 
mechanism [2, 3]. Over the past decades, accumulating and 
compelling evidence indicates that immune cells in the cen-
tral nervous system (CNS), such as microglia, and their  
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interplay with astrocytes and neurons might have a pivotal 
role in the pathophysiology of mood disorders, thereby 
emerging as new targets for therapeutics [4-7]. It has been 
proposed that depression is attributed to a purine-based con-
trol of glia-neuron bidirectional communication that is asso-
ciated with the up-regulation of microglial P2X7 receptors 
(Rs), astrocytic hypofunction, and decreased ATP release 
[8]. An increased level of peripheral inflammatory markers 
in people with major depressive disorder (MDD), and many 
cases in which patients with inflammatory and autoimmune 
diseases experience depression, point to a close association 
between these illnesses [9-11]. 

  In this review, we provide a summary of the involve-
ment of P2X7Rs in the pathophysiology of several primary 
psychiatric diseases and underline the importance of neuroin-
flammation in MDD, bipolar disorder, schizophrenia, and 
autism spectrum disorder (ASD) (Fig. 1). We also discuss 
the recent progress in investigating blood brain barrier-
permeable P2X7R antagonists, applicable as possible thera-
peutic strategies for mental illnesses. 

1875-6190/22 $65.00+.00 © 2022  Bentham Science Publishers

http://crossmark.crossref.org/dialog/?doi=10.2174/1570159X20666220302152400&domain=pdf


P2X7 Receptors and Psychiatric Disorders Current Neuropharmacology, 2022, Vol. 20, No. 11    2143 

 

Fig. (1). A simplified scheme of P2X7R functions in microglia, astrocytes, and probably also neurons to induce neuroinflammation as a caus-
ative factor of major depression, bipolar disorder, schizophrenia, and autism spectrum disorder (ASD). P2X7Rs are none-selective cationic 
channels activated by high concentrations of ATP to allow the transmembrane fluxes of Na+, Ca2+, and K+. This receptor is, in addition, able 
to become permeable to large molecules of up to 900 Da on long-lasting or repetitive occupation by ATP. Especially in microglia, P2X7Rs 
stimulate the P2X7R/NLRP3 inflammasome/caspase-1/interleukin 1β (IL-1β)-pathway after co-activation of toll-like receptor 4 (TLR4) with 
lipopolysaccharide. The release of the pro-inflammatory cytokines, IL-1β, IL-18, and tumor necrosis factor-α (TNF-α), leads to neuroinflam-
mation. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
 
2. P2X7RS: CRITICAL PLAYERS IN NEURO-

INFLAMMATION 

P2XRs are ATP-gated membrane channels, built up of 
three subunits (a linear peptide with a large extracellular 
loop, two transmembrane regions, and N- and C-terminal 
ends) permeable to the small cations Na+, Ca2+, and K+ [12-
14]. P2X7Rs have three distinguishing characteristics in 
comparison with the other members of this family [15]. (1) 
They are activated by concentrations of ATP in the high mi-
cromolar/millimolar range in contrast to other P2XRs, which 
are activated already by lower micromolar ATP; (2) Long-
lasting or repetitive stimulation by ATP causes the formation 
of large pores, thereby allowing the transmembrane passage 
of molecules with the size of up to 900 Da. These pores are 
believed to play a direct role in apoptosis/pyroptosis and 
inflammation [16-18]; (3) P2X7Rs have a long C-terminus, 
which regulates receptor function, including signaling path-
ways, cellular localization, protein-protein interactions, and 
post-translational modification [18, 19].  

It is noteworthy that originally it was assumed that the 
cationic channel of P2X7Rs exhibits prominent dilation on 
long-lasting contact with ATP. This assumption was based 
on the gradual shift of the equilibrium potential (Vrev) as 
measured with the whole-cell patch-clamp technique when 
Na+ in the extracellular medium was substituted with the 
otherwise impermeable large cation NMDG+ [20]. However, 
recently time-dependent alterations in the concentration of 
intracellular ions rather than channel dilation have been 
found to be the reason for this phenomenon [21]. In support 
of such a mode of action, the single-channel current ampli-
tudes and permeation characteristics remain constant during 
the supposed channel dilation [22]. Participation of associat-
ed channel-forming proteins also has implications (e.g., pan-
nexin-1; [23]), but convincing evidence now suggests that 

P2X7Rs by themselves are endowed with the ability to form 
a large conductance pore [24, 25]. Pannexins are a family of 
vertebrate proteins identified by their homology to the inver-
tebrate innexins [26]. While innexins are responsible for 
forming gap junctions in invertebrates, the pannexins have 
been shown to predominantly exist as large transmembrane 
channels connecting the intracellular and extracellular space, 
allowing the passage of ions and small molecules between 
these two compartments. 

P2X7Rs have an abundant expression in microglia, the 
resident macrophages of the CNS, establishing them as ma-
jor drivers of neuroinflammation, similar to their inflamma-
tory function in peripheral macrophages [27]. P2X7Rs pro-
mote the release of proinflammatory cytokines from micro-
glia after a multistep activation process by other P2Y/P2XRs 
and the induction of microgliosis following an insult to the 
CNS [17, 28].  

The developmental origin of microglia has been the sub-
ject of a long-standing debate, which reached an end a cou-
ple of years ago with the recognition that in spite of their 
similarity to peripheral macrophages, these cells are of dif-
ferent genetic origins. Macrophages are continuously pro-
duced in the bone marrow during the post-natal stage, 
whereas microglia are derived from yolk-sac progenitors 
migrating into the CNS; this migration starts at embryonic 
day 8.5 and continues until the blood-brain barrier is formed 
[29]. Moreover, lineage-specific genes define the microglial 
transcriptional network and distinguish it from that of tissue-
resident macrophages in other organs of the body (Kupffer 
cells of the liver, marginal zone macrophages of the spleen, 
alveolar macrophages of the lung) [30]. 

A massive release of ATP caused by immune cell activa-
tion and tissue damage effectively stimulates inflammation. 
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Activated P2X7Rs further expand the effects of pro-
inflammatory agents via promoting further ATP release [31]. 
In addition to the already mentioned triggering of ion fluxes, 
the outstanding contribution of P2X7Rs is to promote the 
release of pro-inflammatory cytokines, such as interleukin-
1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) from 
microglia and dendritic cells of diverse species [32-34]. 
P2X7Rs also promote the expression of several chemokines 
(e.g., chemokine [C-X-C motif] ligand 2; CXCL2) and mon-
ocyte chemoattractant protein 1 (MCP-1) in astrocytes and 
microglia [32, 35, 36]. Moreover, the P2X7R efficiently ac-
tivates various nuclear factors, such as the nuclear factor of 
activated T cells 1 (NFATc1) and the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) [37].  

Previous experiments suggested that extracellular ATP is 
a powerful driver for the release of mature IL-1β from mac-
rophages; the P2X7R was later identified to mediate this 
effect [38-40]. A rapid fall in the intracellular K+ concentra-
tion due to the opening of the P2X7R-channel and the result-
ing outward flux of K+ [41, 42] is the immediate stimulus for 
the association and subsequent activation of the nucleotide-
binding, leucine-rich repeat, pyrin domain containing 3 
(NLRP3) inflammasome [43, 44]. The NLRP3 inflam-
masome promotes caspase-1 maturation and activation via 
enzymatic degradation of the precursor pro-caspase-1 [45-
47]. Protein-protein interaction has been reported to occur 
between the P2X7R and the inflammasome scaffold proteins 
NLRP2 and NLRP3. The generation of the NLRP2/P2X7R 
protein complex necessitates interaction with astrocytic pan-
nexin-1; this has been reported to occur at restricted sub-
plasma membrane sites in microglia [48].  

Production of IL-1β represents a multistep process in-
volving synthesis of the immature pro-IL-1β, which is then 
enzymatically cleaved to mature IL-1β by caspase-1 and is 
finally released into the extracellular space [49]. The stimu-
lation of Toll-like receptor 4 (TLR4) by lipopolysaccharide 
(LPS) activates nuclear factor NF-κB, which initiates the 
production of the inactive precursor molecule pro-IL-1β. 
Pro-IL-1β is eventually degraded to the mature IL-1β. The 
conversion of the 31 kDa precursor to the bioactive 17 kDa 
protein requires immediate cleavage by caspase-1 in order to 
prevent the rapid decomposition of pro-IL-1β via the pro-
teasome [50]. 

In conclusion, all the above observations indicate that the 
release of IL-1β occurs by the cooperation of the following 
two pattern recognition receptors: (1) TLR4 stereotypically 
detects pathogen-associated molecules (PAMPs), such as 
lipopolysaccharide, which is a constituent of the cell wall of 
gram-negative bacteria, and (2) P2X7R, which detects dan-
ger-associated molecular patterns (DAMPs), such as ATP 
released under inflammatory conditions from all types of 
cells, including immunocytes. TLR4 leads to the accumula-
tion of cytoplasmic pro-IL-1β, and P2X7R promotes in-
flammasome-mediated caspase-1 activation [51]. At the 
meeting point of these two pathways, active caspase-1 de-
grades pro-IL-1β and produces the pro-inflammatory IL-1β.  

The P2X7R/NLRP3 axis and inflammatory caspases are 
also associated with a highly inflammatory form of a lytic 
programmed cell death termed pyroptosis [27, 52, 53]; the 
involvement of caspase-1 and caspase-11 was reported for 

mice and the involvement of caspase-1, caspase-4, and 
caspase-5 for humans in this cell death reaction [54, 55]. 
During pyroptosis, increased cellular swelling and plasma 
membrane permeability occur, and at the same time, IL-1β 
and IL-18 are secreted, resulting in the promotion of in-
flammation [56]. Recent evidence identified a pivotal role of 
P2X7Rs in the sequence of events downhill to non-canonical 
inflammasome activation since the maturation of caspase-11 
caused ATP to release via the cleavage of pannexin-1 chan-
nels that finally mediated autocrine/paracrine P2X7R activa-
tion and therefore pyroptosis [57]. 

3. P2X7RS ARE POTENTIAL TARGETS FOR THE 
THERAPY OF PSYCHIATRIC ILLNESSES   

Recent evidence on the bidirectional relationship between 
psychiatric disorders and purine-based neuroinflammation is 
opening new avenues for investigating the role of stress [58], 
which is considered to be the main environmental trigger of 
many psychiatric illnesses [59]. P2X7Rs arguably have a 
crucial role in stressful situations, which are known to con-
tribute to MDD, bipolar disorder, and probably also schizo-
phrenia and autism spectrum disorder in humans.  

Published data suggest that immune cells in the periphery 
and CNS are critically involved in the pathophysiology of 
mood disorders [60]. In the CNS, owing to the intact blood-
brain barrier and blood-cerebrospinal fluid barrier, peripheral 
immune cells have only restricted access to the brain; they 
can, however, penetrate the CNS, causing neuroinflamma-
tion due to injury or infection, thus leading to the breakdown 
of the two mentioned barriers. CNS cells, especially the glial 
cells (microglia and astrocytes), express membrane receptors 
and intracellular partners that occupy key positions in the 
neuroimmune system. A rapidly expanding scientific litera-
ture suggests that the activation of P2X7Rs followed by that 
of NLRP3 induces the release of the proinflammatory cyto-
kines, IL-1β, IL-18, and IL-33 [27, 61, 62]. Especially IL-1β 
release in the CNS leads eventually to neuroinflammation, 
which is one major contributor of neuropsychiatric disorders 
[7, 27, 63, 64], such as major depression [10], bipolar disor-
der, and schizophrenia [65, 66].  

Overwhelming evidence supports a crucial role of the 
P2X7R-triggered inflammatory pathway in the development 
of psychiatric disorders. Therefore, the pharmacological 
blockade of this receptor has been expected to improve such 
diseases [13, 67]. To date, no specific agonist for the P2X7R 
has been described; usually, ATP itself or the more potent 
but also non-selective dibenzoyl-ATP (Bz-ATP) is used for 
experimental purposes [15]. By contrast, a great number of 
P2X7R antagonistic substances have been developed as 
pharmacological tools and possible therapeutics for inflam-
matory diseases [49]. They are broadly classified into two 
categories. The first group is represented by suramin or su-
ramin-like compounds, ATP derivatives (trinitrophenyl-
ATP, periodate-oxidized ATP), tetrazole derivatives (A-
438079, A-839977), and cyanoguanidine derivatives (A-
740003, A-804598) [68]. Substances from the first group can 
be only centrally applied, while the second group is also pe-
ripherally applicable due to its considerable blood-brain bar-
rier permeability. This one is represented by a class of syn-
thetic negative allosteric modulators [49], which bind to the 
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brain P2X7R in a dose-dependent manner with a favorable 
brain/plasma ratio and suppress IL-1β release [8, 62, 69]. 
JNJ-54175446 is a high-affinity P2X7R antagonist that dis-
plays pharmacological activities at recombinant human, rat, 
mouse, macaque, and dog P2X7Rs, and blocks P2X7R-
dependent IL-1β release in humans. JNJ-54175446 and JNJ-
55308942 show dose-dependent brain P2X7R occupancy 
and low blood plasma binding [69, 70].  

In addition to small chemical molecules, nanobodies 
have also been developed for the functional exclusion of 
P2X7Rs [71, 72]. They are derived from heavy chain anti-
bodies that naturally occur in camelids and display a propen-
sity to bind functional epitopes not accessible to convention-
al antibodies. It was reported that an anti-mouse P2X7R 
nanobody (Alb8) with antagonistic properties improved both 
allergic contact dermatitis and experimental glomerulone-
phritis in mice [73, 74]. Poor permeability of these nanobod-
ies due to the blood-brain barrier hinders a peripheral appli-
cation to treat central disorders. 

The experimental evidence discussed above strongly 
suggests that brain permeable P2X7R antagonists are possi-
ble therapeutics for major depression and bipolar disorder 
[75-77]. In 2019, Janssen launched a randomized, placebo-
controlled, double-blind, multicenter clinical trial of blood-
brain-barrier permeable P2X7R antagonist JNJ-54175446 
with the participation of 142 subjects (https://clinicaltrials. 
gov/ ct2/ show/NCT04116606; [78]. This trial has been car-
ried out in 5 centers of the U.K. by applying 50 mg/kg JNJ-
54175446 or placebo daily for 8 weeks and evaluating the 
success of the treatment on a clinical depression scale. Pa-
tients with major depression have been recruited based on 
their incomplete response to monoaminergic antidepressant 
drugs, and elevated CRP levels in the blood, indicating an 
inflammatory component of their disease. The estimated 
study completion date is June 30, 2022. In the meantime, it 
was reported that JNJ-54175446 (50-600 mg) exhibited a 
dose-dependent plasma exposure without any serious ad-
verse events in study participants [79]. The passive brain 
penetration of the drug was also confirmed. Another multiple 
ascending dose trial in a range of 50-450 mg showed that 
JNJ-54175446 was well tolerated by participants, and at dos-
es higher than 100 mg, the drug attenuated dexamphetamine-
induced increase in locomotion as measured by saccadic 
reaction time, saccadic peak velocity, and finger tapping 
[80]. Thus, presently the available data are encouraging, but 
we have to wait for more clinical evidence. It is noteworthy 
that Pfizer, which reduced most of its neuroscience research 
in 2017, has also been investigating the area of major depres-
sion and P2X7R antagonists through its venture capital arm. 
It recently funded small neurology-focused biotech compa-
nies, including MindImmune, which also has a P2X7R inhib-
itor in its pipeline [78]. 

4. MAJOR DEPRESSION 

The mood disorder MDD is characterized by extreme 
sadness, depressed mood, and loss of interest that persists at 
least for 2 weeks and interferes with the individuals’ social 
functioning [67, 81]. A complex interacting network of rele-
vant brain structures has been identified, which consists of 
neuronal circuitries causally related to depressive-like behav-

ior [82, 83]. As most relevant structures, the medial prefron-
tal cortex, hippocampus, anterior cingulate cortex, amygdala, 
nucleus accumbens, ventral tegmental area, lateral habenula, 
and raphe nucleus emerge, with the prefrontal cortex and 
hippocampus being especially important.  

Linkage studies suggested that variations in chromosome 
12q24.31 containing the candidate gene for the P2X7R 
(P2RX7) may be associated with MDD [16, 84, 85]. It has 
been suggested that the nonsynonymous single-nucleotide 
polymorphism rs2230912 coding for Gln460Arg-P2X7R 
indicates a predisposition for MDD. However, in the mean-
time, numerous clinical data failed to confirm this assump-
tion [86, 87], and the Psychiatric Genomic Consortium de-
nied the P2RX7 gene as a genetic risk factor for mood disor-
ders in large-scale genome-wide association studies [88]. 

Nonetheless, the final verdict in this issue is probably 
still pending. When various P2RX7 single-nucleotide poly-
morphisms were investigated by electrophysiology/dye up-
take studies either in native cells or HEK293 cells transfect-
ed with the respective plasmids, several gain-of-function or 
loss-of-function allelic mutations were identified [89-91]. 
Surprisingly the ATP-induced inward current was the same 
through the wild-type receptor and the Gln460Arg polymor-
phic receptor transfected into HEK293 cells [90]. However, 
in accordance with the assumed role of this polymorphism in 
MDD, co-expression of the wild-type P2X7R with the 
Gln460Arg-P2X7R inhibited calcium influx and current re-
sponse to ATP [92]. Similarly, conditional humanized mice 
co-expressing both P2X7R variants showed alterations in 
their sleep quality, resembling signs of a prodromal MDD 
state [93].  

As an important regulator of neuroinflammation in the 
CNS, P2X7Rs are highly expressed in microglia and have 
attracted increasing therapeutic interest in the field of mood 
disorders [61, 77, 94]. In addition to microglia, P2X7Rs are 
also expressed in astrocytes and oligodendrocytes, while 
their presence in neurons is still a matter of debate [95, 96]. 
Even though the P2X7R expresses abundantly in central 
immunocytes, it is usually “silent” under normal physiologi-
cal conditions unless the concentration of ATP reaches high 
micromolar/millimolar levels to activate the ion channel to-
wards promoting the release of the proinflammatory cyto-
kines IL-1β and IL-18 [61, 97]. Then, IL-1β induces the se-
cretion of corticotropin-releasing hormone in the hypothala-
mus and the consecutive production of ACTH/glucocorti- 
coids in the hypophysis and adrenal cortex, respectively, 
resulting in mood disorders. In fact, acute restraint stress was 
found to rapidly increase the levels of extracellular ATP, as 
well as that of the inflammatory cytokine IL-1β, and the ac-
tive form of the NLRP3 inflammasome in the hippocampus 
of rodents [98]. Intraperitoneal administration of the P2X7R 
antagonist A-804598 fully inhibited these effects. Moreover, 
A-804598 reversed the unexpected chronic mild stress 
(UCMS)-induced anhedonic and anxiety behaviors, meas-
ured in the sucrose preference test and elevated plus maze, 
respectively; furthermore, deletion of the Nlrp3 gene coding 
for NLRP3 rendered mice resistant to the development of 
depressive-like behaviors caused by UCMS.  

In support of the inflammatory origin of MDD, there is a 
high degree of comorbidity of MDD with systemic inflam-



2146    Current Neuropharmacology, 2022, Vol. 20, No. 11 Zhang et al. 

matory diseases, including diabetes, cancer, stroke, chronic 
pain, migraine, and rheumatoid arthritis [99-103]. On the 
other hand, psychological stress can increase peripheral in-
flammation in humans, including elevated levels of IL-1β in 
the blood of patients with MDD [104]. Hence, from a per-
spective of drug discovery, the P2X7R is an ideal potential 
therapeutic target for neuroinflammatory disorders of the 
CNS, including neuropsychiatric diseases [43, 105] (see also 
Section 8). 

Both pharmacological and genetic inhibition of P2X7Rs 
prevented the development of depressive-like behavior in 
animal models, supporting the role of P2X7R participation in 
depression (Table 1). P2RX7-/- mice exhibited an antidepres-
sant-like profile in tail suspension test (TST) and forced 
swimming test (FST); this effect was not accompanied by 
changes in spontaneous locomotor activity [106]. TST and 
FST induce learned helplessness in rodents; they stop trying 
to escape when suspended on their tails or stop swimming 
when having been put into a beaker filled with water. The 
duration of immobility in these test systems is a measure of 
the depressive-like state. In P2X7R KO animals, decreased 
behavioral despair in FST, reduced immobility in TST, and 
attenuated amphetamine-induced hyperactivity were detect-
ed, indicating an antidepressant and antimania phenotype 
[107-109]. In partial agreement with these findings, another 
author observed equivalent levels of immobility in P2X7R 
knockout and wild-type mice on the first exposure to forced 
swimming, but much greater immobility in the wild-type 
animals on second and third exposures, in spite of no effect 
in the knockouts [110]. The genetic deletion of P2X7Rs also 
impeded the development of depressive- and anxiety-like 
behaviors induced by UCMS [111]. In contrast to the acute 
stress models, UCMS was delivered for a couple of weeks 
and included once daily, for example, immobilization, food 
deprivation, light/dark phase reversal, hot environment, and 
cage shaking. Confirming the sequential involvement of 
P2X7Rs and IL-β in mood disorders in IL-1 receptor null 
mutant mice, a decrease of anxiety-like behavior was ob-
served, as measured in the elevated plus-maze, light-dark, 
and novelty-induced hypophagia tests [112]. 

Similarly, P2X7R blockade by Brilliant Blue G (BBG) or 
A-438079 showed antidepressant effects in the UCMS mice 
model [62, 111]. Under these conditions, the activation of 
the P2X7R/NLRP3/IL-1β pathway in microglial cells of the 
mouse hippocampus was observed [111]. BBG also reduced 
serum TNF-α concentration and depressive-like behavior in 
mice treated with lipopolysaccharide, an activator of TLR4 
[113]. In addition to the behavioral alterations, BBG re-
versed the UCMS-induced microglial activation and hypo-
thalamic-pituitary-adrenal axis dysregulation [114]. Fur-
thermore, BBG exhibited anti-depressant and anti-anxiety 
effects in lithium-pilocarpine treated epileptic rats [115]. 
Non-pharmacological interference with behavioral changes 
was also reported. Daily electro-acupuncture sessions for 4 
weeks significantly attenuated depressive-like behavior 
caused by UCMS, and this effect was accompanied by a de-
crease in the expression of P2X7Rs, NLRP3 inflammasome 
components, and mature IL-1β in the hippocampus [116]. 

In addition to the microglial P2X7Rs, which cause neu-
roinflammation and thereby MDD, astroglial P2X7Rs may 

also be involved in this process. Numerous lines of evidence 
support the assumption that the modification of astrocytic 
functions or decreased density of astrocytes in the frontolim-
bic and hippocampal regions is associated with MDD [117]. 
It has been reported that a decrease in astrocyte-derived ATP 
in the medial prefrontal cortex causes depressive-like behav-
ior in mice [118, 119]. Apparently, while ATP is acting via 
P2X2Rs to exert anti-depression, this can be reversed by the 
adenovirus-mediated silencing of this receptor [118]. Alt-
hough not confirmed until now, another consequence of a 
decreased ATP release might be a denervation-like supersen-
sitivity of P2X7Rs to their endogenous agonist ATP, causing 
depression. 

5. BIPOLAR DISORDER AND MANIA 

Bipolar disorder is characterized by alternating depres-
sive and manic episodes; the latter disease phase is typically 
defined by increased psychomotor activity and elevated self-
esteem. Similar to MDD, bipolar disorder is also aggregated 
in families, and epidemiological studies have found evidence 
for a genetic disposition. However, in this case, a different 
P2X7R polymorphism (rs1718119 coding for Ala348Thr) 
was reported to be associated with bipolar disorder [85, 120]. 
In this disease, the increase in P2X7R-induced IL-1β release 
and the consequent neuroinflammation suggest a possibly 
vital therapeutic potential of P2X7R antagonists [121, 122]. 
It has been recently reported that P2RX7 gene variants show 
sex-specific effects, and increased P2X7R functions poten-
tially elevate the risk for bipolar disorder in females [123]. In 
humans, uric acid, a key end product of purine metabolism, 
may represent a state marker during mania [124].  

In an animal model of mania (treatment of mice with D-
amphetamine), an apparent lack of responsiveness to this 
psychostimulant was observed with respect to locomotor 
activity, when pharmacological blockers of P2X7Rs were 
applied, or P2X7R KO mice were used [125] (Table 1). An 
increase in IL-1β levels in the hippocampus and striatum 
accompanied the mania-like state. P2X7Rs were suggested 
to be involved in the amphetamine-induced hyperlocomotion 
via a mechanism depending on the dopaminergic system, 
because hyperlocomotion was blocked by the P2X7R antag-
onist BBG [126]. In conclusion, it appeared that a purinergic 
system imbalance is associated with the D-amphetamine-
induced model of mania and that P2X7Rs may represent a 
promising molecular therapeutic target for bipolar disorder. 

6. SCHIZOPHRENIA 

Schizophrenia is characterized by distortions in thinking, 
perception, emotions, language, sense of self, and behavior. 
Common experiences include hallucinations (hearing voices 
or seeing things that do not exist) and delusions (fixed, false 
beliefs). Strong evidence has accumulated that ATP-driven 
neuroinflammation is associated with microglial activation, 
and in most cases, astrogliosis develops during schizophrenia 
[127, 128]. In contrast to MDD and bipolar disorder, in the 
first approach, the P2RX7 gene was not found to be associat-
ed with schizophrenia [129] (but see below).  
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Table 1.  Selected examples of in vivo studies investigating the impact of P2X7R signaling on psychiatric diseases. 

Model Strategy Impact on Behavior 
Impact on 

Stress/Neuroinflammation 
References 

Major Depression - - - - 

TST, FST, restraint stress, 
LPS 

WT and P2X7-/- mice, 
BBG  

Prolongation of immobility in FST and TST 
in WT, smaller change in P2X7-/-. 

Same effect on TST and FST after sub-acute, 
i.p. BBG in WT. 

Increase in 

ACTH/corticosterone in plasma 
after restraint stress, a smaller 

increase in P2X7-/-. 
A decrease in sucrose prefer-
ence in WT is reversed by i.p. 

BBG or in P2X7-/-.  

[108, 109] 

TST, FST  WT and P2XR7-/- mice 
Prolongation of immobility in FST and TST 

in WT, smaller change in P2X7-/-, no effect 
on spontaneous locomotion in WT. 

Not studied [106] 

FST WT and P2X7-/- mice  

Repeated FST for 3 days. No change in 

immobility on the 1st day, but larger prolon-
gation on the 2nd and 3rd day in WT. 

No similar change in P2X7-/-. 

FST increases c-Fos in hippo-
campus/amygdala in WT, but 

not in P2X7-/- 
[110] 

Restraint stress, UCMS 
WT and NLRP3-/- 

mice, Sprague-Dawley 
rat, A-804598 

UCMS in WT mice decreases sucrose con-
sumption; in NLRP3-/- mice, there is no 

similar change.  
Chronic i.p. A-804598 antagonizes a compa-
rable effect of UCMS on sucrose consump-

tion in rats. 

Increase by restraint of eATP, 

IL-1β, and active NLRP3 in rat 
hippocampus. 

Chronic i.p. A-854098 in WT 
or genetic deletion of NLRP3 
reverses UCMS-induced de-

crease in sucrose consumption. 

[98] 

LPS C57BL/6 mouse, BBG 
Prolongation of immobility after LPS in TST 

and FST; attenuation of this effect by a sin-
gle dose of i.p. BBG. 

Increase in serum TNF-α by 

LPS; attenuation of this effect 
by i.p. BBG. 

[107] 

UCMS,  BALB mouse, BBG 
Impairment of nest-making behavior; rever-

sal of this effect by chronic BBG. 
Increase in microglial activation 

in cortex and hippocampus. 
[114] 

Lithium plus pilocarpine-
induced epilepsy 

Sprague-Dawley rat, 
BBG 

Prolongation of immobility in FST and de-
creased sucrose consumption after epilepsy. 
Two doses of i.p. BBG alleviate these symp-

toms. 

Increased P2X7R expression in 

hippocampus, and its alleviation 
by i.p. BBG. 

[115] 

FST 

Flinders Sensitive Line 
(FSL) and Flinders 

Resistant Line (FRL) 
rats, A-804598 

Prolongation of immobility time of FST in 
FSL but not FRL rats. 

Chronic i.p. A-804598 antagonizes this ef-
fect. 

Increased BDNF in the brain of 
FSL by FST. 

Antagonism by subacute i.p. A-
804598 of this effect. 

[81] 

UCMS, FST 
Sprague-Dawley rat, 

BBG, A-438079 

Prolongation of immobility in FST by 

UCMS is antagonized by chronic BBG or A-
438079 infusion into the hippocampus. 

Increase in eATP, IL-1β, and 
caspase in the hippocampus by 

UCMS. 
Antagonism of these effects by 
infusion of BBG or A-438079 

into the hippocampus. 

[116] 

UCMS, FST Wistar rat, BBG 

UCMS increases the prolongation of immo-

bility in FST. 
This effect is antagonized by chronic i.p. 

BBG. 

UCMS increases mRNA for 
P2X7R, NLRP1, caspase-1, and 
IL-1β in the prefrontal cortex.  
All increases are antagonized 

by BBG. 

[152] 

UCMS 
Sprague-Dawley rat, 

FST, EA 

Prolonged immobility time in FST by 

UCMS; reversal of this effect by chronic EA 
but not by sham-EA. 

Increased IL-1β mRNA/protein 
and NLRP3 protein in hippo-
campus, and this effect is re-

versed by EA but not sham-EA. 

[116] 

(Table 1) contd…. 
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Model Strategy Impact on Behavior 
Impact on 

Stress/Neuroinflammation 
References 

Bipolar Disorder, Mania - - - - 

D-Amphetamine 
WT and P2X7-/- 

mouse, A-438079 

Hyperlocomotion by acute or chronic am-
phetamine in WT is attenuated in P2X7-/-. 
i.c.v. A-438079 and BBG antagonize am-

phetamine effects in WT. 

Increase in brain IL-1β and 
TNF-α by chronic ampheta-

mine; antagonism of this effect 
by i.c.v. A-438079. 

[108, 125, 
126] 

Schizophrenia - - - - 

Phencyclidine (PCP) 
WT and P2X7-/- mice, 

JNJ-47965567 

Hyperlocomotion, stereotype behavior and 
social withdrawal by PCP in WT; attenuation 
of hyperlocomotion and stereotype behavior 
in P2X7-/-, but an increase in social interac-

tion. 
Smilar effects by i.p. JNJ-47965567. 

Not studied [130] 

Phencyclidine 
BALB mouse, JNJ-

47965567 

Sub-chronic PCP causes spatial learn-
ing/memory impairment and hyperlocomo-

tion.  
These effects are antagonized by i.p. JNJ-

47975567. 

Increase in P2X7R mRNA and 
protein in hippocampus and 

prefrontal cortex after i.p. JNJ-
47975567 to PCP-treated mice 

[133] 

Maternal  
Poly(I:C) 

Sprague-Dawley rat 
Deficits in pre-pulse inhibition and social 

interaction. 
Increase in P2X7R mRNA in 

nucleus accumbens. 
[136] 

Autism Spectrum  
Disorder 

- - - - 

Maternal Poly(I:C) 
C57BL/6 mouse, 

suramin 

Decreased social preference and sensorimo-
tor coordination are normalized by chronic 

i.p. suramin. 

Cerebral synaptosomal P2X7R 
protein is decreased; suramin 

treatment normalizes this 
change. 

[142] 

Genetic model 
FVB (WT) and Fragile 

X KO mice 

Decreased social preference and sensorimo-
tor co-ordination are normalized by chronic 

i.p. suramin. 
Not studied [143] 

Maternal Poly(I:C) 
WT and P2X7-/- mice, 

C57BL/6 mouse 

Decreased social preference and repetitive 
behaviors in WT, but not in P2X7-/- mice. 

Reversal of these effects by maternal treat-
ment with JNJ-4795567 in C57BL/6 mice. 

Increased ATP and IL-6 in fetal 
brain of WT, but not P2X7-/- 

mice.  
[144] 

Abbreviations: BBG, Brilliant Blue G; BDNF, brain-derived neurotropic factor; EA, electro acupuncture; eATP, extracellular ATP; FST, forced swimming test; i.c.v., intra-
cerebroventricular; i.p., intraperitoneal; IL-1, interleukin-1; LPS, lipopolysaccharide; NLRP3 inflammasome, nucleotide-binding, leucine-rich repeat, pyrin domain containing in-
flammasome; Poly(I:C), polyinosinic: polycytidylic acid; TNF-α, tumor necrosis factor-α; TST, tail suspension test; UCMS, unexpected chronic mild stress; WT, wild-type. 

 

In the phencyclidine-induced schizophrenia model, both 
genetic deletion and pharmacological inhibition of P2X7Rs 
alleviated schizophrenia-like behavioral alterations [130] 
(Table 1). The medial prefrontal cortex of P2X7R KO ani-
mals displayed distinct changes in the neuronal activation 
pattern and microglial organization around hyperactive neu-
rons [131]. In addition, basal dopamine concentration was 
shown to be regulated by P2X7Rs in this area of the brain, 
with consequences on the behavioral phenotype. It should 
be, however, noted that in the 6-hydroxy-dopamine injected 
rodent model of Parkinson’s disease, P2X7R antagonists 
reduced the microglial activation, thereby decreasing degen-
eration of dopaminergic neurons [132]. P2X7Rs located at 
dopaminergic neurons or microglial cells appeared to be in-
volved in this effect. On the basis of conclusions drawn from 
the etiology of the neurological illness, Parkinson’s disease, 
a somewhat similar mode of action has been assumed to be 
involved in the pathogenesis of the psychiatric illness, schiz-

ophrenia, both depending on intact dopamine turnover and 
undisturbed microglial function [131]. 

Another recent publication also reported the involvement 
of P2X7Rs in a phencyclidine-induced animal model of 
schizophrenia [133]. Severe spatial learning and memory 
impairment in the Morris water maze, as well as hypermotor 
behavior in the open-field test, was observed in mice after 
subchronic injection of phencyclidine. The intraperitoneal 
(i.p.) application of the P2X7R antagonist JNJ-47965567 
reversed these behavioral symptoms.  

The i.p. injection of double-stranded RNA polyinosynic-
polycytidylic acid (poly[I:C]) was administered to pregnant 
rodents to induce mimicked maternal bacterial or viral infec-
tion; a lifelong impact on the offspring was observed in 
terms of altered neuroimmune modulations [134]. This 
method was considered to model neurodevelopmental mental 
disorders, such as autism spectrum disorder (ASD) and 
schizophrenia [135]. Open field, elevated plus maze, and 
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FST revealed that prenatal exposure to poly(I:C) led to de-
pression-like behavior in the offspring of pregnant rats [136]. 
Deficits in pre-pulse inhibition and social interaction as 
symptoms of a schizophrenia-like state were also observed. 
An increase in mRNA for constituents of the P2X7R/NF-
κB/NLRP3/IL-1β signaling pathway in the nucleus accum-
bens/pre-frontal cortex was considered as an indication for 
neuro-inflammation in depression and schizophrenia in rele-
vant areas of the brain. The authors concluded that P2X7Rs 
were found to be involved in schizophrenia, although the 
P2X7R-mRNA was increased only in the nucleus accum-
bens, and their investigations were limited to female juvenile 
rats.  

The NMDA-R antagonist phencyclidine, also known as 
angel dust, has an abuse potential in humans; it is a dissocia-
tive hallucinogenic drug that also causes distorted percep-
tions and violent behavior. The use of cannabis has been 
consistently associated with psychotic experiences [137] and 
psychotic disorders such as schizophrenia [138]. Several 
studies suggest that genetic predisposition to schizophrenia is 
associated with higher levels of cannabis use [139]. In sup-
port of this hypothesis, in a sample of mentally healthy indi-
viduals, the interactions between regular cannabis consump-
tion and genotype with psychotic experiences were analyzed 
[140]. A SNAP of the P2RX7 gene (rs7958311; R270H) was 
associated with risk for a high level of psychotic experiences 
in regular cannabis users. It was concluded that P2RX7 plays 
a role in vulnerability to develop psychotic symptoms when 
consuming cannabis and point to a new pathway that can 
potentially be targeted by recently developed P2X7R antag-
onists. 

7. AUTISM SPECTRUM DISORDER (ASD) 

ASD is a common, highly inherited, and heterogenous 
neurodevelopmental illness characterized by disturbances of 
social communication and interaction, paresthesia, repetitive 
behaviors, and varying degrees of mental retardation. Mater-
nal immune activation is a principal environmental risk fac-
tor contributing to ASD and can be modeled experimentally 
by the injection of poly(I:C) to pregnant rodents at vulnera-
ble times [141]. Injection once a week for 8 weeks with su-
ramin, a non-selective P2X/P2YR antagonist, corrected 16 
multisystem abnormalities that defined an ASD-like pheno-
type in this model [142]. These included correction of the 
core social deficits and sensorimotor coordination disturb-
ances. Similarly, in the Fragile X (Fmr1) knockout mouse 
model of ASD, disturbances of social behavior, novelty pref-
erence, metabolism, and synapse structure were improved by 
long-lasting treatment with the general purinergic antagonist, 
suramin [143]. Selective antagonists for P2X7Rs and the use 
of P2RX7-/- in mice indicated the involvement of this type of 
receptor. Maternal immune activation of embryonic mice by 
the injection of poly(I:C) induced proinflammatory cytokine 
production in maternal plasma and to a lesser extent in the 
fetal brain [144]. In the offspring, social deficit, sensorimotor 
impairment, repetitive behaviors, cerebellar Purkinje cell 
atrophy, and synaptosome destruction were observed. In 
P2X7R KO mice, all these changes were absent. The effect 
of the knockdown of P2X7Rs on poly(I:C)-induced changes 
could also be mimicked by acute blockade of the receptor 
with specific antagonists. Thus, the genetic deletion of 

P2X7Rs or their pharmacological antagonists both eliminat-
ed the ASD-like symptoms in various animal models of this 
disease (Table 1). 

More recently, it has been suggested that a defective re-
lease of ATP from astrocytes of the medial prefrontal cortex 
normally acts at the terminals of GABAergic interneurons 
which innervate layer 5 pyramidal neurons in this area of the 
brain; this may interfere with social interaction, being a core 
symptom of ASD [145]. However, another core symptom of 
the disease, repetitive behaviors, were not improved by ap-
plying ATP or its enzymatically stable agonist ATP-γ-S, 
both activating P2X2Rs localized at the GABAergic nerve 
terminals. Hence, in contrast to P2X7Rs, P2X2Rs mediated 
only some but not all symptoms of ASD.  

CONCLUSION 

The present review discusses the hypothesis that neuroin-
flammation is an etiological factor of psychiatric disorders; 
ATP appears to stimulate the P2X7R/NLRP3/Capase-1/IL-1β-
pathway as a common cause of several mental illnesses, such 
as MDD, bipolar disorder, schizophrenia, and ASD. Most of 
the evidence is based on animal experimentation, although 
there are also at least three clinical observations indirectly 
suggesting the causal involvement of P2X7Rs in depression, 
which are at the top of the ATP-induced neuroinflammatory 
events [78]. These observations are as follows: (1) MDD is 
associated with diseases of chronic inflammation [93-103] 
(see Section 4). (2) On the reverse, patients with MDD relia-
bly exhibit increased levels of peripheral concentrations of C-
reactive protein (CRP) and other markers of systemic inflam-
mation, including the cytokines IL-1, IL-6 and TNF-α as well 
as their soluble receptors/antagonists [104, 146, 147]. (3) Non-
steroidal anti-inflammatory drugs, such as celecoxib [148], 
appear to improve MDD, and anti-cytokines, such as ada-
limumab, etanercept, and infliximab, all causing statistically 
significant improvements in depressive symptoms [149, 150]. 
Furthermore, augmentation therapy with minocycline, which 
is known to block microglial activation, also improves MDD 
[151]. In conclusion, we have reasons to be optimistic about 
brain penetrant P2X7R antagonists as potential therapeutics 
for psychiatric disorders, although the available evidence 
needs to be extended and validated by further clinical data. 
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