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Abstract
Establishing a celiac disease (CD) diagnosis can be difficult, such as when CD-specific antibody levels are just above cutoff 
or when small intestinal biopsies show low-grade injuries. To investigate the biological pathways involved in CD and select 
potential biomarkers to aid in CD diagnosis, RNA sequencing of duodenal biopsies from subjects with either confirmed 
Active CD (n = 20) or without any signs of CD (n = 20) was performed. Gene enrichment and pathway analysis highlighted 
contexts, such as immune response, microbial infection, phagocytosis, intestinal barrier function, metabolism, and trans-
portation. Twenty-nine potential CD biomarkers were selected based on differential expression and biological context. The 
biomarkers were validated by real-time polymerase chain reaction of eight RNA sequencing study subjects, and further 
investigated using an independent study group (n = 43) consisting of subjects not affected by CD, with a clear diagnosis of 
CD on either a gluten-containing or a gluten-free diet, or with low-grade intestinal injury. Selected biomarkers were able to 
classify subjects with clear CD/non-CD status, and a subset of the biomarkers (CXCL10, GBP5, IFI27, IFNG, and UBD) 
showed differential expression in biopsies from subjects with no or low-grade intestinal injury that received a CD diagnosis 
based on biopsies taken at a later time point. A large number of pathways are involved in CD pathogenesis, and gene expres-
sion is affected in CD mucosa already in low-grade intestinal injuries. RNA sequencing of low-grade intestinal injuries might 
discover pathways and biomarkers involved in early stages of CD pathogenesis.

Keywords  RNA-seq · RNA sequencing · Molecular biomarkers · Gene expression profiling · Gene ontology enrichment 
analysis
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HLA-DQ2.5	� HLA alpha chain DQA1*05 and beta chain 
DQB1*02 alleles

FDR	� False discovery rate
RPKM	� Reads per kilobase per million mapped 

reads
GO	� Gene ontology
EIF2B1	� Eukaryotic translation initiation factor 2B 

subunit alpha
ZFR	� Zinc finger RNA binding protein
ANOVA	� Analysis of variance
GSA	� Gene specific analysis
PCA	� Principal component analysis
KEGG	� Kyoto encyclopedia of genes and genomes
HDEG	� Highly differentially expressed gene
PC	� Principal component
rs	� Spearman’s correlation coefficient
OCLN	� Occludin
IL17A	� Interleukin 17A
PPAR	� Peroxisome proliferator-activated receptor
NLRP3	� Nucleotide-binding domain and leucine-

rich repeat containing gene family, pyrin 
domain containing 3

Introduction

Celiac disease (CD) is an immune-mediated systemic dis-
order elicited by gluten and related prolamines in geneti-
cally susceptible individuals, with the presence of a variable 
combination of gluten-dependent clinical manifestations, 
CD-specific antibodies, such as IgA autoantibodies against 
tissue transglutaminase (anti-TG2), human leukocyte anti-
gen (HLA)-DQ2 or HLA-DQ8 haplotypes, and enteropathy 
[1]. The histological alterations in the small intestine can 
be graded according to the modified Marsh scale [2, 3], and 
age has been shown to correlate inversely with intestinal 
lesion severity and anti-TG2 levels [4]. However, for chil-
dren under 2 years of age, anti-TG2 levels can be below 
cutoff despite presence of Marsh grade 3 intestinal lesions 
[5]. The presence of anti-TG2 in the blood combined with 
Marsh grade 3 intestinal lesions is a strong indicator of CD, 
but diagnosis is less clear in cases with histopathology of 
Marsh grade 1–2 or in cases with only slightly elevated 
anti-TG2 levels [6]. The high prevalence of selective IgA 
deficiency in CD patients further complicates diagnosis [7]. 
Additionally, the determination of CD diagnoses may be 
difficult due to patchy distributions of lesions [8] or subop-
timal orientations of small intestinal biopsies prepared for 
histopathologic assessment [9]. Furthermore, the amount of 
gluten consumed by an individual with CD and the amount 
of gluten that they can tolerate [10] affect enteropathy and 
CD-specific antibody levels.

It has been shown that the presence of HLA-DQ2 or 
HLA-DQ8 is essential, but not sufficient, for the develop-
ment of CD [11], and genetic investigations of CD have 
identified 42 CD-associated non-HLA loci [12]. When RNA 
from specific intestinal compartments (surface epithelium, 
lamina propria, and crypts of Lieberkühn) [13] and RNA 
from whole intestinal biopsies [14–17] were evaluated, gene 
expression in the small intestines of CD study subjects with 
active disease differed from gene expression in the small 
intestines of study subjects without CD. Several CD gene 
expression studies have investigated the biological pathways 
required for the development and maintenance of enteropa-
thy in CD using small intestinal biopsies [14–16], specific 
cell types [18, 19], and genetic approaches [20, 21]. How-
ever, we did not find any studies that evaluated whole intes-
tinal biopsies by RNA sequencing; therefore, we sequenced 
RNA from small intestinal biopsies from study subjects 
without a CD diagnosis and study subjects with Active CD 
(Marsh grade 3) to conduct an unbiased investigation of dif-
ferentially expressed genes (DEGs) and biological pathways 
in CD to improve CD diagnostics, especially for ambiguous 
cases, and to gain a better understanding of CD. We identi-
fied potential biomarkers for CD and validated them by real-
time polymerase chain reaction (PCR) using study subjects 
with convincing Marsh grade 0 or Marsh grade 3 histologies 
and study subjects with low-grade intestinal injury.

Materials and methods

Study subjects

Pediatric patients in this study were referred to Ryhov 
County Hospital in Jönköping, Sweden, with suspected 
CD, or were followed-up after a period on a gluten-free 
diet (GFD) to verify mucosal recovery. Most patients were 
referred for small intestinal biopsy due to elevated anti-TG2 
with or without symptoms. Patients with negative anti-
TG2 (< 7 U/mL) with or without selective IgA deficiency 
on a gluten-containing diet (GD) were selected for small 
intestinal biopsy based on a clinical need to exclude CD 
(e.g., symptoms, hereditary factors, etc.). The patients were 
included in this study after written consent was provided, 
and blood and duodenal biopsy specimens were collected 
from all patients. This study was approved by the Regional 
Ethical Review Board in Linköping (2011/239-31).

Study groups for RNA sequencing and validation 
of biomarkers

Study subjects with a Marsh grade 0 histopathologic assess-
ment and anti-TG2 < 7 U/mL were included in the RNA 
sequencing study group M0 and those with a Marsh grade 
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3 histopathologic assessment and anti-TG2 ≥ 7 U/mL were 
included in study group M3 (Table 1, Fig. 1). All of the 
study subjects were on a GD, and subjects in study group M3 
received a CD diagnosis, whereas subjects in study group 
M0 did not. Two subjects in study group M0 had an IgA 

deficiency, but results from analysis of IgG antibody levels 
were available for TG2 and deamidated gliadin (DG).

The RNA sequencing results were validated by meas-
uring gene expression levels of the selected potential CD 
biomarkers in four M0 and four M3 study subjects using 
real-time PCR (Fig. 1). For a validated result, we expected a 
high correlation between the two methods [product-moment 
correlation coefficient (r) ≥ 0.9], and the power to identify 
a correlation of this size at an α-level of 0.05 using a total 
of eight samples was 0.94 (G*Power version 3.1.9.2 [22]).

To further verify the differential expressions found by 
RNA sequencing, gene expressions of the potential CD 
biomarkers were analyzed in an independent set of study 
subjects with the same characteristics as the study subjects 
in the M0 and M3 groups [Not CD (n = 6) and Active CD 
(n = 22)] and in the previous eight study subjects [Not CD 
(n = 4) and Active CD (n = 4)] from validation of the RNA 
sequencing results (Table 2, Fig. 1). Using the Mann–Whit-
ney U test at a Bonferroni-adjusted α-level of 0.0019 and 
these group sizes, the calculated power was 0.96 to detect a 
fold change (FC) > 4 or FC < − 4 (standard deviation = 2), 
which we used as the FC cutoff to select potential CD 
biomarkers. Study subjects in the Active CD group were 
selected to represent Marsh grade 3A (n = 8), 3B (n = 8), 
and 3C (n = 10) histopathologic assessments to investigate 
whether gene expressions correlated with Marsh grade. 
Results from gene expression analyses of the Not CD and 
Active CD study groups were used as a baseline for an addi-
tional analysis of fifteen study subjects with normalized 
mucosa on a GFD (study subjects 8–12, Table 3), Marsh 3 
histopathology but negative anti-TG2 (study subjects 13–15, 
Table 3), or no or low-grade intestinal injury (study subjects 
1–7, Table 3) (Fig. 1). 

Table 1   Descriptive statistics of the RNA sequencing study groups

Study group M0 contained study subjects with histopathologic assessments corresponding to grade Marsh 0, whereas group M3 contained study 
subjects with assessments corresponding to grades Marsh 3A, 3B, or 3C. All of the study subjects were on a gluten-containing diet, and subjects 
in study group M3 received a celiac disease diagnosis, whereas subjects in study group M0 did not
a Mean (min–max)
b Levels of IgA autoantibodies against tissue transglutaminase (anti-TG2) in serum. For two subjects in study group M0, no serum results were 
available, but plasma results were within the range of the serum results. IgG results from two subjects with IgA deficiency were included, which 
were within the range of the IgA-based results
c Levels of IgG antibodies against deamidated gliadin (anti-DG) in serum. For four subjects in study group M0 and one subject in study group 
M3, no serum results were available, but plasma results were within the range of the serum results
d For each group, the fractions of study subjects with 0, 1, or 2 HLA-DQ2.5cis are accounted for

Study group n Age at biopsy (years)a Gender; M/F Anti-TG2a,b (U/mL) Anti-DGa,c (U/mL) HLA-DQ2.5cisd

M0 20 8.5 (1.6–17) 10/10 0.20 (0–3.6) 0.50 (0–3.2) 0.65, 0.30, 0.050
M3 20 10 (2.3–18) 10/10 262 (36–2858) 89 (9–781) 0.15, 0.75, 0.10

RNA sequencing

M0
(Table 1)
Marsh 0
n = 20

M3
(Table 1)
Marsh 3
n = 20

Correlation of RNA sequencing
results with real-time PCR results

n = 4 n = 4

Real-time PCR

Not CD
(Table 2)
Marsh 0
n = 10

Active CD
(Table 2)
Marsh 3
n = 26

n = 4 n = 4

Other cases
(Table 3)

Marsh 0-3
n = 15

M0
Marsh 0

n = 4

M3
Marsh 3

n = 4

Fig. 1   Flow diagram illustrating the number and type of study sub-
jects included in the different parts of this study. RNA sequencing 
(upper section) was performed on 20 subjects without CD (study 
group M0) and 20 subjects with active CD of grade Marsh 3 (study 
group M3), which are described further in Table 1. Eight study sub-
jects were selected from the RNA sequencing part and used for cor-
relation between results from RNA sequencing and real-time PCR 
(midsection). Biopsies from these eight study subjects together with 
biopsies from 43 independent study subjects represent the entire set 
of 51 biopsies used for the follow-up study of potential CD biomark-
ers by means of real-time PCR (lower section). Additional data on 
these 51 study subjects can be found in Tables 2 and 3
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Samples

Serum was sampled for diagnostic purposes, and levels of 

anti-TG2 and IgG antibodies against DG (anti-DG) were 
measured using EliA-kits from Thermo Fisher Scientific 

Table 2   Descriptive statistics of the two clear groups of study subjects used for the validation of RNA sequencing results by real-time polymer-
ase chain reaction

The Active CD group included study subjects with histopathologic assessments corresponding to grade Marsh 3 and elevated levels of IgA 
autoantibodies against tissue transglutaminase (anti-TG2) on a gluten-containing diet (GD). The Not CD group contained study subjects with 
histopathologic assessments corresponding to grade Marsh 0 and anti-TG2 levels below cutoff on a GD. The principal component analysis 
(Fig. 2) was constructed based on gene expressions from these two groups
a Age at biopsy, expressed as the mean (min–max)
b Levels of anti-TG2 analyzed in serum, expressed as the mean (min–max)
c For each group, the fractions of study subjects with 0, 1, or 2 HLA-DQ2.5cis are accounted for. Data was not available for two study subjects in 
group Active CD

Study group n (M/F) Marsh grade Age (years)a Diagnosis Diet Anti-TG2 (U/mL)b HLA-DQ2.5cisc

Not CD 10 (2/8) 0 7.9 (1.1–17) Not CD GD 0.63 (0–3.6) 0.6, 0.4, 0
Active CD 26 (12/14) 3A–3C 7.8 (1.8–18) CD GD 712 (15–6832) 0.23, 0.62, 0.08

Table 3   Descriptive statistics 
of study subjects used for the 
validation of RNA sequencing 
results by real-time polymerase 
chain reaction

These study subjects did not fit into the groups in Table 2 and were accounted for as single study subjects. 
However, they were grouped into contexts. Study subjects who did not receive a celiac disease (CD) diag-
nosis at the time of the biopsy sampling for this study, but received a CD diagnosis at a later biopsy sam-
pling (CD later), and study subjects who received a Not CD diagnosis at a later biopsy sampling (Not CD). 
Other subjects were included as control biopsies on a gluten-free diet (GFD) after a previous CD diagnosis; 
some of these subjects returned to a Marsh 0 histology (normalized CD) but one did not, although levels 
of IgA autoantibodies against tissue transglutaminase (anti-TG2) normalized (M3 TG- GFD). Other sub-
jects had Marsh 3 histopathologies on a gluten-containing diet (GD) although their anti-TG2 levels were 
below the cutoff (M3 TG-). All of the study subjects were projected onto the principal component analysis 
in Fig. 2. Varying histopathologic assessments between pathologists are indicated by ranges in the Marsh 
grade column
a Levels of anti-TG2 analyzed in serum (study subject 7 analyzed in plasma)
b Number of HLA-DQ2.5cis. N/A = not available
c Study subjects 1, 2, 3, and 4 received their CD diagnosis at a biopsy sampling occasion 3, 10, 4 months, 
and 1 year and 7 months, respectively, after the biopsy sampling for this study
d Study subject 5 was judged not to have CD, after repeated sampling over a period of 4 years, based on 
normal histology and normalized anti-TG2 on GD

Study 
subject 
(gender)

Marsh grade Age (years) Diagnosis Context Diet Anti-TG2 
(U/mL)a

HLA-DQ2.5cisb

1 (F) 0–2 3.1 CD CD laterc GD 106 1
2 (M) 0 7.3 CD CD laterc GD 70 1
3 (F) 1 15 CD CD laterc GD 93 1
4 (F) 0 15 CD CD laterc GD 10 1
5 (F) 0–1 9.1 Not CD Not CDd GD 23 1
6 (F) 2–3B 14 CD CD GD 27 0
7 (F) 2 16 CD CD GD 50 1
8 (M) 0 7 CD Normalized CD GFD 0.4 1
9 (F) 0 17 CD Normalized CD GFD 1.6 0
10 (F) 0 9 CD Normalized CD GFD 2.2 1
11 (F) 0 17 CD Normalized CD GFD 1.3 1
12 (F) 0 5 CD Normalized CD GFD 0.9 1
13 (F) 3C 0.7 CD M3 TG- GD 2.4 1
14 (F) 3C 0.8 CD M3 TG- GD 2.8 N/A
15 (F) 3A 11 CD M3 TG- GFD GFD 5.4 2
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(Waltham, MA) and cutoff 7 U/mL according to Bragde 
et al. [23].

Biopsy specimens were collected using an endoscope 
(multiple specimens) or a pediatric Watson capsule (single 
specimen) for research and diagnostic purposes. Biopsies 
obtained using a Watson capsule (one study subject) were 
split into two pieces. For all of the subjects in this study, rou-
tine diagnostic histopathologic assessments were performed 
and reported using the modified Marsh scale (0, 1, 2, 3A, 
3B, or 3C) [2, 3], according to Bragde et al. [17]. Because 
some of the subjects were included in an earlier study [17], 
additional assessments were available for some of the biop-
sies. The assessments (n = 21) were performed by a single 
pathologist. All available assessments were in consensus 
for RNA sequencing study subjects (Table 1) and for the 
real-time PCR validation study subjects used as baseline 
(Table 2). Varying Marsh grades between assessments were 
accepted for the remaining real-time PCR study subjects 
(Table 3). Biopsies for research purposes were immersed in 
pre-chilled RNAlater RNA Stabilization Reagent (Qiagen, 
Hilden, Germany) and total RNA was isolated according to 
Bragde et al. [17]. RNA concentrations were determined 
using a Qubit 2.0 Fluorometer and a Qubit RNA BR Assay 
Kit (Thermo Fisher Scientific, Waltham, MA) according to 
the manufacturer’s instructions for RNA sequencing sam-
ples, and using Nanodrop ND-1000 (Thermo Fisher Sci-
entific Inc.) for real-time PCR samples. RNA integrity was 
assessed using an Agilent 2100 Bioanalyzer with the Agilent 
RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, 
CA) according to the manufacturer’s instructions.

DNA was extracted from EDTA-treated blood using the 
Biorobot EZ1 and EZ1 DNA Blood 350 μL kits according 
to the manufacturer’s instructions (Qiagen).

HLA‑DQ2.5

The single nucleotide polymorphism (SNP) rs2187668 iden-
tified possession of the HLA alpha chain DQA1*05 and beta 
chain DQB1*02 alleles (HLA-DQ2.5) in cis efficiently in a 
study by van Heel et al. [24] and was, therefore, used as a 
measurement of the number of HLA-DQ2.5cis for each sub-
ject in this study. The SNP genotype was determined using 
assay C__58662585_10 and TaqMan Genotyping Master 
Mix (Life Technologies, Carlsbad, CA) with 20 ng of DNA 
in a total volume of 10 µL on a 7900HT Fast real-time PCR 
System using the standard thermal profile as recommended 
by the manufacturer (Life Technologies).

RNA sequencing

Libraries for RNA sequencing were prepared using TruSeq 
Stranded Total RNA with Ribo-Zero Human/Mouse/Rat 
(Illumina, San Diego, CA) according to the manufacturer’s 

protocols with modifications, including automation using 
an Agilent NGS workstation (Agilent Technologies) and 
purification steps described by Lundin et al. [25] and Borg-
ström et al. [26]. The libraries were clustered on a cBot 
and sequenced in multiplexes of ten libraries per lane on 
a HiSeq 2500 (Illumina) according to the manufacturer’s 
instructions using a read length of 1 × 50 bp. Demultiplex-
ing and conversion were performed using CASAVA version 
1.8.2. Sanger/phred33/Illumina 1.8 + was used as the quality 
scale.

Sample size estimations were performed using the soft-
ware package PROPER version 1.10.0 [27] in RStudio ver-
sion 1.0.143 [28] based on a public dataset with a high level 
of biological variation [29] and a two-group scenario. Simu-
lations (n = 100) were performed based on a 5% expected 
rate of DEGs among a total of 26,000 genes using edgeR 
to detect DEGs at a false discovery rate (FDR) [30] of 5%. 
With these settings and with 20 samples in each group, the 
overall power to detect DEGs at an FC of 2, which was the 
FC cutoff that we used to select DEGs for further analysis, 
was 0.77. Excluding genes with an average expression ≤ 10 
counts resulted in a power of 0.96. At gene counts of ten 
reads per sample, the average sized transcript of 2.2 kb [31] 
has an average reads per kilobase per million mapped reads 
(RPKM) value of 0.45 when sequencing at a depth of 20 
million reads per sample when estimating that approximately 
50% of the reads map to exons annotated in RefSeq. Based 
on this and on results from Ramsköld et al. [32], we deter-
mined that analyzing genes with average expressions > 0.3 
RPKM was reasonable.

Validation of RNA sequencing results 
and identification of potential biomarkers

A total of 29 genes with highly significant differential 
expression in the RNA sequencing analysis (Table 4, FDR-
adjusted p value < 0.000001 and FC > 4 or FC < − 4) were 
selected for further real-time PCR analysis (ABI7900HT 
Fast Real-Time PCR System, Life Technologies). The selec-
tions were based on Gene Ontology (GO) terms to capture 
different aspects of CD. Analysis was performed using pre-
designed gene expression assays dried down in 96-well 
plates (Online Resource 1), the Fast protocol, and TaqMan 
Fast Universal PCR Master Mix without AmpErase UNG, 
and with 10 ng of cDNA, converted from RNA using the 
High-Capacity cDNA Reverse Transcription Kit with RNase 
Inhibitor, in a total volume of 10 µL as recommended by the 
manufacturer (Life Technologies). Two reference genes were 
included for normalization; one reference gene, EIF2B1, 
was selected based on an evaluation in association with 
a previous study [17] and the other reference gene, ZFR, 
was selected among genes with an average expression > 1 
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Table 4   Highly significantly differentially expressed genes (HDEGs) 
were identified by comparing RNA sequencing data from study sub-
jects with active celiac disease (CD) (Marsh 3, group M3, Table 1) 
with study subjects without CD (Marsh grade 0, group M0, Table 1) 

using two different approaches, one-way analysis of variance 
(ANOVA) or modeling of mean–variance relationships of count data 
using a lognormal distribution with shrinkage and differential expres-
sion analysis using linear regression (gene specific analysis, GSA)

Gene symbol Gene name FC RNA 
sequenc-
ing

FDR-adjusted p 
value ANOVAa

FDR-adjusted 
p value GSAb

FC real-time PCR 
(FDR-adjusted p 
value)

ABCC2 ATP binding cassette subfamily C member 2 − 5.1 1.5E−12 9.7E−12
ABCG5 ATP binding cassette subfamily G member 5 − 4.8 2.1E−11 9.0E−14
ACE* Angiotensin I converting enzyme − 4.6 6.3E−09 − 4.5 (1.1E−06)
AGMO Alkylglycerol monooxygenase − 5.1 5.2E−10 2.2E−11
ALDOB Aldolase, fructose-bisphosphate B − 4.1 2.6E−14 3.7E−17
APOA1 Apolipoprotein A1 − 41 6.3E−09 3.0E−15
APOA4 Apolipoprotein A4 − 5.5 1.5E−08
APOB* Apolipoprotein B − 5.1 4.5E−12 1.8E−18 − 4.7 (4.7E−08)
APOC2 Apolipoprotein C2 − 5.2 1.8E−08 2.3E−14
APOC3* Apolipoprotein C3 − 9.9 3.6E−10 6.7E−14 − 5.8 (1.9E−06)
APOH Apolipoprotein H − 9.1 9.7E−08
AQP10 Aquaporin 10 − 6.6 1.9E−09 8.3E−14
ASAH2* N-acylsphingosine amidohydrolase 2 − 12 2.0E−16 8.8E−20 − 6.1 (1.1E−07)
ASPHD2 Aspartate beta-hydroxylase domain containing 2 4.7 1.5E−08 2.9E−14
BATF2 Basic leucine zipper ATF-like transcription factor 2 4.6 5.0E−07 1.0E−13
CAPN13 Calpain 13 − 4.6 2.6E−14 4.7E−18
CAPN8* Calpain 8 5.3 3.1E−09 5.2 (1.9E−06)
CD36* CD36 molecule − 4.9 2.6E−14 1.2E−15 − 3.2 (3.7E−07)
CD79A CD79a molecule 4.2 8.6E−07
CEACAM20 Carcinoembryonic antigen-related cell adhesion molecule 

20
− 6.7 1.1E−09

CLSTN2 Calsyntenin 2 − 4.8 3.3E−11
COL6A5 Collagen type VI alpha 5 chain − 4.5 7.2E−08
CXCL9* C-X-C motif chemokine ligand 9 5.5 6.8E−07 5.5E−10 3.6 (3.1E−06)
CXCL10* C-X-C motif chemokine ligand 10 7.7 3.8E−11 5.7 (1.8E−07)
CXCL11* C-X-C motif chemokine ligand 11 32 2.9E−15 22 (3.5E−08)
CXCR2P1 C-X-C motif chemokine receptor 2 pseudogene 1 5.1 4.9E−08
CYP2B7P Cytochrome P450 family 2 subfamily B member 7, 

pseudogene
− 12 2.7E−09 5.8E−14

CYP2C9 Cytochrome P450 family 2 subfamily C member 9 − 5.7 9.6E−15 1.2E−17
CYP3A4 Cytochrome P450 family 3 subfamily A member 4 − 33 8.9E−13 1.2E−17
DFNA5 DFNA5, deafness-associated tumor suppressor − 4.0 4.6E−11
DGAT2 Diacylglycerol O-acyltransferase 2 − 10 1.3E−13
DIRAS2 DIRAS family GTPase 2 − 7.3 9.0E−14 2.0E−12
ENPEP glutamyl aminopeptidase − 5.1 1.9E−10
ENPP3 Ectonucleotide pyrophosphatase/phosphodiesterase 3 − 11 2.3E−10 2.1E−17
F13B Coagulation factor XIII B chain − 5.6 2.7E−07
FAM184A Family with sequence similarity 184 member A − 5.5 5.4E−10 2.1E−10
FCGR3A* Fc fragment of IgG receptor IIIa 5.4 9.7E−11 N/Ac

G6PC Glucose-6-phosphatase catalytic subunit − 15 1.7E−09 5.6E−14
GBP5* Guanylate binding protein 5 4.9 6.2E−07 9.7E−12 4.0 (3.5E−08)
GSTA2 Glutathione S-transferase alpha 2 − 5.6 1.7E−11 1.5E−09
HK2 Hexokinase 2 7.5 6.7E−13
HMGCS2 3-Hydroxy-3-methylglutaryl-CoA synthase 2 − 9.1 4.7E−09 1.1E−08
IFI27* Interferon alpha inducible protein 27 4.6 2.4E−09 3.2 (2.5E−06)
IFNG* Interferon gamma 29 8.9E−08 17 (3.5E−08)
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Table 4   (continued)

Gene symbol Gene name FC RNA 
sequenc-
ing

FDR-adjusted p 
value ANOVAa

FDR-adjusted 
p value GSAb

FC real-time PCR 
(FDR-adjusted p 
value)

IL1RN Interleukin 1 receptor antagonist 4.6 3.9E−08
IL21R Interleukin 21 receptor 4.9 3.6E−08
LCN2* Lipocalin 2 8.1 7.1E−09 12 (5.4E−06)
LCT Lactase − 20 1.7E−09 4.0E−12
LOC100507537 Uncharacterized LOC100507537 − 7.7 3.4E−08 7.9E−11
LPL* Lipoprotein lipase 100 8.5E−17 107 (3.5E−08)
LRAT* Lecithin retinol acyltransferase − 9.6 4.7E−11 4.5E−16 − 6.4 (3.7E−07)
MEP1B Meprin A subunit beta − 4.3 9.0E−14 6.5E−15
MME Membrane metalloendopeptidase − 4.6 2.6E−14 1.5E−15
MMP3* Matrix metallopeptidase 3 16 3.4E−09 10 (3.1E−06)
MMP12* Matrix metallopeptidase 12 14 1.0E−06 1.0E−11 9.3 (7.7E−08)
MS4A10 Membrane spanning 4-domains A10 − 11 7.9E−14 4.7E−11
NELL2 Neural EGFL like 2 − 6.1 4.8E−12 8.0E−18
NLRC5 NLR family CARD domain containing 5 4.5 1.1E−07 2.4E−10
PCK1* Phosphoenolpyruvate carboxykinase 1 − 11 2.1E−10 1.4E−15 − 7.2 (4.7E−08)
PCSK9 Proprotein convertase subtilisin/kexin type 9 4.9 1.5E−07
PITPNM3 PITPNM family member 3 4.6 1.4E−07
PIWIL2* Piwi like RNA-mediated gene silencing 2 − 4.1 1.2E−08 2.4E−10 N/Ac

PKLR Pyruvate kinase L/R − 4.4 1.7E−08 8.0E−10
PON3 Paraoxonase 3 − 6.0 2.2E−07 3.4E−10
PRKG2 Protein kinase, cGMP-dependent, type II − 9.8 1.8E−07 1.2E−15
RGN Regucalcin − 6.6 5.0E−11 7.0E−14
S100A9* S100 calcium binding protein A9 4.8 6.1E−07 4.5 (1.1E−07)
S100G S100 calcium binding protein G − 5.1 2.4E−08
SCN3B Sodium voltage-gated channel beta subunit 3 − 10 2.6E−11
SI Sucrase-isomaltase − 4.3 1.9E−09 5.5E−14
SLC2A2 Solute carrier family 2 member 2 − 4.0 2.1E−09 6.9E−12
SLC5A11 Solute carrier family 5 member 11 − 8.4 3.3E−10
SLC6A4 Solute carrier family 6 member 4 − 4.8 1.9E−10 3.7E−10
SLC6A14* Solute carrier family 6 member 14 21 1.5E−09 21 (3.5E−08)
SLC22A4 Solute carrier family 22 member 4 − 6.5 6.6E−10
SLC23A1 Solute carrier family 23 member 1 − 8.8 3.6E−11 2.0E−12
SLC28A2 Solute carrier family 28 member 2 − 4.2 7.2E−07 4.4E−07
SLC46A1 Solute carrier family 46 member 1 − 4.5 5.4E−11 3.2E−11
SOAT2* Sterol O-acyltransferase 2 − 14 6.4E−10 − 6.4 (3.7E−07)
SPINK4 Serine peptidase inhibitor, Kazal type 4 4.5 2.4E−10
SULT2A1 Sulfotransferase family 2A member 1 − 6.8 3.3E−09 4.6E−08
TFF1* Trefoil factor 1 11 7.6E−07 6.1 (1.5E−06)
TM4SF4 Transmembrane 4 L six family member 4 − 5.7 5.7E−08 5.9E−10
TNFRSF9* TNF receptor superfamily member 9 6.8 7.6E−13 4.1 (3.5E−08)
TREH Trehalase − 5.4 2.3E−09 1.8E−11
TRPM6 Transient receptor potential cation channel subfamily M 

member 6
− 8.0 1.9E−14 8.5E−17

TTC36 Tetratricopeptide repeat domain 36 − 5.8 5.1E−08
UBD* Ubiquitin D 17 3.7E−12 8.3 (5.3E−07)
UGT1A3 UDP glucuronosyltransferase family 1 member A3 − 16 2.7E−09
UGT1A4* UDP glucuronosyltransferase family 1 member A4 − 15 3.3E−07 − 5.3 (6.8E−06)
UGT2B7 UDP glucuronosyltransferase family 2 member B7 − 6.3 8.7E−10 2.2E−13
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RPKM and low variation between samples [smallest 95% 
confidence interval in relation to trimmed mean (5%); this 
study]. Additionally, the reference genes were evaluated 
for the absence of differential expression between the RNA 
sequencing study groups and the corresponding validation 
groups using one-way analysis of variance (ANOVA). The 
auto-baseline algorithm in the ExpressionSuite software 
package (version 1.1, Life Technologies) was used to com-
pensate for background noise for each amplification curve, 
and thresholds were adjusted to the log-linear range and set 
to the same level for all of the samples in one assay. The 
data were then normalized against the two reference genes 
using the Genex software package version 5.4.2.128 (MultiD 
Analyses, Göteborg, Sweden).

Calculations of fold changes and comparisons between 
real-time PCR results and RNA sequencing results were 
based on normalized relative quantification values and 
RPKM values, respectively. For genes with higher expres-
sion in Active CD than in Not CD subjects, the fold changes 
were equal to the mean expression ratio (Active CD vs. Not 
CD). For genes with lower gene expression in Active CD 
than in Not CD subjects, the fold changes were equal to 
− 1/mean expression ratio (Active CD vs. Not CD). All of 
the other statistics on the real-time PCR data were based on 
normalized values.

Statistical analysis

In Partek Flow version 5.0.16.0523 (Partek Incorporated, St. 
Louis, MO), RNA sequencing data were aligned to genome 
build hg19 using STAR 2.4.1d [33], and the transcripts were 
then quantified using Partek E/M, an algorithm similar to 
an expectation/maximization algorithm published by Xing 
et al. [34] except that Partek E/M quantifies isoform expres-
sion levels across the whole genome at the same time and 
normalizes by transcript length. Refseq transcripts release 

71 [35] was used as an annotation source. In addition, in 
Partek Flow, the mean–variance relationships of count data 
were modeled using a lognormal distribution with shrinkage 
(“limma trend” [36]), and differential expression was ana-
lyzed using linear regression (gene specific analysis [GSA]).

Partek Genomics Suite (version 6.6, Partek Incorporated) 
was used to further analyze RNA sequencing data by prin-
cipal component analysis (PCA; with correlation as a dis-
persion matrix), Spearman rank correlation, and ANOVA, 
and to identify overrepresented gene groups as described by 
GO terms, including GO terms in the ontologies biological 
process, molecular function, and cellular component, using 
the Fisher’s test. To define relatedness between GO terms, 
the EnrichmentMap plugin [37] for Cytoscape version 3.4.0 
[38] was used to visualize and cluster GO terms accord-
ing to the Jaccard coefficient (similarity cutoff = 0.44). The 
clusters were described by word clouds with a maximum of 
ten words using the Cytoscape plugin Wordcloud version 
3.1.0 [39].

The Partek Pathway (Partek Incorporated) was used for 
Pathway ANOVA to identify pathway level differential gene 
expression between study subjects with and without CD. 
Pathways [Kyoto Encyclopedia of Genes and Genomes 
(KEGG)] with 2–500 genes (n = 298) were included in the 
analysis, and least square means for all of the detected genes 
in a pathway were compared between study groups M3 and 
M0 using ANOVA.

Statistica version 13 (Statsoft, Tulsa, OK) was used to 
analyze the real-time PCR validation data by PCA (with 
correlation as a dispersion matrix), product-moment cor-
relation, the Mann–Whitney U test, and Spearman rank cor-
relation. Statistica was also used for hierarchical clustering 
(Euclidean distances and unweighted pair-group average) 
and for the Pearson’s χ2 test of independence.

Analysis of disease–gene associations for the poten-
tial CD biomarkers identified was performed using the R 

Table 4   (continued)

Gene symbol Gene name FC RNA 
sequenc-
ing

FDR-adjusted p 
value ANOVAa

FDR-adjusted 
p value GSAb

FC real-time PCR 
(FDR-adjusted p 
value)

UNC93A unc-93 homolog A − 12 1.7E−12 2.9E−17
UPB1* Beta-ureidopropionase 1 − 35 9.3E−09 − 33 (7.7E−08)
VNN1* Vanin 1 − 4.9 1.5E−12 3.0E−15 − 3.2 (4.7E−08)

Fold changes (FC) were based on mean expression (M3 vs. M0), and the p values were adjusted for multiple testing using false discovery rate 
(FDR). Genes marked with an asterisk were selected as potential CD biomarkers and validated using real-time polymerase chain reaction (PCR). 
Marsh grade 3 (group Active CD, n = 26, Table 2) vs. Marsh grade 0 (group Not CD, n = 10, Table 2) FCs from real-time PCR follow-up analy-
ses are included, together with FDR-adjusted p values from the Mann–Whitney U test of differential expressions between the two groups
a One-way ANOVA using Partek Genomics Suite version 6.6 (Partek Incorporated, St. Louis, MO)
b GSA using Partek Flow version 5.0.16.0523 (Partek Incorporated)
c N/A = not available. Expression of PIWIL2 and FCGR3A was not detected in a majority of the study subjects using real-time PCR, thus these 
genes were excluded from further analyses based on real-time PCR data
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packages DOSE version 3.4.0 [40] and clusterProfiler ver-
sion 3.6.0 [41] in RStudio based on the DisGeNET version 
5.0 database [42], including gene sets with 10–500 genes.

Unless otherwise specified, all of the p values were 
adjusted for multiple testing using FDR, and FDR-adjusted 
p values < 0.05 were considered significant.

For the selection of highly differentially expressed genes 
(HDEGs), more stringent criteria were used: an FDR-
adjusted p value < 0.000001 and FC > 4 or FC < − 4, and 
a mean expression > 1 RPKM in one or both study groups 
(ANOVA, Partek Genomics Suite) or a total number of 
reads > 1000 (GSA, Partek Flow).

Genes with mean expressions ≤ 0.3 RPKM were excluded 
from all analyses.

Results

RNA sequencing libraries were successfully prepared from 
all of the samples, and a mean of 19.4 million reads per sam-
ple (13.9–23.5 million reads) was obtained for study group 
M0 and a mean of 20.7 million reads per sample (12.6–27.8 
million reads) was obtained for study group M3. From a total 
of 26,369 annotated genes, 13,594 genes had mean expres-
sions > 0.3 RPKM in the RNA sequencing data and were 
included in the analyses.

Unsupervised grouping

In a PCA based on all of the genes with a mean expres-
sion > 0.3 RPKM, three principal components (PCs) 
each accounted for more than 10% of the total variation 
(PC1 = 27%, PC2 = 22%, and PC3 = 11%; visualized in 
Online Resources 2 and 3). Sample coordinates along these 
three PCs were analyzed using one-way ANOVA with 
respect to categorical variables (gender and Marsh grade 
according to Table 1) and using Spearman rank correla-
tion with respect to continuous variables (age at biopsy in 
months, anti-TG2, and anti-DG) to identify relationships 
between these variables and the PC coordinates. Marsh 
grade was found to be associated with the coordinates 
along all three PCs (PC1, PC2, and PC3: FDR-adjusted p 
values = 0.024, 0.0018, and 5.9E−07, respectively), but no 
significant associations were found between PCA coordi-
nates and gender.

Significant correlations with anti-TG2 and anti-DG 
were found for PC2 and PC3, with Spearman’s correlation 
coefficients (rs) and FDR-adjusted p values: anti-TG2 PC2 
rs = − 0.46 and p = 0.0043, anti-TG2 PC3 rs = − 0.70 and 
p = 1.8E−06; anti-DG PC2 rs = − 0.55 and p = 0.00035, anti-
DG PC3 rs = − 0.74 and p = 1.7E−07. No significant correla-
tions were found with age at biopsy.

Differential gene expression based 
on histopathology

Significant DEGs with FC > 2 or FC < − 2 between study 
groups M0 and M3 (Table 1) were identified using one-way 
ANOVA (n = 1034). A PCA based on these DEGs identified 
one tight cluster of M0 specimens and one wider cluster of 
M3 specimens. However, one biopsy specimen from study 
group M0 clustered within the M3 study group (data not 
shown) and was, therefore, excluded. A new differential 
expression analysis without the specimen rendered 1177 
DEGs (Online Resource 4). In a PCA based on the 1177 
DEGs, the previously excluded M0 study subject still clus-
tered within the M3 study group (data not shown).

In a previous study, we identified a gene expression pro-
file for CD consisting of eight genes, APOC3, CYP3A4, 
OCLN, MAD2L1, MKI67, CXCL11, IL17A, and CTLA4 [17]. 
Hierarchical clustering of the RNA sequencing data on these 
genes in this study clustered the biopsy specimens correctly 
(Fig. 2). The M0 study subject, who clustered with the M3 
study group according to all DEGs, also clustered with the 
M3 study group in this analysis.

Sixty-five of 79 candidate genes from 42 non-HLA risk 
loci for CD described by Withoff et al. [12] were present at 
levels > 0.3 RPKM in our study. Eleven of these 65 candi-
date genes were among the DEGs with FC > 2 or FC < − 2; 
ten had higher expression levels (CCR3, CIITA, CTLA4, 
FASLG, HCFC1, IRF4, NCF2, POU2AF1, PVT1, and 
RUNX3; FC range = 2.1–3.8) and one had lower expres-
sion levels (TREH; FC = − 5.4) in study group M3 than in 
study group M0. The observed number of DEGs among the 
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Fig. 2   Hierarchical clustering of study subjects with histopatho-
logic assessments corresponding to grade Marsh 3 (M3) or Marsh 0 
(M0) based on RNA sequencing data (this study) from eight genes 
(APOC3, CYP3A4, OCLN, MAD2L1, MKI67, CXCL11, IL17A, and 
CTLA4) that were included in a previously developed gene expression 
profile
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CD candidate genes was higher than expected by chance 
(p = 0.018, Pearson’s χ2 test of independence). By decreas-
ing the FC cutoff to 1.5, an additional ten CD candidate 
genes were included among the DEGs (CCR2, ITGA4, ICOS, 
PLEK, CD28, IRAK1, UBASH3A, TAGAP, PHTF1, and 
FBXO48; data not shown).

Pathway analysis

A total of 197 pathways with significant differential expres-
sion between study groups M0 and M3 were identified using 
Pathway ANOVA. Of these, 87 pathways showed an FC > 10 
or an FC < − 10 (Online Resource 5). Among these, 54 path-
ways involved genes that generally expressed lower levels 
of RNA in study group M3 biopsies than in study group M0 
biopsies. Most of these 54 pathways were related to metabo-
lism (e.g., carbohydrate, lipid, amino acid, and drug metabo-
lism) and transporters (e.g., protein, carbohydrate, vitamin, 
and fat digestion and absorption). Additionally, genes that 
were part of the peroxisome proliferator-activated receptor 
(PPAR) signaling pathway expressed lower levels of RNA 
in study group M3 than in M0. The remaining 33 pathways 
involved genes that generally expressed higher levels of 
RNA in study group M3 biopsies than in study group M0 
biopsies, and the pathways with the lowest p values related 
to protein degradation (e.g., phagosome, proteasome) and 
infection (e.g., bacterial invasion of epithelial cells and 
Salmonella infection). Furthermore, pathways related to 
paracellular permeability (e.g., tight junction and adherens 
junction), and pathways related to immune response (e.g., 
NOD-like receptor signaling pathway and antigen process-
ing and presentation) were represented. Additionally, several 
of the 33 pathways were related to autoimmune conditions 
(Type I diabetes mellitus, systemic lupus erythematosus, and 
autoimmune thyroid disease).

Enrichment analysis

We found that DEGs were significantly overrepresented in 
a total of 1051 of 8181 gene groups annotated to different 
GO terms (Online Resource 6). One hundred and forty-two 
GO terms reached FDR-adjusted p values of < 0.00001, and 
117 of these formed clusters containing two or more GO 
terms (Online Resources 6 and 7) and were described by 
word clouds (Online Resource 6). Word clouds from the 
top GO terms included innate immune system, neutrophil 
migration, and stress response. Both bacteria and virus were 
included in the word clouds. Additionally, words relating to 
transportation, response to wounding, cytokine production, 
cell motility and chemotaxis, metabolism and catabolism, 
and membrane, extracellular, and nuclear components were 
represented.

Validation of potential celiac disease biomarkers

A total of 94 HDEGs were identified, and 29 of these genes 
were selected for validation using real-time PCR (Table 4). 
In an attempt to capture different aspects of CD, the 29 
potential CD biomarkers were selected based on highly sig-
nificant GO terms (FDR-adjusted p value < 0.00001). Two 
reference genes, EIF2B1and ZFR, with no detectable dif-
ferences in expression between study groups M0 and M3 
in the RNA sequencing data (Table 1) were included. The 
mRNA levels of the 29 genes were measured for 51 study 
subjects (Tables 2, 3). Using the selected assays, PIWIL2 
and FCGR3A expression was not detected in a majority of 
the study subjects, thus these genes were excluded from fur-
ther analyses.

For one study subject (Marsh grade 3C) in the Active 
CD group, because the APOC3 mRNA result could not be 
interpreted, the mean APOC3 expression of all of the study 
subjects with Marsh grade 3C histopathology in the Active 
CD group was used for that study subject.

Four subjects in study group M0 and four subjects in 
study group M3 were selected from the exploratory RNA 
sequencing samples (Table 1) for validation by correla-
tion using real-time PCR and were included in groups Not 
CD and Active CD (Table 2), respectively. For 26 of the 
27 potential CD biomarkers, the RNA sequencing and real-
time PCR results correlated well (range r = 0.89–1.00), 
whereas IFI27 showed a lower correlation between data-
sets (r = 0.62). The selected reference genes were not sig-
nificantly differentially expressed between groups Not CD 
and Active CD in the real-time PCR validation set (FDR-
adjusted p values: EIF2B1 p = 0.39 and ZFR p = 0.31).

There was significant differential expression between 
Marsh grade 0 [group Not CD (n = 10), Table 2] and Marsh 
grade 3 [group Active CD (n = 26), Table  2] using the 
Mann–Whitney U test for all 27 potential CD biomarkers 
(FDR-adjusted p values, Table 4). The Spearman rank cor-
relations of the real-time PCR results with Marsh grade 
[Not CD (n = 10) and group Active CD divided into Marsh 
grades 3A (n = 8), 3B (n = 8), and 3C (n = 10)] were sig-
nificant for all 27 potential CD biomarkers (negative cor-
relations: rs range = − 0.61 to − 0.85 with FDR-adjusted 
p value range = 7.5E−05 to 1.9E−10; positive correla-
tions: rs range = 0.78–0.91 with FDR-adjusted p value 
range = 4.6E−08 to 5.7E−13).

Principal component analysis (PCA)

A PCA was constructed using real-time PCR results from 
the 27 potential CD biomarkers for study subjects in groups 
Not CD and Active CD (Fig. 3, Table 2), thus forming a 
baseline. The remaining study subjects (1–15, Table 3) 
were not included in the PCA calculations because they 
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were analyzed with the aim of exploring their gene expres-
sions relative to the baseline. Instead, they were projected 
onto the PCA based on their expression of the 27 potential 
CD biomarkers (Fig. 3). All of the 27 potential CD bio-
markers had comparable influences on the coordinates of 
the study subjects along PC1. Most of the biomarkers also 
had an influence on PC2 with the highest influences com-
ing from CXCL9 and CXCL10. The PCA showed a gradual 
progression from Marsh grade 0 to Marsh grades 3A, 3B, 
and 3C. Study subjects 8–12 (Normalized CD) were posi-
tioned within the group Not CD. The Mann–Whitney U 
test revealed no significant differences between group Not 
CD and Normalized CD subjects with regard to expression 
of the 27 potential CD biomarkers (FDR-adjusted p value 
range = 0.52–0.95).

M3 TG- subjects (13–14, Marsh 3C) clustered with the 
Active CD group, whereas study subject 15 on a GFD (M3 
TG- GFD, Marsh 3A) was closer to the Not CD group. Both 
of the M3 TG- subjects were below 1 year of age, whereas 
the M3 TG- GFD subject was 11 years old. The anti-DG 
levels were 253 and 806 U/mL for the M3 TG- subjects and 
6 U/mL for the M3 TG- GFD subject.

Study subjects 6 (Marsh grade 2–3B) and 7 (Marsh grade 
2) received their diagnoses at the time of the biopsy sam-
pling and projected near Marsh grade 3B study subjects and 
between Marsh grade 3A study subjects and the Not CD 
group, respectively. The CD later subjects (1–4) with no or 
low-grade intestinal injury were scattered from a position 
near Marsh grade 3B study subjects to a position near the 
Not CD group. Five genes, GBP5, CXCL10, IFI27, IFNG, 
and UBD, were significantly differentially expressed between 

the Not CD group and the CD later subjects (Mann–Whit-
ney U test, FDR-adjusted p value range = 0.027–0.043), and 
there was a resemblance between CD later and the Active 
CD group (Fig. 4). Study subject 5, who had low-grade 
intestinal injury and was under investigation for CD at the 
time of the biopsy, but is no longer under investigation for 
CD, was positioned within the Not CD group (Fig. 3).

Associations with differential diagnoses

A total of 10,055 of 13,595 genes (all genes > 0.3 RPKM 
and TNFRSF9) were found in the DisGeNET database, 
which contained records of disease associations for 28 out 
of the 29 potential CD biomarkers. No association was found 
for CAPN8. A total of 484 significant disease associations 
were found, which involved combinations of 2–13 of the 
28 biomarker genes represented in the database, includ-
ing significant associations between CD and APOB, IFNG, 
MMP3, S100A9, UBD, TFF1, TNFRSF9, and FCGR3A 
of the biomarker genes (Online Resource 8). Focusing on 
inflammation/infection in the gastrointestinal tract, 17 dis-
ease–gene associations could be considered relevant, includ-
ing e.g., inflammation, chronic ulcerative colitis, duodenal 
ulcer, enterovirus infections, and chronic gastritis (Online 
Resource 8). Based on this, 17 genes could be considered 
nonspecific for CD. The remaining twelve genes included 
ASAH2, CAPN8, GBP5, LRAT, MMP12, PCK1, PIWIL2, 
SLC6A14, SOAT2, UBD, UGT1A4, and UPB1.
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sion of 27 potential CD biomarkers (Table  4). Gene expressions of 
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GO term clusters and potential biomarkers

Comparing the 29 potential CD biomarkers with the GO 
term clusters (all GO term clusters are found in Online 
Resources 6 and 7), clusters 1, 3, 5, 6, 8, 11, 16, and 18 
included GO terms related to innate and adaptive immunity. 
The genes most frequently associated with these GO term 
clusters included APOB, CD36, CXCL9, CXCL10, CXCL11, 
GBP5, IFNG, LCN2, and S100A9. Clusters 2 and 7 included 
GO terms that related to components of the membrane and 
extracellular structures, and the genes most frequently asso-
ciated with these GO term clusters included ACE, APOB, 
APOC3, CD36, FCGR3A, LPL, PCK1, SLC6A14, UPB1, 
and VNN1. Cluster 10 included GO terms relating to motil-
ity and migration, which included the genes ACE, CXCL9, 
CXCL10, CXCL11, IFNG, and MMP3. Clusters 2, 4, 17, and 
19 included GO terms related to metabolic processes, and the 
genes most frequently associated with these GO term clus-
ters included ACE, APOB, APOC3, LPL, LRAT​, UGT1A4, 
and UPB1. Clusters 12 and 13 included GO terms related 
to transportation, which included the genes ACE, APOC3, 
CD36, LCN2, and SLC6A14. Clusters 9 and 14 included GO 
terms relating to nuclear nucleosomes, components of the 
chromosome, and DNA packaging, which included PIWIL2. 
Cluster 15 included GO terms related to negative regula-
tion of viral genome replication and processes, but did not 
include any of the potential CD biomarkers.

Discussion

In this study, we investigated gene expression in study 
subjects with CD and in non-CD study subjects by RNA 
sequencing of small intestinal biopsies to identify CD bio-
markers and to investigate biological pathways involved in 
CD. Potential CD biomarkers were followed-up by real-time 
PCR in a separate group of study subjects with varying his-
topathologies and antibody levels. Previously, we created 
a gene expression panel to reflect crypt-villi architecture, 
the inflammatory response, and intestinal permeability to 
classify biopsies according to Marsh grade by screening a 
selection of potential biomarker genes [17]. In this study, 
we used an unbiased approach by selecting DEGs identified 
by RNA sequencing. Then, based on analyses of biological 
pathways, we selected a subset of the DEGs as potential CD 
biomarkers.

Non‑HLA risk loci genes

Based on RNA sequencing results, we identified 1177 
DEGs. By comparing with CD candidate genes based on 
results from genome wide association studies [12], it was 
noted that out of 65 CD candidate genes (expressed at levels 

above the selected cutoff) eleven were included among the 
identified DEGs. Plaza-Izurieta et al. studied the expres-
sion of 45 CD candidate genes located in non-HLA CD risk 
loci [43]. Thirty-seven of those CD candidate genes were 
in common with those investigated in our study. Of the 37 
genes, Plaza-Izurieta et al. identified 14 DEGs, whereas our 
study identified eight DEGs, and CIITA, CTLA4, FASLG, 
PVT1, and TREH were identified as DEGs in both studies. 
By reducing the FC requirement to 1.5, we identified five 
additional CD candidate genes (CCR2, ICOS, PLEK, CD28, 
and UBASH3A) which were also identified by Plaza-Izurieta 
et al. Discrepancies between the two studies may be attrib-
uted to differences in the gene sets analyzed, the genes con-
sidered as significantly differentially expressed, and to the 
different methodologies (fluidigm arrays vs. RNA sequenc-
ing) used. Increased expression of both CIITA and CTLA4 
has been associated with CD [17, 19, 44], and increased 
expression of the Fas ligand, which is encoded by FASLG, 
has been shown in lamina propria lymphocytes and intraepi-
thelial lymphocytes in active CD when compared with non-
CD controls [45].

Our analysis showed that candidate genes from CD-
associated risk loci were overrepresented among genes that 
were differentially expressed between a histologically nor-
mal duodenal mucosa and a mucosa with typical CD lesions.

Gene enrichment and pathway analysis

The 1177 DEGs were analyzed for overrepresentation in 
gene groups annotated to different GO terms, and addition-
ally, pathways with differential mean gene expression in CD 
subjects compared with non-CD subjects were identified. 
These GO terms and pathways represented a number of dif-
ferent functions, many of which have been highlighted in 
other gene expression studies of CD biopsies using micro-
arrays [14–16] and two dimensional difference gel electro-
phoresis [46] and in a microarray gene expression study of 
epithelial cells from individuals with active CD [18]. These 
studies are not directly comparable with each other or with 
this study due to differences in starting material, detection 
methods, and statistical methods for the analysis of biologi-
cal context, but all of these studies still identified metabo-
lism and cell cycle/proliferation. Other biological contexts 
shared with our study, although not shared with all of the 
studies, include immune response, cholesterol homeostasis, 
cell communication and organization, adhesion, transport 
facilitation, apoptosis, and antigen presentation. Pathways 
shared by this study and an RNA sequencing study of 
CD4 + T cells in CD [19] include pathways associated with 
metabolism and various autoimmune conditions.

Although one must be careful in the interpretation of 
results from pathway analyses based on gene expression 
in tissue samples made up of different cell types (e.g., 
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small intestinal biopsies), we still wish to draw atten-
tion to some interesting findings, and to contextualize 
these findings in relation to current knowledge regarding 
CD. As such we have identified differential expression of 
genes involved in pathways associated with interactions 
with bacteria (e.g., bacterial invasion of epithelial cells, 
shigellosis, and Salmonella infection). Studies of the duo-
denal microbiota in children with active CD compared 
with non-CD controls have found an unbalanced micro-
biota associated with CD ([47–49], reviewed in [50]), and 
gene expression in epithelial cells from CD patients have 
indicated a possible response to CD-associated bacteria 
[44]. Increased intestinal permeability has been indicated 
in CD [51–53], and by systematic annotation of CD loci, 
Kumar et al. identified a subset of four CD-associated 
genes that are important in maintaining the function of 
the intestinal barrier [20]. Also our study indicate a dis-
turbed epithelial barrier function with higher expression 
in active CD subjects compared with non-CD subjects of 
genes involved in for instance tight junction, adherens 
junction, and the regulation of actin cytoskeleton.

Our analysis showed that among pathways expressed 
at higher levels in CD lesioned duodenal mucosa as com-
pared to non-CD mucosa were those relating to immune 
response, microbial infection, phagocytosis, and intestinal 
barrier function, while pathways relating to metabolism 
and transportation were expressed at lower levels.

Potential biomarkers

Twenty-nine potential CD biomarkers were identified 
based on differential expression in small intestinal biop-
sies from CD and non-CD subjects and by information 
from highly significant GO terms. Both the combination 
of biomarkers as well as their expression profile may 
confer specificity for CD, but needs to be investigated. 
An analysis of disease-gene associations present in the 
DisGeNET database indicated that 17 of the potential 
CD biomarkers could be part of a general response to 
inflammation/infection in the gastrointestinal tract. Of the 
remaining 12 potential CD biomarkers, ASAH2, CAPN8, 
GBP5, LRAT, MMP12, PCK1, PIWIL2, SLC6A14, SOAT2, 
UBD, UGT1A4, and UPB1, seven are involved in meta-
bolic processes: intracellular cholesterol esterification 
(SOAT2 [54]), gluconeogenesis, glyceroneogenesis, and 
cataplerosis (PCK1 [55]), esterification of retinols (LRAT​ 
[56]), metabolism of dietary sphingolipids (ASAH2 [57]), 
amino acid transportation (SLC6A14 [58]), glucuronida-
tion of lipophilic substances (UGT1A4 [59]), and synthe-
sis of ß-alanine and ß-aminoisobutyric acid (UPB1 [60]). 
Among the remaining biomarkers, MMP12 is involved 
in degradation of the extracellular matrix [61]. CAPN8 

encodes a proteolytic enzyme and has been implicated 
in gastric mucosal defense in mice [62]. PIWIL2 is asso-
ciated with stem cell self-renewal, gametogenesis, and 
tumorigenesis [63]. MMP12 [14, 61], UBD [14, 19, 64], 
PIWIL2 [19], and GBP5 [19] have previously been shown 
to be differentially expressed in CD subjects compared 
with non-CD subjects. In addition, relating to UGT1A4, 
UGT enzyme activity has been found to be lower in CD 
subjects than in non-CD subjects [65].

Our analysis did not reveal a general contribution to 
inflammation or infection in the gastrointestinal tract for 
almost half of the potential CD biomarkers.

Gene expression in low‑grade intestinal injury

Five of the selected biomarkers, GBP5, CXCL10, IFI27, 
IFNG, and UBD, showed higher expression levels in sub-
jects with no or low-grade intestinal injury (Marsh grade 
0–2) who later developed CD than in non-CD subjects, and 
the higher expression levels were comparable to expression 
levels in active CD subjects (Fig. 4).

In the enrichment analysis, GBP5, CXCL10, and IFNG 
were associated with clusters of GO terms related to immu-
nity. Expression of the chemokine CXCL10 can be induced 
by IFN-γ, and IFNG and CXCL10 expression has previ-
ously been shown to be higher in active CD than in non-
CD controls [15–17, 66]. Intestinal IFNG expression has 
been shown to correlate with Marsh grade [67]. The protein 
encoded by GBP5 belongs to a family of IFN-γ-induced 
p65 GTPases, is a marker of IFN-γ-induced classically acti-
vated macrophages, and is involved in NLRP3-mediated 
inflammasome assembly [68]. UBD is involved in the ubiq-
uitin–proteasome system, participates in activation of the 
NF-κB pathway [64], and elevated expression of UBD has 
previously been linked to CD [14, 19, 64]. IFI27 encodes 
a protein that is involved in apoptosis [69] and elevated 
expression of IFI27 has previously been found in epithelial 
cells from CD patients when compared with controls [44].

Our analysis indicated the existence of differentially 
expressed genes in children who later received a CD diag-
nosis compared to those who did not, thus suggesting that an 
unbiased RNA sequencing analysis of this subgroup might 
shed light on important pathways in the pathogenesis of CD.

Considerations

PC2 and PC3 in a PCA based on all detectable gene expres-
sions correlated with anti-TG2 and anti-DG levels and with 
Marsh grade, but not with gender. However, these factors 
did not explain most of the variation in PC1, although 
Marsh grade accounted for some of the variation in PC1. 
Possibly the variation in PC1 could be explained by path-
ologic features not captured by Marsh grade. In addition, 
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the cell compositions of the small intestinal biopsies (e.g., 
enterocytes, goblet cells, Paneth cells, and different immune 
cells) may be a factor because RNA expressions are means 
of expression in all of the various cell types when analyz-
ing whole intestinal biopsies rather than specific cell types 
and this factor could also affect pathway and enrichment 
analyses.

For one of the RNA sequencing study subjects, the PCA 
analysis based on all of the DEGs resulted in a discrep-
ant classification compared to the classification based on 
histopathology and serology. The same discrepant clas-
sification occurred using RNA sequencing data from the 
eight genes included in our previously suggested CD gene 
expression profile [17]. Although the levels of CD-specific 
antibodies were below cutoff in this subject, the level of 
antibodies to native gliadin was somewhat elevated (10 
U/mL). The reason for the discrepancy between the histo-
pathology and gene expression classifications is difficult 
to identify, but may result from a patchy distribution of 
intestinal lesions.

The objective of this study was to identify duodenal 
gene expression biomarkers for CD that can differentiate 
between patients who come to the clinic with suspected 
CD and are diagnosed with CD from patients who are not 
diagnosed with CD, as well as to follow mucosal recov-
ery in patients on a GFD. Our data suggest that we have 
identified potential CD biomarkers that will accomplish 
this aim, however, we do not know if we can separate 
CD from differential diagnoses, such as duodenal Crohn 
disease or autoimmune enteropathy by gene expression 
profiling. Some of these potential biomarkers could also 
show the same patterns in differential diagnoses associ-
ated with inflammation or infection in the gastrointestinal 
tract as indicated by the disease–gene associations found 
for several of the genes. However, the level of increase or 
decrease in expression of some genes may differ between 
medical conditions, and the combination of genes that 
are expressed differentially may differ. Additionally, both 
the requirement of a response to GFD for a CD diagno-
sis and the incidence of differential diagnoses should be 
considered in this context. Nevertheless, the discrimina-
tory capacity of the potential CD biomarkers cannot be 
fully estimated without the analysis of specimens from 
differential diagnoses. The presence of mild histologi-
cal lesions (as in Marsh 1) in itself shows low specific-
ity for CD and must be interpreted with caution [1]. In 
such cases, the result of a gene expression profile may 
be taken into account along with other factors, such as 
genetic background, symptoms, CD-specific antibodies, 
and response to a GFD. Presence of villous shortening 
and crypt hyperplasia in the small intestine has signifi-
cantly higher specificity for CD, but these characteristics 
can occasionally be associated with differential diagnoses, 

such as autoimmune enteropathy, duodenal Crohn disease, 
or drug-induced mucosal injury [6]. A gene expression 
profile based on whole biopsies could be helpful in cases 
displaying villous shortening and crypt hyperplasia, for 
example, when suboptimal orientation of biopsy speci-
mens hampers histopathologic assessment.

The analysis of gene expression in whole biopsies by real-
time PCR is a rather straight-forward procedure, and the 
ability of biomarkers to diagnose CD and to follow mucosal 
recovery on a GFD was the main focus of this study. How-
ever, for future potential treatment strategies, the biological 
pathways involved in CD is of great interest, and hopefully 
this study can contribute also to that very important aspect 
of CD diagnostics.

Conclusions

The results from this study indicated that in CD (1) there 
is differential expression of genes located in CD risk loci, 
(2) a large number of pathways are affected, involving 
amongst others immune response, microbial infection, 
phagocytosis, intestinal barrier function, metabolism, 
and transportation, (3) there is a potential to find gene 
expression CD biomarkers in duodenal mucosa, (4) differ-
ential expression is present already in low-grade intestinal 
injuries.

Gene expression should be investigated further, espe-
cially targeting low-grade intestinal injuries to find path-
ways and biomarkers involved in early stages of CD 
pathogenesis.
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