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Abstract: COVID-19 and pneumonia detection using medical images is a topic of immense interest
in medical and healthcare research. Various advanced medical imaging and machine learning
techniques have been presented to detect these respiratory disorders accurately. In this work, we
have proposed a novel COVID-19 detection system using an exemplar and hybrid fused deep feature
generator with X-ray images. The proposed Exemplar COVID-19FclNet9 comprises three basic steps:
exemplar deep feature generation, iterative feature selection and classification. The novelty of this
work is the feature extraction using three pre-trained convolutional neural networks (CNNs) in the
presented feature extraction phase. The common aspects of these pre-trained CNNs are that they
have three fully connected layers, and these networks are AlexNet, VGG16 and VGG19. The fully
connected layer of these networks is used to generate deep features using an exemplar structure,
and a nine-feature generation method is obtained. The loss values of these feature extractors are
computed, and the best three extractors are selected. The features of the top three fully connected
features are merged. An iterative selector is used to select the most informative features. The
chosen features are classified using a support vector machine (SVM) classifier. The proposed COVID-
19FclNet9 applied nine deep feature extraction methods by using three deep networks together. The
most appropriate deep feature generation model selection and iterative feature selection have been
employed to utilise their advantages together. By using these techniques, the image classification
ability of the used three deep networks has been improved. The presented model is developed using
four X-ray image corpora (DB1, DB2, DB3 and DB4) with two, three and four classes. The proposed
Exemplar COVID-19FclNet9 achieved a classification accuracy of 97.60%, 89.96%, 98.84% and 99.64%
using the SVM classifier with 10-fold cross-validation for four datasets, respectively. Our developed
Exemplar COVID-19FclNet9 model has achieved high classification accuracy for all four databases
and may be deployed for clinical application.
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1. Introduction

The COVID-19 pandemic is an ongoing global pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1–7]. The pandemic has resulted in
3.89 million deaths worldwide, with 180 million confirmed cases thus far [8]. As in many
other diseases, early detection of COVID-19 helps to provide timely treatment and save
one’s life. The real-time reverse transcription polymerase chain reaction (RT-PCR) test is
widely used to diagnose COVID-19 [9]. However, it can achieve erroneous results and
has relatively long turnaround times. The test is also costly and deep nasal swabs can be
uncomfortable for some people, especially small children. Therefore, relying only on the
RT-PCR test may be inadequate for the diagnosis of COVID-19 under time-sensitive situa-
tions [10]. Clinical symptoms, laboratory findings, and radiological imaging techniques
such as chest computed tomography (CT) or chest radiography (X-ray) images can also be
used for screening. In particular, radiological imaging techniques play a significant role in
the diagnosis of COVID-19 [11,12]. The diagnosis of COVID-19 is facilitated by the bilateral
patchy shadows and ground-glass opacity obtained from these techniques [13,14]. Among
these techniques, a chest X-ray is faster and cheaper than CT. It also causes lower-dose
radiation on the patient compared to CT. Radiologists use these techniques to analyse
images and help to diagnose COVID-19 [15,16].

Machine learning is a powerful technique used for automatic feature extraction [17–20].
Many machine learning techniques have been presented in the literature to detect different
diseases [21–25]. Machine learning techniques developed especially for the early diagnosis
of COVID-19 have achieved successful results [26,27]. For example, deep-learning-based
methods from machine learning techniques are widely used for COVID-19 detection [28,29].
Deep-learning-based methods achieved high accuracy rates when sufficient labelled data
is provided. Thus, deep-learning-based automatic diagnosis systems are of great interest
in cases with no or few radiologists available [2]. Such an approach can also serve as an
adjunct tool to be used by clinicians to confirm their findings.

1.1. Motivation and Our Method

COVID-19 is an infectious disease that has a relatively high infectivity rate. Many
machine learning and signal/image processing methods have been employed to detect
COVID-19 automatically using medical images or cough sounds. A new strategy is devel-
oped here to detect COVID-19 disease accurately using a novel Exemplar COVID-19FclNet9
model via both deep learning and feature engineering.

In this work, transfer learning is employed to generate hybrid deep features. It can be
noted from feature engineering that exemplar feature generation is an effective method to
extract discriminative features from an image. Exemplar feature extraction is processed
using three pre-trained networks, namely AlexNet [30], VGG16 [31] and VGG19 [31].
These three networks are used as feature generators because each network has three fully
connected layers. Using these fully connected layers, nine exemplar feature generation
algorithms are then presented. The loss values of the generated features are calculated, and
the top three feature vectors are selected to create a merged feature vector. The final feature
vector is selected using an iterative selector; this selector is named iterative neighbourhood
component analysis (INCA) [32], and the chosen feature vector is classified using a support
vector machine (SVM) classifier [33,34]. Four different X-ray image databases have been
utilised as testbeds to demonstrate the robustness of the presented model. We have utilised
the advantages of the AlexNet, VGG16 and VGG19 CNNs together. The important features
of the proposed Exemplar COVID-19FclNet9 are given below:

• choosing the most informative features automatically and
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• denoting the effectiveness of this model using a conventional classifier. Bayesian
optimisation is used to tune parameters of SVM classifier.

1.2. Literature Review

Different COVID-19 detection models have been presented in the literature. Narin et al. [35]
proposed a COVID-19 detection model. This model was based on deep convolutional
neural networks (Inception-ResNetV2, InceptionV3, ResNet50-101-152). ResNet50 was
most accurate in their study compared to the other pre-trained models using an X-ray
image dataset. Three different databases were used to automate the model. Database1
contained data from 341 COVID-19 and 2800 normal cases. Database2 consisted of data
regarding 341 COVID-19 and 1493 viral pneumonia cases, and finally, database 3 had the
data of 341 COVID-19 and 2772 bacterial images. Five-fold cross-validation was imple-
mented to develop the model. In their study, accuracy rates of 96.10%, 99.50% and 99.70%
were obtained using database1, database2 and database3, respectively. Muhammad and
Hossain [36] presented a COVID-19 classification method using a convolutional neural
network (CNN) with lung ultrasound images. They considered three classes in their
work: COVID-19, pneumonia and healthy. They reported an accuracy rate of 92.50% with
their proposed method. Loey et al. [37] applied a network based on CNN and generative
adversarial networks. They used a database consisting of 307 chest X-ray images with
4 classes: COVID-19, viral pneumonia, bacterial pneumonia and normal, to develop the
automated model. They achieved an accuracy of 80.60% with GoogleNet with four classes.
Furthermore, they attained an accuracy rate of 100.0% for two classes (COVID-19 and
normal). Their method did not achieve a high accuracy rate for four classes. Saad et al. [38]
used GoogleNet, ResNet18 and deep feature concatenation for COVID-19 detection using
CT and X-ray images. The data consisted of two classes: 2628 COVID-19 images and
1620 non-COVID-19 images. They achieved an accuracy of 96.13%. Moreover, with deep
feature concatenation, accuracy rates were 98.90% and 99.30% with CT and X-ray databases,
respectively. A high accuracy rate was obtained with this method for the two-class database.
Tuncer et al. [39] proposed a COVID-19 detection method using a residual exemplar local
binary pattern called ResExLBP. For this, images from 87 COVID-19 and 234 healthy pa-
tients were used in their study. They reported accuracy of 100.0% with SVM classifier. The
main limitation of their method is that they used a small database to develop the model.
Sharma and Dyreson [40] used a residual attention network for COVID-19 detection using
chest X-ray images. In their study, 239 chest X-ray images were utilised. Their proposed
method was compared with different CNN models. Their method attained an accuracy of
98.00%. Jia et al. [41] presented an approach based on CNN using CT and X-ray images.
The modified MobileNet was used to classify five classes (COVID-19, tuberculosis, viral
pneumonia, bacterial pneumonia and healthy). They obtained an accuracy of 98.80% for
five-class classification. Bassi and Attux [42] proposed a deep CNN model to classify three
classes (COVID-19, pneumonia and healthy) with 150 images. They reported an accuracy of
100.0%. Most of the works reported above have used smaller databases, or their proposed
models are computationally intensive.

1.3. Contributions

The novelty of the Exemplar COVID-19FclNet9 model is in the presented exemplar
deep feature extractor. The feature extraction model is designed as a machine learn-
ing model. The proposed fully connected layer–based feature generator contains deep
exemplar feature extraction, feature selection based on NCA [43], misclassification rate
calculation with SVM, feature vector selection using the calculated misclassification rates
and concatenation steps. In this work, we present a machine learning model for feature
generation, and this generator aims to use deep features with maximum effectiveness. The
major contributions of the proposed Exemplar COVID-19FclNet9 are given below:

• This work presents a new X-ray image classification model using deep exemplar
features. This model uses three cognitive phases, as described in Section 1.1. The
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proposed model is inspired by a Vision Transformer (ViT) [44]. In addition, this work
presents a lightweight and highly accurate model using three pre-trained CNNs [30].
The proposed Exemplar COVID-19FclNet9 uses cognitive feature extraction, iterative
feature selection and parameters to tune the SVM classifier to achieve high classifica-
tion performance.

• Many machine learning models have been presented to classify COVID-19 [7,26,45].
The proposed Exemplar COVID-19FclNet9 model has been tested using four X-ray
image databases. The universal high classification ability of the Exemplar COVID-
19FclNet9 is used to justify the robustness of the developed model.

2. Materials and Methods

Details of four X-ray image databases (DB1, DB2, DB3 and DB4) used in this work are
given in this section.

2.1. Materials
2.1.1. The First Database (DB1)

The first database (DB1) used in this work consisted of 741 X-ray images with four
classes (control/healthy, bacterial pneumonia, viral pneumonia and COVID-19). This
database is a hybrid database in which normal and pneumonia images were taken from
test images of Kermany et al.’s database [46,47]. COVID-19 images were taken from Talo’s
database [48,49]. In DB1, we have used 234 normal, 242 bacterial pneumonia, 148 viral
pneumonia, and 125 COVID-19 X-ray images. Typical images are shown in Figure 1.
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Figure 1. Sample of images from DB1.

2.1.2. The Second Database (DB2)

This database is very popular [50] and was utilised to compare our results. Ozturk et al. [48]
designed a novel machine learning model to detect COVID-19 and published their database
and model in [49]. This database was collected from 125 subjects (43 females and 82 males).
This database consists of three classes: COVID-19, pneumonia and control. The DB2
database contains 1125 (500 pneumonia, 500 control and 125 COVID-19) X-ray images.
Typical images are shown in Figure 2.
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al. [48] designed a novel machine learning model to detect COVID-19 and published their 

database and model in [49]. This database was collected from 125 subjects (43 females and 
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2.1.3. The Third Database (DB3)

This dataset is a large X-ray image dataset published by Rahman in Kaggle [51], which
contains three classes: no-finding, pneumonia and COVID-19 [52,53]. We used 8961 X-ray
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images (3616 COVID-19, 1345 pneumonia and 4000 normal). Typical images are shown in
Figure 3.
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2.1.4. The Fourth Database (DB4)

This database was collected from the University of Malaya Medical Centre. In all, 277 X-ray
images were collected from 214 subjects. This database consists of two categories, i.e.,
images from 127 COVID-19 and 150 healthy patients. Typical images are shown in Figure 4.
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2.2. Methods

In this work, the Vision Transformer (ViT) [44] design is followed, and we modified
this structure to propose our model using transfer learning. This research presents a hybrid
model (it uses three pre-trained deep feature generators together) to achieve maximum
classification ability, and it is named Exemplar COVID-19FclNet9. ViT inspires the pro-
posed Exemplar COVID-19FclNet9, and it uses three pre-trained deep feature generators
instead of attention transformers. The schematic overview of the proposed Exemplar
COVID-19FclNet9 is denoted in Figure 5.

Figure 5 summarises the presented model. The pseudocode of the proposed Exemplar
COVID-19FclNet9 X-ray classification model is given in Algorithm 1.

More details about the proposed Exemplar COVID-19FclNet9 are given below.

2.2.1. Deep Feature Extraction

Lines 01–16 of Algorithm 1 define the presented deep feature generator. In the first
stage, exemplar division has been applied to the X-ray images. In this work, the X-ray
images are divided into 3× 3 = 9 exemplars. Then, in the deep feature generator, nine
deep feature extractors (three fully connected layers of three pre-trained CNNs) have been
applied to the obtained nine exemplars. Finally, the original X-ray images and the extracted
features are merged. The schematic explanation of the presented deep feature generator is
shown in Figure 6.



Int. J. Environ. Res. Public Health 2021, 18, 8052 6 of 20
Int. J. Environ. Res. Public Health 2021, 18, x 6 of 21 
 

 

SVM

Iterative 

feature 

selection

Deep feature extraction

X-ray 

image

Exemplar 

division
1 2 3 4 5 6 7 8 9

 

Figure 5. Graphical illustration of proposed Exemplar COVID-19FclNet9 model. 

Figure 5 summarises the presented model. The pseudocode of the proposed Exem-

plar COVID-19FclNet9 X-ray classification model is given in Algorithm 1. 

Algorithm 1 The algorithm used to implement proposed Exemplar COVID-19FclNet9 model 

Input: X-ray image database 

Output: Results 

00: Load X-ray image database. 

01: for k = 1 to dim do // Herein, dim is number of images. 

02:      Read each image 

03:      Divide X-ray image into exemplars/patches 

04:      for j = 1 to 9 do 

05:          Generate deep features from X-ray images and patches using fully connected layers. 

06:          Merge generated features. 

07:          Create jth feature (𝑋𝑗) vector of the kth. 

08:      end for j 

09: end for k 

10: for j = 1 to 9 do 

11:      Apply NCA to 𝑋𝑗 and calculate indexes (𝑖𝑛𝑥). 

12:      Select top 1000 features using 𝑖𝑛𝑥. 

13:      Calculate misclassification rates of the chosen 1000 features. 

14: end for j 

Figure 5. Graphical illustration of proposed Exemplar COVID-19FclNet9 model.

Algorithm 1 The algorithm used to implement proposed Exemplar COVID-19FclNet9 model

Input: X-ray image database
Output: Results
00: Load X-ray image database.
01: for k = 1 to dim do // Herein, dim is number of images.
02: Read each image
03: Divide X-ray image into exemplars/patches
04: for j = 1 to 9 do
05: Generate deep features from X-ray images and patches using fully connected layers.
06: Merge generated features.
07: Create jth feature (X j) vector of the kth.
08: end for j
09: end for k
10: for j = 1 to 9 do
11: Apply NCA to X j and calculate indexes (inx).
12: Select top 1000 features using inx.
13: Calculate misclassification rates of the chosen 1000 features.
14: end for j
15: Select the best three chosen feature vectors.
16: Merge the best three vectors.
17: Employ iterative NCA to the merged features.
18: Fed the chosen final feature vector to SVM classifier.
19: Tune the parameters of the SVM classifier.
20: Obtain results using the tuned SVM with 10-fold cross-validation.
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Steps of the presented deep feature generator are given below:
Step 1: Create non-overlapping patches.

ptcnt(p, r, k) = I(i : i + p− 1, j : j + r− 1, k), cnt ∈ {1, 2, . . . , 9} (1)

p ∈
{

1, 2, . . . ,
⌊w

3

⌋}
, r ∈

{
1, 2, . . . ,

⌊
h
3

⌋}
, i ∈

{
1,
⌊w

3

⌋
, . . . , w

}
, j ∈

{
1,
⌊

h
3

⌋
, . . . , h

}
(2)

Equations (1) and (2) define patch creating. In this work, nine patches are created,
where ptcnt is cntth patch and cnt is a counter for the patches, I represents the original
X-ray image, w denotes the width of the used X-ray image, h is the height of the used X-ray
image and i, j, k, p, r are indices.

Step 2: Extract nine features from X-ray images and patches using nine fully con-
nected layers.

Xq(h, 1 : sz) = f emq(I), q ∈ {1, 2, . . . , 9}, h ∈ {1, 2, . . . , dim} (3)

Xq(h, q× sz + 1 : (q + 1)× sz) = f emq(ptcnt) (4)

In Equations (3) and (4), Xq is qth feature vector, f emq is qth feature extraction method.
In this work, fc6, fc7 and fc8 layers of the AlexNet, VGG16 and VGG19 were used to
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generate deep features, sz denotes the length of the generated feature vector. The fc8 layer
of the used networks extracts 1000 features (sz is 1000 for f em3, f em6, f em9). Moreover,
4096 features are generated using the fc6 and fc7 layers of all used CNNs (sz is 4096 for
f em1, f em2, f em4, f em5, f em7, f em8). The presented deep extractor creates features from
X-ray images and nine patches. The Equations (3) and (4) define both feature generation
and merging. The length of the generated X3, X6, X9 is 10,000 and the length of the other
feature vector is 40,960.

Step 3: Select the best 1000 features from each generated feature vector deploying NCA.

inxq = NCA(Xq, y) (5)

f cq(h, j) = Xq(h, inxq(j)), j ∈ {1, 2, . . . , 1000} (6)

where inxq are the qualified indexes of the qth feature vector, y represents actual output,
NCA(., .) defines NCA feature selection function and f cq is qth chosen feature vector with
a length of 1000.

In this step, 1000 features are selected from generated feature vectors as in many
pre-trained CNNs.

Step 4: Calculate misclassification rates of the f c using polynomial kernelled SVM
with 10-fold cross-validation.

loss(q) = SVM( f cq) (7)

Herein, loss is the misclassification rate of the selected features.
Step 5: Select the best three selected feature vectors using calculated loss values in

Step 4.
[ql, id] = sort(loss) (8)

t f i = f cid(i), i ∈ {1, 2, 3} (9)

Herein, ql is qualified loss by ascending, sort(.) defines the sorting function, id repre-
sents sorted indexes and t f 1, t f 2, t f 3 are the top three feature vectors.

Step 6: Merge the selected three feature vectors and obtain generated features.

XG = t f 1
∣∣∣t f 2

∣∣∣t f 3 (10)

Herein, XG is the best-merged feature with a length of 3000 and | is the merging operator.

2.2.2. Iterative Feature Selector

In order to choose the best features from the generated XG, the iterative NCA (INCA) [32]
feature selector was employed. INCA is an iterative and improved version of the NCA that
helps to select the most appropriate feature vector with optimal length. It is a parametric
feature selector, and the parameters of this selector are loss function and range of iteration
(initial and end values). In this work, the SVM classifier was used as a loss function, and
[100, 1000] was selected as the range. INCA can select different-sized feature vectors for
different problems. The steps of the INCA are given below.

Step 7: Generates qualified indexes of the features.
Step 8: Select 901 features using generated qualified indexes. The lengths of the first

and last feature vectors are 100 and 1000.
Step 9: Calculate loss values of each feature vector using SVM, which is equal to

1-accuracy (i.e., 901 in this case). The computed errors are shown in Figure 7.
Step 10: Find the index of minimum error and select the best feature vector from the

index (see Figure 7).
We applied INCA to generate the feature vector and obtain the best features for

classification. INCA selected 340, 509, 735 and 101 features for DB1, DB2, DB3 and DB4
databases, respectively. The plots of misclassification rate versus the number of features
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obtained for various databases using Cubic SVM with 10-fold cross-validation are shown
in Figure 7.
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2.2.3. Classification

The classification was performed using an SVM [33,34] classifier. The hyperparameters
of the SVM were tuned using Bayesian optimisation to reach the optimum performance.
The number of iterations of the Bayesian optimisation was chosen to be 30, and the fit-
ness function was the misclassification rate. The hyperparameters of the SVM classifier
(tabulated in Table 1) were fed as input to the Bayesian optimisation technique. The
main purpose of using Bayesian optimisation was to obtain fine-tuned SVM, and the
hyperparameter ranges used for Bayesian optimisation are given in Table 1.

Table 1. Hyperparameter ranges tuned by Bayesian optimiser for SVM classifier.

Hyperparameter Value

Multiclass method One-vs.-One, One-vs.-All
Box constraint level [0.001–1000]

Kernel Cubic, Quadratic, Linear, Gaussian
Standardise False, True

The parameters of the used SVM classifiers for both databases are given in Table 2.

Table 2. Hyperparameters used for SVM classifiers with various databases.

Hyperparameter Tuned Parameters
for the DB1

Tuned Parameters
for the DB2

Tuned Parameters
for the DB3

Multiclass method One-vs.-One One-vs.-All One-vs.-All
Kernel Linear Gaussian Cubic

Box constraint 999.30 2 1
Standardise False True True

The validation technique of the given classifiers (see Table 2) was chosen as 10-fold
cross-validation.

The last step of the COVID-19FclNet9 is classification, and these steps are given below.
Step 11: Tune parameters of SVM using Bayesian optimisation.
Step 12: Classify the selected optimal feature vector using fine-tuned SVM.
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3. Results

This work used four X-ray image databases to validate the proposed Exemplar COVID-
19FclNet9 model. A simple configured PC was used to obtain the results of this model.
The system configurations of the used PC are as follows. It has an i9-9900 processor, 48 GB
memory, 256 GB solid-state disk, and Windows 10.1 Professional operating system. In
addition, MATLAB (2020b) has been utilised as a programming environment.

To evaluate the performance of the proposed model, four databases were used. Accu-
racy, precision, recall and F1 score metrics were employed to evaluate the performance of
the developed model. The results obtained for the four databases are listed in Tables 3–6.

Table 3. Results obtained using our proposed Exemplar COVID-19FclNet9 model with DB1 database.

Actual Class
Predicted Class

Normal Bacterial Pneumonia Virus Pneumonia COVID-19

Normal 227 4 3 0
Bacterial Pneumonia 3 238 1 0

Viral Pneumonia 3 4 141 0
COVID-19 0 0 0 125
Recall (%) 97.01 98.35 95.27 100

Precision (%) 97.42 96.75 97.24 100
F1-score (%) 97.22 97.54 96.25 100

Table 4. Results obtained using our proposed Exemplar COVID-19FclNet9 model with DB2 database.

Actual Class
Predicted Class

COVID-19 Healthy Pneumonia

COVID-19 120 0 5
Healthy 1 457 42

Pneumonia 0 65 432
Recall (%) 96 91.40 87

Precision (%) 99.17 87.55 90.25
F1-score (%) 97.56 89.43 88.59

Table 5. Results obtained using our proposed Exemplar COVID-19FclNet9 model with DB3 database.

Actual Class
Predicted Class

COVID-19 Pneumonia Healthy

COVID-19 3586 2 28
Pneumonia 2 1318 25

Healthy 28 19 3953
Recall (%) 99.17 97.99 98.82

Precision (%) 99.17 98.43 98.68
F1-score (%) 99.17 98.21 98.75

Table 6. Results obtained using our proposed Exemplar COVID-19FclNet9 model with DB4 database.

Actual Class
Predicted Class

COVID-19 Healthy

COVID-19 126 1
Healthy 0 150

Recall (%) 99.21 100
Precision (%) 100 99.33
F1-score (%) 99.60 99.66

The biggest database used was DB3, and its results were obtained with 10-fold cross-
validation. The calculated confusion matrix of our proposed Exemplar COVID-19FclNet9
model using the DB3 database is denoted Table 5.
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The overall results (accuracy, unweighted average recall, overall precision and overall
F1 scores) obtained using our proposed model with four databases is shown in Table 7.

Table 7. Overall results (%) obtained using our proposed model using four databases.

Overall Results DB1 DB2 DB3 DB4

Accuracy (%) 97.60 89.96 98.84 99.64
Unweighted average recall (%) 97.66 91.47 98.66 99.61

Precision (%) 97.85 92.32 98.76 99.80
F1 score (%) 97.75 91.86 98.71 99.63

It can be noted from Table 7 that our proposed model obtained 97.60%, 89.96%, 98.84%
and 99.64% accuracies using DB1, DB2, DB3 and DB4 databases, respectively.

Moreover, ROC curves obtained using our proposed COVID-19FclNet9 model for
various datasets used are denoted in Figure 8.
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4. Discussion

Four X-ray image corpora were used in this work to validate the proposed Exemplar
COVID-19FclNet9 model. It can be noted from our results that the developed model
yielded high classification performance using all four databases. The proposed model is
cognitive, and we used feature engineering and transfer learning to design this architecture.
This model has three fundamental phases, and the most crucial phase of the proposed
model is feature extraction. Our proposed deep feature generation model is a cognitive
model and is also designed as a machine learning model. This feature extractor selects the
most appropriate three feature vectors. It generates features using patches and original
X-ray images, and these features are merged. NCA chooses the best 1000 features, which
are classified using SVM classifier. The used pre-trained deep feature generation models
are listed in Table 8.

Table 8. Deep feature generation functions used in the Exemplar COVID-19FclNet9 model.

Network Number Fully Connected Layer

AlexNet
1 fc8
2 fc7
3 fc6

VGG16
4 fc8
5 fc7
6 fc6

VGG19
7 fc8
8 fc7
9 fc6

Table 8 shows the deep feature generation functions used in the Exemplar COVID-
19FclNet9 model. The graph of accuracies versus number of features used with various
databases is depicted in Figure 9.

Int. J. Environ. Res. Public Health 2021, 18, x 13 of 21 
 

 

Table 8. Deep feature generation functions used in the Exemplar COVID-19FclNet9 model. 

Network Number Fully Connected Layer 

AlexNet 

1 fc8 

2 fc7 

3 fc6 

VGG16 

4 fc8 

5 fc7 

6 fc6 

VGG19 

7 fc8 

8 fc7 

9 fc6 

 

Figure 9. Graph of accuracies versus number of features used for various datasets used. 

Figure 9 shows that the range of accuracies calculated for DB1 varies from 93.06% 

(minimum accuracy) to 95.59% (maximum accuracy), and this range can be expressed as 

[93.06%, 95.59%]. Moreover, the obtained accuracy ranges for DB2, DB3 and DB4 were 

[83.29%, 88.18%], [97.68%, 98.07%] and [98.19%, 99.64%], respectively, using nine deep 

feature generation methods. The best three feature generators used for DB1 were the 8th 

(fc7 layer of the VGG19), 3rd (fc6 layer of the AlexNet) and 1st (fc8 layer of the AlexNet) 

deep feature generators. The selected three deep features for DB2 belonged to 6th (fc6 

layer of the VGG16), 8th (fc7 layer of the VGG19) and 5th (fc7 layer of the VGG16) deep 

feature generators. The top three feature generators for DB3 were the 5th (fc7 layer of the 

VGG16), 3rd (fc6 layer of the AlexNet) and 9th (fc6 layer of the VGG19) transfer learning-

based deep feature generators. Furthermore, 5th (fc7 layer of the VGG16), 8th (fc7 layer of 

the VGG19) and 9th (fc6 layer of the VGG19) were selected as the top three deep feature 

generators. 

By merging these features and applying the INCA selector, the accuracy rates were 

increased from 95.59% to 97.60% for DB1, from 88.18% to 89.96% for DB2 and from 98.07% 

Figure 9. Graph of accuracies versus number of features used for various datasets used.



Int. J. Environ. Res. Public Health 2021, 18, 8052 13 of 20

Figure 9 shows that the range of accuracies calculated for DB1 varies from 93.06%
(minimum accuracy) to 95.59% (maximum accuracy), and this range can be expressed as
[93.06%, 95.59%]. Moreover, the obtained accuracy ranges for DB2, DB3 and DB4 were
[83.29%, 88.18%], [97.68%, 98.07%] and [98.19%, 99.64%], respectively, using nine deep
feature generation methods. The best three feature generators used for DB1 were the 8th
(fc7 layer of the VGG19), 3rd (fc6 layer of the AlexNet) and 1st (fc8 layer of the AlexNet)
deep feature generators. The selected three deep features for DB2 belonged to 6th (fc6 layer
of the VGG16), 8th (fc7 layer of the VGG19) and 5th (fc7 layer of the VGG16) deep feature
generators. The top three feature generators for DB3 were the 5th (fc7 layer of the VGG16),
3rd (fc6 layer of the AlexNet) and 9th (fc6 layer of the VGG19) transfer learning-based deep
feature generators. Furthermore, 5th (fc7 layer of the VGG16), 8th (fc7 layer of the VGG19)
and 9th (fc6 layer of the VGG19) were selected as the top three deep feature generators.

By merging these features and applying the INCA selector, the accuracy rates were
increased from 95.59% to 97.60% for DB1, from 88.18% to 89.96% for DB2 and from 98.07%
to 98.84% for DB3. Moreover, this strategy yielded the maximum performance with the
minimum number of features (100 features) on the DB4.

The comparison of our work with other similar published works is shown in Table 9.
It can be noted from Table 9 that our proposed method has outperformed all the

state-of-the-art techniques and is found to be robust as we have tested with four different
databases. We used four X-ray image datasets to evaluate the presented COVID-19FclNet9.
We used both small and large datasets. Murugan and Goel [54] applied a CNN to classify
COVID-19, pneumonia and healthy classes. Their used dataset contained 2700 images, and
each category had 900 images. Gilanie et al. [55] used a large X-ray image dataset, and
their image dataset contained 15,108 X-ray images. They only applied VGG-16 network
and reached 96% classification accuracy.

Ozturk et al. [48] proposed a convolutional neural network using an X-ray image
dataset of three classes (COVID-19, pneumonia and healthy). Furthermore, their dataset is
a heterogeneous dataset and was the DB2 dataset in our work. Ozturk et al. [48] achieved
87.02% accuracy using their model, while our COVID-19FclNet9 reached 89.96% accuracy
using the same dataset. Hussain et al. [58] presented a CNN-based CoroDet model using
three datasets and attained 99.10%, 94.20% and 91.20% classification accuracies, respectively.
They did not use transfer learning; hence, the time complexity of their model may be higher
than that for our proposal. Sitaula and Hossain [61] used transfer-learning-based deep
X-ray image classification and used three image datasets. They reached 79.58%, 85.43%
and 87.49% accuracies for three image datasets, respectively. Our COVID-19FclNet9 is a
transfer-learning-based model, and it attained higher accuracies than that of the Sitaula and
Hossain [61] transfer-learning-based classification model. Other methods in Table 5 used a
CNN model with smaller X-ray image datasets. In this respect, our work is one of the first
to use four datasets, as shown in Table 9, and obtained a higher classification performance
for X-ray image classification. This justifies that our proposed model is accurate and robust.
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Table 9. Comparison of our work with other similar published works.

Study Method Classifier Split Ratio Number of Class/Type Number of Cases Results (%)

Murugan and Goel [54]
Convolutional neural

networks
(ResNet50)

Softmax 70:30 3/Chest X-ray
900 COVID-19
900 Pneumonia

900 Normal

Acc: 94.07
Sen: 98.15
Spe: 91.48
Rec: 85.21
Pre: 98.15
F1: 91.22

Gilanie et al. [55] Convolutional neural
networks Softmax 60:20:20 Chest radiology

1066 COVID-19
7021 Pneumonia

7021 Normal

Acc: 96.68
Spe: 95.65
Sen: 96.24

Pandit et al. [56]
Convolutional neural

networks
(VGG-16)

Softmax 70:30 1. 2/Chest radiographs
2. 3/Chest radiographs

1.
224 COVID-19

504 Healthy
2.

224 COVID-19
700 Pneumonia

504 Healthy

Acc:
1. 96.00
2. 92.53

Nigam et al. [57]
Convolutional neural

networks
(EfficientNet)

Softmax 70:20:10 3/Chest X-ray
795 COVID-19

795 Normal
711 Others

Acc: 93.48

Hussain et al. [58]
Convolutional neural

networks
(CoroDet)

Softmax 5-fold cross
validation

1. 2/Chest X-ray
2. 3/Chest X-ray
3. 4/Chest X-ray

1.
500 COVID-19

800 Normal
2.

500 COVID-19
800 Normal

800 Pneumonia—bacterial
3.

500 COVID-19
800 Normal

400 Pneumonia—bacterial
400 Pneumonia—viral

Acc:
1. 99.10
2. 94.20
3. 91.20
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Table 9. Cont.

Study Method Classifier Split Ratio Number of Class/Type Number of Cases Results (%)

Ozturk et al. [48] Deep neural networks Darknet-19 5-fold cross
validation 3/Chest X-ray

125 COVID-19
500 Pneumonia
500 No Findings

Acc: 87.02
Sen: 92.18
Spe: 89.96

Shi et al. [59] Deep neural networks Deep neural
networks 70:20:10 1. 3/Chest CT images

2. 3/Chest X-ray

1.
349 COVID-19

384 Normal
304 CAP

2.
450 COVID-19
1800 Normal

1837 CAP

Acc:
1. 87.98
2. 93.44

Mukherjee et al. [60]
Convolutional neural
network, Deep neural

network
Softmax 10-fold cross

validation

2/Computed
Tomography and Chest

X-ray

336 COVID-19
336 non-COVID-19

Acc: 96.28
Sen: 97.92
Spe: 94.64
Pre: 94.81
F1: 96.34

Sitaula and Hossain [61] Convolutional neural
networks

FC-layers, and
Softmax 70:30

1. 3/Chest X-ray
2. 4/Chest X-ray
3. 5/Chest X-ray

Database1:
125 COVID-19

125 No findings
125 Pneumonia

Database2:
320 COVID-19

320 Normal
320 Pneumonia Bacterial

320 Pneumonia Viral
Database3:

320 COVID-19
320 Normal

320 Pneumonia Bacterial
320 Pneumonia Viral

320 No findings

Acc:
1. 79.58
2. 85.43
3. 87.49
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Table 9. Cont.

Study Method Classifier Split Ratio Number of Class/Type Number of Cases Results (%)

Our method
Exemplar

COVID-19FclNet9
Support vector

machine
10-fold cross

validation

4/Chest X-ray

234 Control
242 Bacterial Pneumonias

148 Viral pneumonias
125 COVID-19

Acc: 97.60

3/Chest X-ray
125 COVID-19
500 Pneumonia

500 Control
Acc: 89.96

3/ Chest X-ray
3616 COVID-19
1345 Pneumonia

4000 Control
Acc: 98.84

2/Chest X-ray 127 COVID-19
150 Normal Acc: 99.64
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The important salient features of the proposed Exemplar COVID-19FclNet9 are given
below.

• A new deep feature generation architecture is presented using three pre-trained
networks, and the proposed architecture can select the best feature generation model.

• This exemplar and cognitive deep feature generation model tested using four COVID-19
X-ray image databases and attained a high success rate on all databases, which justifies
the universal success of this model.

• This model attained 97.60%, 89.96%, 98.84% and 99.64% accuracies using four databases
(DB1, DB2, DB3 and DB4, respectively).

• Our method obtained the highest performance compared to other state-of-the-art
works (see Table 9).

• The proposed method is a cognitive model because it can automatically select the best
models, best features and most appropriate classifier.

• The proposed model yielded the highest classification performance using deep fea-
ture generators.

• The proposed model can detect COVID-19 and pneumonia accurately using X-ray images.

5. Conclusions

COVID-19 detection using medical images is a topic of immense interest in medical
and healthcare research. Many methods have been proposed to detect COVID-19 accurately
using image processing and machine learning techniques. For example, deep networks
have been applied to COVID-19 cases using X-ray images. Our work here has presented
a new Exemplar COVID-19FclNet9 framework to detect COVID-19 cases automatically.
In this framework, nine deep feature extraction methods are obtained using three deep
networks and this framework selects the most appropriate features. Using the proposed
hybrid deep feature extractor, iterative feature selector and optimised SVM, a highly ac-
curate model is then obtained. This model was tested on several X-ray image databases
to confirm the universal classification. Vision transformers inspired this learning frame-
work (Exemplar COVID-19FclNet9) and helped increase the performance of pre-trained
deep feature extractors. Our proposed Exemplar COVID-19FclNet9 attained accuracies
of 97.60%, 89.96%, 98.84% and 99.64% for four X-ray image databases (DB1, DB2, DB3
and DB4, respectively). It can be noted from these results that COVID-19FclNet9 is an
effective computer vision model presented using AlexNet, VGG16 and VGG19 networks.
In future work, variable pre-trained deep networks can be used in this architecture to
improve performance.
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