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Abstract
Some populations will cope with human-induced environmental change, and
others will undergo extirpation; understanding the mechanisms that underlie
these responses is key to forecasting responses to environmental change. In
cases where organisms cannot disperse to track suitable habitats, plastic and
evolved responses to environmental change will determine whether
populations persist or perish. However, the majority of studies consider
plasticity and evolution in isolation when in fact plasticity can shape evolution
and plasticity itself can evolve. In particular, whether cryptic genetic variation
exposed by environmental novelty can facilitate adaptive evolution has been a
source of controversy and debate in the literature and has received even less
attention in the context of human-induced environmental change. However,
given that many studies indicate organisms will be unable to keep pace with
environmental change, we need to understand how often and the degree to
which plasticity can facilitate adaptive evolutionary change under novel
environmental conditions.
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Introduction and context
In the absence of sufficient compensatory mechanisms to cope 
with human-induced environmental changes, local extirpation of 
populations and possibly extinction of entire lineages will almost 
certainly occur1. Quantifying organismal capacities for such 
compensatory mechanisms is therefore paramount to forecasting 
responses to ongoing and future human-induced changes to the 
environment2. Of particular importance is quantifying the relative 
contributions of phenotypic plasticity, where a single genotype pro-
duces a range of different phenotypes in response to environmental 
variation, and evolution, where additive genetic differences underlie 
phenotypic change across generations or among populations. This 
distinction is critical, as plasticity and evolution often occur over 
different timescales and can operate under different constraints3.

Certainly much progress has been made over the last few decades 
in disentangling plastic from evolved changes in phenotypes under 
human-induced environmental change3–12. Yet the distinction of 
plastic versus evolutionary contributions in a given population at 
a given time may be an oversimplification, as these mechanisms 
can interact to shape phenotypic changes in populations over time6. 
Basic research on evolution has long debated whether plasticity  
facilitates or constrains adaptive evolution13. However, this idea has 
only recently come into focus for theory14,15 and empirical work16,17 
involving responses to human-induced environmental change.  
Here, we briefly review the interplay between plastic and evolu-
tionary responses to human-induced environmental change and 
highlight new research areas for future development on the role  
of plasticity in shaping evolutionary responses to changes in  
climate, land-use, and environmental toxins. While we consider 
these environmental stressors separately for organizational pur-
poses in this review, we acknowledge that many of these factors 
are not mutually exclusive, e.g. land-use changes can often include 
changes in environmental toxicity.

Phenotypic plasticity as a facilitator versus constraint 
on evolution
Evolutionary theory predicts that natural selection on environmen-
tally insensitive (canalized) traits imposed by novel environments 
will drive populations toward their new local fitness optima4, yet 
evolution in this sense might not achieve large enough shifts in trait 
values or be fast enough to keep pace with the scale and rapidity 
of human-induced changes to the environment before populations 
undergo extirpation. Limits on the amount of standing genetic 
variation in populations, mutation rates, fitness tradeoffs, the 
strength and consistency of selection, and the genetic correlations 
among traits can all serve to slow the rate of evolutionary change5.

Likewise, there are limits on shifts in trait values owing to 
existing phenotypic plasticity. Most traits exhibit phenotypic 
plasticity. However, plasticity may simply fail to produce shifts 
in phenotypes of a great enough magnitude to cope with rapid 
environmental change18. There is also no guarantee that plasticity 
will be adaptive for the novel conditions generated by human-
induced environmental change19. Whether plasticity is adaptive 
or not depends on whether the environmentally induced pheno-
types are closer or farther from the local optimum. Because novel 
environments are, by definition, environments that organisms have 

never experienced previously, it is entirely plausible that adaptive 
plasticity in current environments will be maladaptive in the novel 
environment20,21. This prediction should, however, be tempered to 
some degree, as novelty can arise not only through environments 
not previously experienced but also through alterations to the 
frequency of environmental conditions experienced (e.g. 22); in 
the latter case, organisms may be more likely to evolve adaptive 
plasticity, as they are responding to frequency differences rather 
than absolute differences in their environment.

Given that existing plasticity and evolution may on their own be 
insufficient to cope with environmental change, there has been 
renewed interest in the case where novel environments reveal 
cryptic genetic variation on which selection can act to refine the 
form and regulation of this novel phenotypic variation (Figure 1)23. 
Plasticity may be a key source of evolutionary innovation, 
allowing organisms to cope with the large magnitude and rapid 
rate of human-induced environmental changes (the plasticity-first 
mechanism of evolutionary change; see 13). Indeed, plasticity 
may be an especially efficient source of variation, as the effects 
of environmental novelty can reach each individual of the popu-
lation, unlike mutations, which arise in a single individual and 
are then likely to disappear24. Despite the potential importance of 
the plasticity-first mechanism in the context of human-induced  
environmental change, there are relatively few empirical data that 
address its components, coupled with abundant controversy in the 
literature over plasticity’s role in shaping evolutionary responses to 
environmental novelty.

Evidence is accumulating in support of the hypothesis that novel 
environments reveal cryptic genetic variation on which selection 
can act25. Recent meta-analyses suggest that novel environments 
considered broadly tend to reveal cryptic genetic variation26, as 
do those that focus specifically on human-induced novel environ-
ments27. However, most of this human-induced environmental 
novelty involves variation in resource quality and quantity, rep-
resenting a small subset of the environmental novelty induced 
by climate change, land-use change, and environmental toxins 
that are the focus of this review. As a consequence, while there is 
evidence that human-induced environmental change can reveal 
cryptic genetic variation, a broader range of environmental changes 
needs to be examined to establish the generality of this pattern. 
Nevertheless, laboratory selection experiments have shown that 
this uncovered plastic variation can facilitate evolutionary change 
via genetic accommodation (Box 1), which describes the evolution 
of environmentally induced phenotypes, including the evolution of 
canalized traits from initially plastic traits through the process of 
genetic assimilation23,28,29. Despite this, considerably fewer studies 
have tested the relationship between initial plasticity and subse-
quent evolution in natural populations (but see for example 30,31).

Human-induced novel environments are excellent sources to look 
for the exposure of cryptic genetic variation and to explore plasticity’s  
role in shaping evolution, but comparatively few studies have 
taken advantage of these opportunities31. On the one hand, 
human-induced changes to the environment yield an imperative 
to understand plastic and evolutionary responses to new environ-
ments for the goal of biodiversity forecasting and conservation 
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Box 1. Plasticity’s role in shaping evolution.

How plasticity can constrain evolution:

•    If plasticity in novel environments results in high mean fitness 
(i.e. adaptive plasticity), then plasticity can weaken subsequent 
selection in the novel environment and hide genotypic variation 
from selection86. The occurrence of adaptive plasticity in novel 
environments is likely to occur only when the novel environment 
is similar to native or ancestral environments and therefore a 
product of past selection87.

•    Plasticity may drive a population to extirpation in novel 
environments before adaptive evolution can occur if plasticity 
results in very low mean fitness (i.e. maladaptive plasticity), for 
example through developmental instability or a breakdown in 
homeostasis86,87.

How plasticity can facilitate evolution:

•    Plasticity may facilitate evolution in novel environments when 
it acts to buffer populations from extirpation long enough for 
selection to act on standing or cryptic genetic variation86,87.

•    Gene by environment interactions may reveal cryptic genetic 
variation in novel environments when environmental variation 
falls outside the range generally experienced, exposing 
heritable phenotypes that were not expressed in the ancestral 
environment to selection. Since the speed of evolution is in 
part dependent on the degree of genetic variation underlying 
phenotypic traits under selection, evolution may proceed more 
rapidly when novel plasticity is revealed24,88,89.

How plasticity itself can evolve:

•    Plasticity can evolve when selection acts on genetic variation 
in the phenotypic expression of individual genotypes across 
environments (i.e. reaction norms). This process has been 
named genetic accommodation24. Under this broad umbrella, 
selection may act on genetic variation to change the slope 
of the reaction norm or the mean of a trait expressed across 
environments90. Selection to canalize the expression of a novel 
environmentally induced phenotype has been specifically 
termed genetic assimilation28,91,92, and its reverse, the 
restoration of the ancestral phenotype in a novel environment, 
has been termed genetic compensation20.

planning, but on the other hand, these often-rapid human-induced  
environmental changes may help overcome historical chal-
lenges in assessing plasticity’s role in evolutionary change. Spe-
cifically, many of the comparisons between ancestral and novel  
populations represent divergence processes that are relatively old32. 
Rapid human-induced environmental changes provide access to  
the early stages of plastic and evolved responses to new  
environments. Human-induced environmental novelty may also be  
more straightforward for attribution—that is, determining the prox-
imate drivers of changes in the environment—as compared with 
historical comparisons between ancestral and novel populations 
where attribution is perhaps less clear and there is more time for 
suites of different environmental changes to accumulate.

In this review, we discuss recent work on the interplay between 
plastic and evolved responses to human-induced environmental 
change. Specifically, we consider whether plasticity creates novel 
opportunities for selection to act, thereby facilitating evolution, 
or whether plasticity buffers environmental variation, dampening  
selection and constraining evolution (Box 1). Because we are 
covering a diverse array of changes from global climate change 
to environmental toxins with the aim of stimulating discussion 
on plastic and evolutionary responses to these stressors, we take a 
case study approach rather than an exhaustive review, highlighting 
recent and transformative work in the field.

Existing plasticity, evolutionary potential, and the 
role of plasticity in shaping evolutionary responses 
to human-induced environmental change
Climate change
Humans have made lasting impacts on the environment for 
thousands of years, from megafaunal extinctions during the 
late Quaternary period33 to rapid industrialization and global  
temperature rise within the last century34. The magnitude of recent 
human-induced changes, particularly to climate, has already led to 
the global redistribution of plants and animals in space and time35,36. 

Figure 1. Adaptive trait evolution in a novel environment. When a population encounters a novel environment (for example, novel urban 
and ancestral rural habitats), it can either express hidden, habitat-dependent heritable variation in a given trait (top row) or not (bottom row). 
In the case where this variation is expressed, selection (middle column panels) can refine this phenotypically expressed genetic variation 
into an optimal canalized trait. In the absence of habitat-dependent genetic variation (and assuming a lack of novel mutation), the population 
cannot evolve towards the new trait optimum.
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For those organisms that cannot get out of the way of climate 
change, they must rely instead on plastic and evolved responses. 
A major focus has been on whether current amounts of phenotypic 
plasticity and evolutionary potential are sufficient to keep pace 
with projected climate velocities37,38. Of course, there are many 
effects of contemporary global climate change—from atmospheric  
deposition of elemental compounds to shifts in precipitation  
patterns—but temperature is perhaps the best studied and one that 
impacts organisms from biochemical rate processes up through 
species interactions, community dynamics, and ecosystem 
function39.

By the end of the century, global temperature is expected to rise 
by over 4°C under the highest greenhouse gas emissions scenarios,  
which we are currently tracking34. Studies of organismal capaci-
ties to cope with this change, either through plasticity or 
evolution, yield mixed evidence for whether organismal changes 
will be large enough and proceed fast enough to keep pace with 
climate change18,38,40,41. In general, there has been a strong research 
emphasis on existing plasticity in phenology, morphology, physi-
ology, and behavior, perhaps because of the assumption that 
plasticity will operate over a timetable commensurate with rapid  
global climate change and perhaps also stemming from the added 
challenges of assessing evolutionary responses42. This emphasis 
is not without merit, as plasticity has been broadly shown to be a 
critical component of the response to climate change43. However, 
existing plasticity is not always sufficient to cope with climate 
change. For example, Anderson and colleagues found a substantial 
role for phenological plasticity in plant flowering time under recent 
climate change but concluded that plasticity alone is insufficient 
and evolutionary change is needed for these populations to keep 
pace44. While such variance partitioning studies of responses to 
climate change among plastic and evolved components is growing,  
there remain comparatively few studies assessing how this 
plasticity shapes evolutionary responses3.

Those studies that have explored the role of plasticity in facilitating 
adaptive evolutionary responses to climate change have found 
little evidence in support of this mechanism, though this may be 
as much a product of the organisms and systems for which these 
data are available as it is a general biological pattern. For example, 
research on lizard responses to climate change from Buckley and 
colleagues indicates that plasticity in thermoregulatory behavior 
constrains lizard evolutionary responses to warming by shielding 
variation in thermal performance from selection45. As a notable 
contrast, Logan and colleagues found evidence of selection on 
thermal performance traits when lizards were transplanted to a 
novel thermal environment46, but plasticity’s role in facilitating or 
constraining evolutionary change was not reported. It is worthwhile 
to consider why there are so few studies on genetic accommoda-
tion under climate change. One important limitation may be how 
the ancestral and novel populations are assessed under a temporal 
change in climate. Resurrection studies or studies which compare 
the leading edge of a rapid range expansion to the center range 
seem to be strong candidates for such an analysis47. Next, we 
consider two environmental changes—land-use and pollution—
where the ancestral and novel populations are readily accessible.

Land-use change
Although there are many types of land-use changes occurring, 
including deforestation and habitat fragmentation, to which 
organisms respond through plasticity and evolutionary change48, 
urbanization is an increasingly important source of land-use 
change. Rates of urbanization are accelerating globally, with current  
levels of urbanization at three percent of the Earth’s landmass, 
excluding Greenland and Antarctica49. This may not seem like an 
exceptionally large number, but over half of the world’s population 
lives within these urbanized areas, and pockets of urbanization dot 
almost every corner of the globe50. Although studies have begun 
to quantify community composition and phenotypic changes in 
populations across urban and nearby rural habitats, few have 
explored the mechanisms that contribute to these changes. Because 
the urbanization process offers both novel urban habitats in 
close spatiotemporal proximity to ancestral rural habitats and the 
potential for replication across independent ancestral-novel com-
parisons51,52, urbanization gradients are excellent, but underused, 
sources of ancestral-novel comparisons needed for assessing 
plasticity’s role in shaping evolutionary change. Of particular inter-
est is the rapid change in environmental temperature over space 
and time under the urbanization process, especially as urban  
warming can serve as a space-for-time proxy to understand responses 
to global climate change. Urban heat island effects are relatively 
consistent across many regions, with temperature increases 
in excess of several °C in the air column and over 10°C at the 
surface being possible (though there are exceptions, especially 
urbanization in desert habitats53). Though, of course, many other 
changes accompany the urbanization process, including changes 
in habitat structure, nutrient availability, and pollution54.

In general, studies that explore plastic and evolutionary responses 
to urbanization have lagged behind climate change studies. This 
is surprising, since one of the best-known and earliest examples 
of rapid evolutionary change, industrial melanism in peppered 
moths, was itself driven by the fast progression of urbaniza-
tion (and environmental pollution) associated with the industrial 
revolution55,56. More recently, Donihue and Lambert54 provided 
an excellent overview of how to assess and disentangle plas-
tic and evolved responses to urban land-use change in addition 
to an exhaustive review of the studies that have done so in urban 
environments. They defined three criteria for demonstrating adaptive 
evolutionary change in response to urbanization, including quan-
tifying phenotypic shifts in traits, measuring the fitness effects 
and genetic basis of those traits, and identifying drivers of trait 
changes. Only two studies met these criteria at the time of the 
review, including one study on killifish responses to elevated 
polychlorinated biphenyl pollution in urban environments57 and 
another on the reduction of dispersing versus non-dispersing 
plant seeds in urban environments58. Notably, the killifish study  
highlights the fact that the environmental stressors we consider in 
our review—climate change, land-use change, and environmental 
toxins—are not mutually exclusive, as, for example, killifish 
responses to polychlorinated biphenyl compounds may be consid-
ered in context of both land-use change and environmental toxicity.  
Relatedly, structural changes in urban environments, specifically 
replacing grassland and forest with impervious surfaces like roads, 
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sidewalks, and buildings, contributes to the urban heat island 
effect; as the study on plant seed production demonstrated, 
these structural changes can also serve as an agent of selection 
themselves. Dispersing seed pods are selected against in urban 
environments because there are large gaps in suitable habitat 
owing to intervening sidewalks and roads58.

Evidence consistent with an interpretation of urban evolution 
continues to accumulate. For example, Winchell and colleagues59 
have found phenotypic shifts in lizard morphology in urban areas 
where lizards use artificial surfaces as perches as opposed to 
vegetation in unaltered habitats (an interesting parallel with the 
structural changes in urban habitats altering plant seed dispersal);  
a common garden experiment suggested a genetic basis for 
these changes in morphology, though the adaptive nature of 
these changes has yet to be demonstrated, and maternal effects 
cannot be fully excluded with their use of first-generation offspring 
from field-collected parents. Interestingly, evolutionary responses 
to urban heat islands appear to be one of the least-studied aspects 
of the urbanization process despite the ubiquity of the urban heat 
island signal among cities. Angilletta and colleagues60 demonstrated 
an increase in upper thermal tolerance in city ants compared with 
rural ants, though it is unclear whether this shift is adaptive and 
has a genetic basis. McLean and colleagues used a common garden  
experiment to demonstrate a genetic basis for shifts in growth rate 
of a chitinolytic fungus along an urbanization gradient, though, 
again, the adaptive nature of these changes is unclear, and only one 
urban-rural comparison was made61. Although urban evolution is  
gaining traction in the literature, the use of urban environments 
to assess the role of plasticity in shaping evolutionary responses  
has been used only to a marginal extent and remains open for  
future development. In particular, replicated urban-rural compari-
sons with multigenerational common garden studies are needed 
to explore the potential for urban evolution and its interplay with 
plasticity.

Environmental toxins
In conjunction with increasing CO

2
 emissions and changes in 

land-use, more than a century of industrialization has led to the 
accumulation of toxins in the environment, notably heavy metal and 
pesticide contaminants62. Environmental toxins can have severe nega-
tive consequences for organismal fitness and population survival  
through a diverse range of effects and mechanisms of action63. 
Despite this diversity and in contrast to urbanization and climate 
change, the evolution of resistance to environmental toxins is well 
established64–66: for instance, the classic example of divergent evo-
lution and speciation of plant populations living in and adjacent to 
toxic mine tailings67–70.

Phenotypic plasticity also contributes to organismal responses 
to environmental toxins, as prior exposure to heavy metals71 and 
pesticides72 can reduce the negative effects of later exposure.  
Interestingly, exposure to one toxin may induce a plastic response 
with positive fitness effects (i.e. an adaptation) to other toxins73,74, 
but the generality of this inducible “cross-tolerance” is currently 
unknown. This shared adaptive plasticity does not appear to be 
restricted to toxins with common mechanisms of action, contrary 
to expectations73. Indeed, this result suggests an important role of 
plasticity in the evolution of toxin tolerance, as cross-tolerance 

would induce initially adaptive rather than maladaptive plasticity  
in response to novel toxins, possibly facilitating subsequent  
evolutionary refinement.

Like urbanization, the spatiotemporal heterogeneity of envi-
ronmental toxins provides an opportunity to evaluate the role of  
plasticity in shaping evolution. Indeed, comparisons among  
populations differing in their exposure to pesticides provide  
some of our best evidence that genetic assimilation plays a role 
in evolutionary responses to anthropogenic change. Historically,  
studies focused on the evolution of tolerance in pest species directly 
targeted by pesticide application. A recent emphasis on non-pest  
species incidentally affected by pesticides has provided novel 
insights into the mechanisms underlying pesticide tolerance. 
By comparing pesticide tolerance among naïve populations to  
populations exposed to pesticides in contaminated environments 
(e.g. populations close to agriculture), numerous studies have now 
found evidence for the evolution of greater resistance to pesti-
cides in affected populations of anurans and aquatic invertebrates  
compared to naïve populations73,75–83.

Using an agricultural land-use gradient in a space-for-time  
substitution, Hua and colleagues recently extended these findings 
to test key predictions of genetic assimilation (Box 1): the canali-
zation of inducible phenotypic variation by the action of natural 
selection. By quantifying both evolved and inducible (i.e. plastic) 
tolerances of wood frog populations varying in their distance from 
agriculture to an insecticide, Hua and colleagues found that evolved 
tolerance to a potentially lethal exposure of insecticide decreased 
with distance from agriculture76,79. In contrast, the degree of plastic  
tolerance induced from an initial sublethal exposure increased 
with distance from agriculture76. Together, these results are con-
sistent with the predictions of genetic assimilation; exposure to 
novel environments induced the expression of phenotypic variation 
in ancestral populations, and this variation was then canalized in  
populations with a history of exposure to the novel environment28,29.  
We emphasize that while these studies provide indirect evidence of 
genetic assimilation, more direct tests are needed. To accomplish 
this goal, resurrection studies and the study of extant populations 
varying in their time of exposure to novel environments may pro-
vide powerful means of testing the role of plasticity and evolution 
for responses to human-induced environmental change.

Ways forward: improving our understanding of plastic 
and evolutionary responses to a rapidly changing 
world
That plasticity is a powerful mechanism for allowing organisms 
to cope with rapid human-induced environmental change has 
widespread empirical support. Evidence in support of rapid evo-
lution in response to environmental change is less abundant3 but 
accumulating. Although quantifying organismal capacities to 
respond to environmental change through plasticity and evolution is 
and should continue to be a major research priority, a key 
shortcoming in this area is a limited quantity of empirical data on 
the interaction of these mechanisms, specifically the role of plastic-
ity in shaping evolutionary responses to environmental change31. 
Climate change, land-use change, and environmental toxins pro-
vide conservation and biodiversity forecasting challenges; however, 
these agents of environmental change also provide opportunities 
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to explore the potential for novel environments to release cryptic 
genetic variation and how selection might act on that variation to 
enact evolutionary change. To move forward, we suggest research-
ers should especially focus on (i) quantifying the expression of 
cryptic genetic variation in the wild, (ii) assessing patterns of 
selection on cryptic genetic variation in natural populations, and 
(iii) quantifying the strength and direction of evolutionary versus 
plastic responses to novel environments. An especially power-
ful approach may be assessing evolutionary and plastic responses 
across a gradient of time rather than space. By identifying and 
studying populations exposed to novel selective environments for 
different lengths of time using multi-generational common garden 
designs, we can directly assess the mechanisms underlying 
these responses. Human-mediated changes via urbanization and 
environmental toxins may be especially amenable to such an 
approach where historical records can be harnessed to calibrate 
temporal variation in the selective environment.

In addition to the issues with plastic and evolutionary responses 
to environmental change that we considered here, several related 
areas are also seeing further developments. One of these areas 
concerns the covariation between selection and genetic variation 
when both are affected by the same environmental factor27,84,85. 
A major assumption underlying the genetic accommodation  
mechanism is that there will be a positive relationship between the 
degree of genetic variation revealed and the strength of natural  
selection in novel environments. However, this outcome is not 
guaranteed, and it is possible that genetic variance could be 
lower for the targets of selection when selection is stronger; in 
practical terms, this means that evolution could be slower, as trait 
heritability (the ratio of additive genetic variance to total phenotypic 
variance) would be lower in the novel environment despite stronger 
selection. There have been very few empirical examinations of the 
nature of the covariation between the amount of variation exposed 

and the strength of selection in novel environments. Wood and 
Brodie have examined this relationship with several agents of 
selection, including variation in environmental temperature27. Inter-
estingly, while the authors found the strength of selection to vary 
with temperature, this variation was not correlated with genetic 
variance, as greater and lesser values of genetic variance were 
detected with increasing strength of selection. In contrast,  
environmental novelty, as defined by the study authors, consistently 
revealed increased genetic variance but the studies synthesized by 
Wood and Brodie did not concurrently measure selection in these 
novel environments. Going forward, we need additional empirical 
data on both the strength and targets of selection and the degree of 
heritable variation available for selection to act to determine when 
and how the assumption of a positive correlation between strength 
of selection and revealed genetic variance in novel or changing 
environments is upheld or broken. Evolution on contemporary 
timescales in response to human-induced environmental change 
provides at least as many opportunities to explore fundamental 
questions on interactions among plasticity, organismal ecologies, 
and the magnitude and direction of evolutionary change as it does 
challenges in predicting complex responses to environmental 
change for conservation planning.
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