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ABSTRACT

Alternative splicing (AS) is frequent during early
mouse embryonic development. Specific histone
post-translational modifications (hPTMs) have been
shown to regulate exon splicing by either directly
recruiting splice machinery or indirectly modulat-
ing transcriptional elongation. In this study, we hy-
pothesized that hPTMs regulate expression of alter-
natively spliced genes for specific processes dur-
ing differentiation. To address this notion, we ap-
plied an innovative machine learning approach to re-
late global hPTM enrichment to AS regulation during
mammalian tissue development. We found that spe-
cific hPTMs, H3K36me3 and H3K4me1, play a role
in skipped exon selection among all the tissues and
developmental time points examined. In addition, we
used iterative random forest model and found that
interactions of multiple hPTMs most strongly pre-
dicted splicing when they included H3K36me3 and
H3K4me1. Collectively, our data demonstrated a link
between hPTMs and alternative splicing which will
drive further experimental studies on the functional
relevance of these modifications to alternative splic-
ing.

INTRODUCTION

Alternative splicing (AS) is a regulatory mechanism of
gene expression that enables one gene to generate multiple
mRNA isoforms that may have different functions or prop-
erties. RNA-seq analyses of the whole transcriptome have
revealed the high prevalence of AS in the genes of many or-
ganisms (human and mouse: 90%, drosophila: 60%) (1,2).
AS contributes to cell differentiation, tissue identity and or-
gan development (2). The expression of a specific isoform
is often necessary to maintain tissue identity and function,
while selection between alternative isoforms drives tissue
development and cell differentiation (3). Understanding the

role of AS in developmental processes requires the investi-
gation of AS across different tissues during development.
A number of studies aimed at revealing the importance of
AS during development find that AS and specific isoform
expression is frequent during early mouse embryonic devel-
opment (4–6). In addition, in Caenorhabditis elegans, many
alternatively spliced isoforms show a dramatic change in
relative expression levels during embryonic to adult devel-
opment (7). Studies targeted at the underlying mechanism
of AS regulation have largely identified which splice motifs
that interact with the splicing machinery to facilitate and
regulate splicing. Several AS regulators that are critical to
tissue development have been identified, such as CELF1 in
heart development (8), ELAVL, PTBP1 and NOVA1/2 in
brain development (9–11) and ESRP1 in liver development
(12). However, as these elements are not sufficient to explain
all aspects of AS regulation, including specific gene target-
ing, additional regulatory mechanisms must exist to direct
the selection of alternatively spliced isoforms (13).

In addition to specific gene sequences, epigenetic mech-
anisms function in transcriptional regulation and play
important roles in many biological processes (14,15).
Genome regulatory elements undergo dynamic changes
in the enrichment of histone post-translational modifi-
cations (hPTMs), which function during development to
direct expression of corresponding genes (16,17). These
hPTMs can function either as expressional activators, such
as H3K4me3, or as repressors, such as H3K27me3 (18–20).
Several hPTMs in a given promoter region act in a coor-
dinated manner to regulate expression of genes necessary
for specific cell differentiation during development. For ex-
ample, co-enrichment of H3K4me3 and H3K27ac at en-
hancers related to heart development in mouse (21) regu-
late the expression of genes involved in developmental tran-
sitions in the cardiac lineage (22). In addition, computa-
tional analysis in several cell lines has found that particu-
lar hTPMs, such as H3K4me3, enriched around the tran-
scriptional start sites of expressed genes associate with tran-
scription initiation (23,24), while the levels of H3K4me3,
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H3K36me3 and H3K79me1 are associated with steady-
state expression of particular exons and genes (24–26).

Beyond regulating gene expression, recent evidence sug-
gests that hPTMs also function in the specification of exons
spliced into a transcribed gene (27,28). Specific hPTMs reg-
ulate exon splicing by either directly recruiting splicing fac-
tors and adapters or indirectly modulating the elongation
rate of RNA polymerase II (RNAPII), indicating a poten-
tial link between hPTMs and alternative splicing (28,29).
Studies on human datasets show that distinct hPTMs are as-
sociated with exon inclusion or exclusion. A recent study in
human stem cells shows that histone H3 lysine 36 trimethy-
lation (H3K36me3) regulates alternative splicing events and
is involved in nonsense-mediated mRNA decay of BARD1
(BRCA1-associated RING domain protein 1) (30). The au-
thors also compare the contribution of genomic features
and epigenetic features to alternative splicing and find that
epigenetic features are more important to differentiate splic-
ing patterns (30).

Due to the critical role of AS in tissue development and
the potential link between specific hPTMs and AS in embry-
onic stem cell differentiation, we hypothesized that hPTMs
could also drive development by regulating expression of
alternatively spliced genes for specific processes in mam-
malian tissue development. To address this notion, we uti-
lized a state-of-the-art machine learning approach to con-
duct a genome-wide analysis that related hPTMs to AS
regulation during mammalian tissue development. We inte-
grated ChIP-seq and RNA-seq data from 7 different mouse
embryonic tissues at 6 developmental time points to deter-
mine (i) which hPTMs associate with alternatively spliced
exons, (ii) which hPTM(s) most strongly predict alternative
exon selection and (iii) the interaction of multiple hPTMs in
exon selection. We analyzed the role of these hPTMs while
controlling for cofounding factors originating from consti-
tutive exon selection and gene expression level. We focused
on one specific alternative splicing type – skipped exon –
because it is the most prevalent alternative splicing event
in mammalian tissue and contributes greatly to proteome
diversity (31). We categorized two subtypes of skipped ex-
ons based on RNA-seq data analysis. Skipped exons were
categorized as (i) ‘developmental gain/loss’ if the isoform
switch occurred during development or (ii) ‘isoform selected
high/low’ if the isoform was in the upper (75%) and lower
(25%) quantiles, respectively, and isoform expression did
not change over development. Enrichment analysis found
these two groups of alternatively spliced genes consisted of
different functional categories. We also observed that the
number of AS events increased over developmental time,
with brain tissue showing the greatest magnitude increase.
To infer the relevance of hPTMs to AS events across tis-
sues and development, we analyzed the ChIP-seq signal dis-
tribution of eight distinct hPTMs (H3K36me3, H3K4me1,
H3K4me2, H3K4me3, H3K27ac, H2K27me3, H3K9me3
and H3K9ac) in the exon-flanking region. Remarkably, we
found that only two hPTMs, H3K36me3 and H3K4me1,
were differentially enriched with respect to skipped exon
category.

We further derived a computational model for predict-
ing skipped exon category using hPTM signal in the exon
flanking regions. We found that hPTMs can accurately pre-

dict skipped exon category in both developmental gain/loss
and isoform selected high/low groups, indicating the po-
tential link between hPTM and skipped exon selection.
Our findings indicated that specific histone modifications,
H3K36me3 and H3K4me1, played a role in skipped exon
selection among all the tissues and developmental time
points examined, even when controlling for gene expression
level. Furthermore, the contribution of some hPTMs was
tissue-specific. In brain tissues and heart, H3K9ac had a
relatively higher predictive rank, while in limb, neural tube
and liver, the effect of H3K27me3 was higher. We also iden-
tified interactions of two or more hPTMs that highly predict
AS. For example, the interaction between H3K36me3 and
H3K4me1 in the exon flanking region was the top feature
in both skipped exon categories. The other top interactions
included H3K27me3/H3K36me3, H3K27ac/H3K36me3,
H3K27ac/H3K4me1 and H3K36me3/H3K9me3. Collec-
tively, our data demonstrated a link between hPTMs and
alternative splicing in mouse tissue development, which will
drive further experimental studies on the functional rele-
vance of these modifications to alternative splicing.

MATERIALS AND METHODS

Dataset

We chose mouse embryonic tissue developmental data
from ENCODE database (32), because both RNA-seq and
ChIP-seq are available. We considered 7 tissues (forebrain,
hindbrain, midbrain, neural tube, heart, liver and limb)
from six time points (E11.5–E16.5 day). Supplemental Ta-
ble S1 provides the full list of data analyzed. The analy-
sis codes are available through github https://github.com/
huqiwen0313/HM splicing.

Identification of alternative splicing exons in tissue develop-
ment

Aligned BAM files (mm10) for all seven tissues from six
timepoints were downloaded from ENCODE (32), each
with two replicates. rMATS (version 4.0.1) was used to
quantify ‘percent spliced in’ (PSI, exon inclusion level) and
identify skipped exons that showed differential inclusion
level (deltaPSI) between two time points (33). Skipped ex-
ons were divided into two different groups based on PSI
and �PSI values: developmental gain/loss and isoform se-
lected high/low. The developmental gain/loss group con-
tains skipped exons which differ in inclusion level between
two different time points in the same tissue. These exons
showed an isoform switch behaviour during across devel-
opmental timepoints. For this group of skipped exons, we
selected exons with �PSI ≥ 0.1 and FDR < 5% as gain
class and exons with �PSI ≤ 0.1 and FDR <5% as loss
class. For the isoform selected high/low group, we gener-
ated the global PSI distribution for all skipped exons. The
upper (75%) and lower (25%) quantiles were used to di-
vide exons into high class and low class. Skipped exons
in this group did not change their inclusion across de-
velopmental timepoints. Rather, one isoform was consis-
tently expressed higher or lower than the others across all
timepoints.

https://github.com/huqiwen0313/HM_splicing
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ChIP-seq data processing and hPTM profiling

ChIP-seq data (aligned BAM files, mm10) were down-
loaded from ENCODE database (32). For each tissue and
time point, eight type of histone modifications, including
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K27ac,
H3K27me3, H3K9ac and H3K9me3 were analysed. The
global profiles of hPTMs among different groups of skipped
exons were generated in two steps. First, for each exon, the
flanking regions were defined as the 300 bp centered at ac-
ceptor and donor site, respectively, analysed in 15 bp bins.
Second, the ChIP-seq reads were assigned to those binned
regions and the normalized reads number for each binned
region was calculated.

One caveat of this approach is that ChIP read count could
be influenced not only by hPTM enrichment in ChIP-seq
data, but by the overall accessibility of the region, antibody
cross-reactivity, and many other technical considerations.
To address this, we normalized ChIP-seq signals according
to its library sizes. Ideally the ChIP data would be normal-
ized to input. However, the related input data is not avail-
able from the ENCODE database.

To visualize the ChIP-seq signal pattern for different exon
groups, we computed the average ChIP-seq signal and stan-
dard deviation across the flanking regions, averaged over
all exons that belong to the same group. Constitutive exons
of each tissue and timepoint were sampled from the same
genes that contain alternatively spliced exons. To analyse
the variability of hPTM enrichment by exon type, we gener-
ated heatmaps of the flanking regions from a pool of sam-
pled exons that belong to each group in forebrain (Supple-
mental Figure S74). An ANOVA statistic was used to test if
the signal distribution patterns were significantly different
among different exon groups.

Logistic regression and random forest modelling

To extract the features from hPTM distribution patterns,
the flanking regions surrounding each splice site were di-
vided into four regions: the intronic region at the accep-
tor splice site (5′ upstream, left intron), the exonic region
at the acceptor splice site (5′ downstream, left exon), the ex-
onic region at the donor splice site (3′ upstream, right exon)
and the intronic region at the acceptor splice site (5′ down-
stream, right intron). The normalized ChIP-seq signals in
those regions were calculated and considered as explana-
tory features for different types of hPTMs.

To demonstrate a predictive association between ChIP-
seq signal and skipped exon groups, we constructed bi-
nary classification models. We chose two different mod-
els: logistic regression and random forest. Logistic regres-
sion is a type of probabilistic statistical classification model
that measures the relationship between categorical response
variable and explanatory variables, which can be formulated
as below:

y = 1

1 + e
∑

i βi xi

in which xi is the ChIP-seq signal for certain type of hPTM,
y is skipped exon groups and β i is the regression coefficient.

Random forest is an ensemble tree-based algorithm that
uses bootstrap resampling to grow multiple decision trees

and combines their results. The advantage of logistic regres-
sion and random forest over the other models is the inter-
pretability of the model results, that is, we can know the ef-
fect of an individual feature to the response variable.

The model performance was measured by 5-fold cross
validation, in which the entire dataset was randomly par-
titioned into five equal-sized subsamples. One subsample
was used to evaluate the model performance (test set)
and the remaining subsamples (training set) were used to
train the model. The whole process was repeated by five
times. Average model accuracy and ROC value were then
calculated.

To generate statistical robustness, for each training set,
the model was further tuned by a grid of parameters based
on internal 3-fold cross validation. The model with the low-
est error rate was then selected. For logistic regression, in
order to achieve better performance, LASSO was applied
to reduce the dimension of feature space. When the feature
space is large the ordinary least square estimates generated
by logistic regression may lead to large variance for the esti-
mates, which will reduce the accuracy of prediction. We es-
timated the LASSO parameter � through 3-fold cross val-
idation. For each cross validation, a grid of �s was fed to
the model. The corresponding prediction was estimated ac-
cording to the test set. The � value that minimized the over-
all prediction error was selected.

To test the different enrichment patterns of hPTMs in
alternatively spliced exons, we built a second random for-
est model that included constitutive exons. The normalized
ChIP-seq signals from the flanking regions of constitutive
exons were calculated based on the same criteria as alter-
natively spliced exons. Constitutive exons were then boot-
strapped to match the examples of alternative spliced ex-
ons. Model performance was evaluated by 5-fold cross val-
idation with accuracy, macroPrecision, macroRecall and
macroF1 scores.

Controlling for gene expression level

Studies of the relationship between hPTMs, transcriptional
regulation and gene expression find that hPTMs are asso-
ciated with gene expression level (34–36). To control the ef-
fect of gene expression level that may cofound our findings,
we stratified gene expression of the alternative spliced ex-
ons into three categories: high (the upper 25% quartile ac-
cording to the entire gene expression level in the sample),
medium (25–75% quartile) and low (the bottom 25% quar-
tile). We then built a second model, using the random for-
est approach described above. In this case, for each category,
we randomly divided the entire dataset into five subsamples,
with one subsample used for testing and the rest of the four
subsamples used for training. The ChIP-seq features in the
exon franking regions were fed into the model to learn the
representative features that differentiate exon splicing pat-
terns. The model was then trained by 3-fold internal cross-
validation based on the training set to select the model with
the lowest error rate. The selected model was applied to the
test set and the importance score for each hPTM was cal-
culated. The entire process was repeated five times and the
hPTMs with the top 5 highest average importance scores
were selected and plotted.
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Iterative random forest modelling and interaction analysis

Iterative random forest model searched for high-order in-
teraction in three steps: (i) Iteratively re-weighted random
forests; (ii) extract decision rules from feature-weighted ran-
dom forest path and recover interactions; (iii) bagging step
to assess the stability of interactions. We trained iterative
random forest model using R package iRF (https://github.
com/sumbose/iRF), with number of iterations = 10 and
number of bootstraps = 30. The stability score was esti-
mated through 5-fold cross validation. Interactions with
stability score >0.5 were considered as meaningful interac-
tions.

Gene ontology and motif enrichment analysis

The Gene Ontology (GO) enrichment analysis was per-
formed using DAVID (37) under default parameters. Over-
represented GO terms for GO domain belong to biological
process, cellular component and molecular function were
used to generate enrichment datasets based on FDR cutoff
0.05.

We further explored the potential sequence features that
may relate to regulation of spliced exons. Enriched motifs in
the exon flanking regions of spliced exons in each tissue and
timepoint were identified through MAPS2 (http://rmaps.
cecsresearch.org/MTool/). Motifs with P-values smaller
than 0.01 in all flanking regions of spliced exons were ex-
tracted. Heatmap of enriched motifs were generated based
on log P-values using heatmap function in R.

RESULTS

Characterization of alternative splicing events in tissue devel-
opment

Alternative splicing has been shown to contribute to cell dif-
ferentiation, tissue identity and organ development (2,38).
To identify AS events associated with tissue development,
we analyzed ENCODE RNA-seq data (32) derived from
mouse embryonic tissues at multiple developmental time
points. We selected data from 7 tissues at 6 time points
based on the availability of both RNA- and ChIP-seq data.
Our analysis focused on one specific AS type––skipped
exon––because it is the most common type in the mam-
malian transcriptome (31). Significant skipped exon events
in each dataset were identified by comparing each time
point with the earliest time point (E11.5) using rMATS (33).
We analysed alternative splice events over developmental
time for each tissue and identified skipped exons with signif-
icant �PSI larger than 0.1 (developmental gain) or less than
–0.1 (developmental loss) (FDR < 0.05). These skipped ex-
ons associated with tissue development are referred to as
‘developmental gain/loss,’ and vary in number from 600 to
3000 across the tissues examined (Figure 1A, Supplemental
Table S2).

We observed that the number of developmentally associ-
ated alternative splicing events increased with developmen-
tal time, with brain tissues showing the greatest increase
(Figure 1C, Supplemental Table S2, Figure S1). For exam-
ple, the number of alternative splicing events in forebrain
increased by 310.56%, from 625 on E12.5 day to 1941 on

E16.5, while in liver the increase was only 157.3% (405–637).
Hierarchical clustering on skipped exon events across de-
velopmental time points revealed specific splicing patterns
in different tissues (Figure 1C, Supplemental Figure S1).
In brain, neural tube and limb, there were more develop-
mental gain events after E12.5, while in heart and liver, the
number of developmental loss events was slightly higher at
most time points (Supplemental Table S2). Tissue-specific
alternative splicing plays important roles for tissue identity
during development (39). Thus, to explore what percent-
age of developmentally-associated skipped exons are tissue-
specific, we performed pairwise comparison of the identified
skipped exons among different tissues (Figure 1B). On aver-
age, over half of the lineage-specific transcripts in each tis-
sue were alternatively spliced; this percentage was not signif-
icantly different between tissues (Supplemental Figure S1).
In addition, we found most of the lineage-specific events oc-
curred in the early time point, which account for ∼50% of
those events among all tissues. Brain tissues showed a signif-
icant decrease of lineage-specific events at later time points
when compared to liver, limb and heart (Supplemental Fig-
ure S1). This finding underscores the relevance of alterna-
tive splicing to lineage-specific gene expression.

In addition to developmentally associated skipped exons,
we also observed another category of skipped exons accord-
ing to PSI values derived from rMATS – isoform selected
high/low (Figure 1E). These exons were alternative spliced
but did not show inclusion level changes over developmen-
tal time.

Gene ontology (GO) enrichment analysis found that
these two categories of AS genes were enriched in different
functional categories (Figure 1D, E, Supplemental Table
S3). AS genes belonging to the developmental gain/loss cat-
egory were overrepresented in certain GO functions, such
as cytoplasm, postsynaptic density and cytoskeleton (Fig-
ure 1D), consistent with previous studies of AS genes in
mouse tissue development (40,41). Alternatively, AS genes
belonging to the inclusion high versus low category were en-
riched in RNA binding, cell cycle and cell division GO func-
tions (Figure 1E). Taken together, these results comprised a
global analysis of alternative splicing events in different tis-
sues across development.

Histone modification enrichment in exon flanking regions dif-
ferentiated skipped exon groups

Though previous studies find that histone modifications
are enriched in promoter regions and predict expression
of corresponding genes (24,26,42), it has become increas-
ingly clear that they also associate with gene bodies and
exon regions, indicating a potential role of histone modi-
fications in pre-mRNA splicing regulation (43). To inves-
tigate if histone modifications associated with alternative
splicing across tissue development, we focused on the ChIP-
seq distribution patterns of 8 histone modifications, includ-
ing H3K4me1, 2, 3, H3K9me3, H3K27me3, H3K36me3,
H3K9ac and H3K27ac, which were available for all tissues
and developmental time points analysed. For each develop-
mental time point, we profiled the hPTM distribution pat-
terns of all skipped and its paired constitutive exons. We rea-
soned that histone modifications related to alternative splic-

https://github.com/sumbose/iRF
http://rmaps.cecsresearch.org/MTool/
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Figure 1. Alternative splicing events associated with tissue development. (A) Schematic illustrating developmentally associated skipped exons. (B) Overlap
of developmentally associated alternative splicing events between tissues (C) Number of significant alternative splicing events identified across 7 develop-
mental time points for several mouse tissues. Heat maps show the differential exon inclusion level (�PSI) by comparing each time point to earliest time
point in skipped exons (row). Bar graph shows the proportion of lineage-specific AS genes. (D) Ontology analysis of developmentally associated AS genes
in forebrain. Data are derived from ENCODE database (32) (Supplemental Table S1) and analysed using rMATs (33). (E) Ontology analysis of isoform
selected high/low AS genes in forebrain.
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ing are likely to be localized to the genomic region at which
splicing occurs and hypothesized that ChIP-seq distribu-
tion patterns would vary by skipped exon category. Thus,
we compared the normalized ChIP-seq signal distributions
of each hPTM in a ±150 bp region flanking the splice sites
of each skipped exon. The distributions of all eight hPTMs
in all seven tissues at each developmental time point are in
s 2–31.

Figure 2 shows the mean ChIP-seq signal distributions
of several hPTMs in brain and heart. We found that only
certain modifications, H3K36me3 and H3K4me1/2/3, dis-
tributed according to skipped exon category. In addition,
hPTMs corresponding to different groups of skipped exons
diverged greatly with respect to their correlative behaviour.
For example, H3K36me3 was positively correlated with
exon inclusion levels of skipped exons in the isoform se-
lected high versus low inclusion category. That is, the higher
the exon inclusion level, the stronger the H3K36me3 enrich-
ment in the exon flanking regions. However, H3K4me2/3
displayed the opposite trend, that is, the H3K4me2/3 en-
richment was highest in skipped exons with low inclusion
level. This association pattern was consistent among all tis-
sues (Figure 2, Supplemental Figure S2–S31). Conversely,
for the gain versus loss inclusion category, the association
patterns were similar in brain tissues but differed among the
other tissues. This is especially true for H3K4me2/3, as we
found that in forebrain at E12.5, H3K4me2/3 enrichment
was positively correlated with skipped exons with inclusion
gain, but in heart, limb and liver, enrichment appeared to
be negatively correlated with those exons. The distribution
of hPTMs also significantly different from the distribution
of their paired constitutive exons in majority of the cases.

Comparison of hPTM distribution across different
time points and tissues revealed unique patterns for
some hPTMs (Supplemental Figures S2–S31). When
we compared different tissues at the same time point,
H3K4me1/2/3 enrichment displayed the biggest variation,
e.g. H3K4me3 signal was higher in the exon flanking re-
gions of inclusion gain versus loss category in forebrain at
E15.5, while in heart, it was much higher at exons in low
versus high category. H3K4me also varied across different
time points for some tissues. For example, in heart tissue
at E12.5, H3K4me3 enrichment was greatest for exons in
the inclusion gain versus loss category, but this preferential
enrichment gradually switched to exons in the high vs. low
group over developmental time. These results suggested that
the role of of hPTMs in AS varies across time points and tis-
sues.

Modelling skipped exon inclusion by logistic regression and
random forest

We next took our analysis one step further to computation-
ally model the relationship between histone modifications
and each skipped exon category. We tested the hypothe-
sis that the model can distinguish two different groups of
skipped exons: (i) exons with developmental gain versus ex-
ons with developmental loss and (ii) exons with isoform se-
lected high versus exons with isoform selected low. In this
study, we chose two different approaches––logistic regres-
sion and random forest. To avoid the uncertainty and com-

plexity of using deep learning models, we chose to use tradi-
tional machine learning approaches because of their good
performance and ease of training and interpretability (see
Discussion).

For each histone modification, we summed the ChIP-seq
signal upstream and downstream (±150 bp) of skipped ex-
ons’ splice sites and regarded them as eight hPTM features
of the model. These eight features were then expanded to 32
explanatory variables to build the model. The model perfor-
mance was measured by accuracy and area under the ROC
curve (AUC) based on 5-fold cross validation.

Table 1 shows the accuracy values of two models for seven
tissues at different developmental time points. In general,
random forest showed better performance than logistic re-
gression in all tissues and time points, which was consis-
tent with a recent study that compared the performance
of 13 popular machine learning algorithms (44). The accu-
racy of random forest model varied from 0.57 to 0.72 in de-
velopmental gain versus developmental loss category and
from 0.67 to 0.70 in isoform selected high versus isoform
selected low category. Due to the imbalanced datasets of
some tissues, we also compared their AUC values, which
is insensitive to imbalanced classes. Consistent with accu-
racy values, AUC of random forest was between 0.64 and
0.74 in developmental gain versus developmental loss cate-
gory and from 0.72 to 0.75 in isoform selected high versus
isoform selected low category (Figure 3A, Supplement Fig-
ures S35–S37). In addition, accuracy and AUC values from
random forest were much higher than random prediction
(0.5), indicating a good predictive power of random forest
model.

For developmental gain versus loss category, the model
performance varied over time. The AUC of random forest
was >0.6 for the majority of tissues and time points and
showed a trend for increase over time, but this trend may be
caused by the smaller sample size at early time points (Fig-
ure 3A, Supplemental Figures S32–S36). For the skipped
exon in isoform selected high versus isoform selected low
category, the model performance remained stable for all tis-
sues and did not differ greatly when compared to most of
the time points of gain versus loss inclusion category (Table
1, Figure 3A, Supplemental Figures S32–S36).

To further investigate the association patterns between
hPTMs and skipped exons, we included constitutive exons
in the random forest model. Similar to the previous model,
the model performance of random forest exhibited the same
patterns across different tissues and timepoints in both de-
velopmental gain/loss and isoform selected high/low cat-
egories. However, adding features from constitutive exons
further increased the model performance in the develop-
mental gain/loss exon category, while there was no effect on
the isoform selected high/low exon category. This indicated
greater divergence in the hPTM features between constitu-
tive and developmentally-regulated alternative exons in the
developmental gain/loss category (Supplemental Table S3).

In summary, our data indicated an association of hPTMs
with two categories of skipped exon selection: exons that
show isoform switching behavior during tissue development
and exons that are alternatively spliced but without iso-
form switching over developmental time. In both categories,
hPTMs were highly predictive of skipped exon inclusion,
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Figure 2. Representative distribution of mean ChIP-seq signal of 6 types of hPTM, including H3K36me3, H3K4me1, H3K9me3, H3K27ac, H3K4me2
and H3K4me3 on the flanking region (±150 bp) of four types of skipped exons. Dashed grey line shows exon–intron borders. (A) Forebrain, E12.5
(B) distribution of H3K36me3 among six tissues shows hPTM distribution was significantly different among different types of skipped exons (P-values,
ANOVA test).
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Figure 3. Model performance and important histone modifications associated with skipped exon selection in different tissues and timepoints (A) Accuracy
and AUC values of random forest models built based on hPTM signals on the flanking regions of skipped exons in forebrain across developmental time
points. (B) H3K36me3 and H3K4me1 are the most predictive hPTM in differentiating skipped exon inclusion categories. Boxplot of important score
generated by random forest model in different tissues at E12.5 shows several types of hPTM are key predictors. Importance score is calculated based on
5-fold cross validation.
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Table 1. Accuracies of logistic and random forest models to predict gain verus loss and high versus low categories for different tissues at each developmental
time point. Accuracies were calculated based on 5-fold cross validation

Gain versus loss Logistic regression Random forest

Tissue 12.5 day 13.5 day 14.5 day 15.5 day 16.5 day 12.5 day 13.5 day 14.5 day 15.5 day 16.5 day

Forebrain 0.53 0.59 0.64 0.6 0.62 0.57 0.67 0.7 0.67 0.7
Heart 0.62 0.62 0.5 0.62 0.6 0.62 0.64 0.64 0.64 0.62
Hindbrain 0.53 0.63 0.63 0.63 0.59 0.58 0.69 0.71 0.7 0.69
Limb 0.52 0.57 0.56 0.58 NA 0.61 0.61 0.67 0.64 NA
Liver 0.59 0.54 0.47 0.54 0.53 0.64 0.59 0.52 0.59 0.61
Midbrain 0.58 0.63 0.65 0.62 0.62 0.59 0.71 0.72 0.69 0.7
Neural tube 0.55 0.61 0.65 0.59 NA 0.59 0.67 0.72 0.68 NA

High versus low Logistic regression Random forest

Tissue 12.5 day 13.5 day 14.5 day 15.5 day 16.5 day 12.5 day 13.5 day 14.5 day 15.5 day 16.5 day

Forebrain 0.63 0.64 0.63 0.63 0.61 0.7 0.69 0.69 0.69 0.67
Heart 0.61 0.63 0.61 0.62 0.62 0.69 0.7 0.69 0.7 0.68
Hindbrain 0.63 0.62 0.62 0.62 0.63 0.69 0.69 0.68 0.69 0.7
Limb 0.63 0.63 0.62 0.62 NA 0.69 0.69 0.67 0.68 NA
Liver 0.62 0.6 0.6 0.59 0.59 0.69 0.67 0.67 0.66 0.67
Midbrain 0.62 0.62 0.63 0.63 0.62 0.68 0.69 0.69 0.68 0.68
Neural tube 0.65 0.63 0.62 0.64 NA 0.7 0.69 0.67 0.7 NA

suggesting that hPTMs are involved in skipped exon selec-
tion, either directly or indirectly.

Specific types of hPTMs were key predictors for skipped exon
groups

To elucidate the relative importance of different hPTMs
on skipped exon selection and to test their respective con-
tributions to splicing across tissues and time points, we
extracted the importance score generated from random
forest model (Figure 3B, Supplemental Figures S37–S51).
Overall, H3K36me3 and H3K4me1 were the most predic-
tive hPTMs in differentiating skipped exon inclusion cate-
gories, while H3K9me3 was the least informative. In addi-
tion to H3K36me3, we observed a strong predictive effect of
H3K4me1 at 5′ splice site downstream and 3′ splice site up-
stream in many of the tissues. The 3′ splice site upstream of
H3K27me3 showed a greater contribution in midbrain and
hindbrain at E12.5, while in limb, H3K9ac and H3K9me3
at the 3′ splice site upstream were informative to differenti-
ate skipped exon groups.

We next compared the same tissue at different develop-
mental time points, and similarly found that H3K36me3
and H3K4me1 ranked at the top for majority of the cases
(Supplemental Figures S37–S51). Consistent with their
contributions at E12.5, the 5′ splice site downstream, 3′
splice site upstream of H3K36me3 and the 5′ splice site
downstream, 3′ splice site upstream of H3K4me1 were the
most informative predictors. On the other hand, the contri-
bution of some types of hPTMs varied over time. For exam-
ple, in liver at E13.5, the 3′ splice site upstream of H3K9ac
had a much stronger predictive effect when the same region
was compared at the other time points.

To further examine the contribution of individual
hPTMs, we averaged the important score in the flanking
regions for each hPTM and normalized it by dividing the
largest averaged value. We then plotted the normalized
score for each time point. Figure 4 shows the contribution
of each hPTM to differentiating exons in the developmen-

tal gain/loss category. We observed a consistent subset of
hPTMs as predictors for all tissues and time points exam-
ined, with H3K36me3 being the most informative feature
in 100% of cases and H3K4me1 being the second most in-
formative feature in ∼80% of cases. The contribution of
other hPTMs varied across the different tissues examined.
In brain tissues and heart, H3K9ac had a relatively higher
predictive rank, while in limb, neural tube and liver, the ef-
fect of H3K27me3 was greatest. The pattern was consistent
for isoform selected high vs. low group (Supplemental Fig-
ure S5 and S52–S53).

A multitude of studies have detailed the relationships
between hPTMs and gene expression levels––both in pro-
moter regions and within gene bodies (24–26,45). Gene ex-
pression levels may therefore also be correlated to skipped
exon usage and confound our model result. Although we
observed little correlation among hPTM signals, exon splic-
ing and gene expression (Supplemental Table S5, Figure
S73), to control for the potential confounding effect of gene
expression on model accuracy, we further divided the ex-
ons into three categories according to their gene expres-
sion level: high, medium, low (see Materials and Meth-
ods). We found that while the contributions of hPTMs var-
ied by gene expression category, H3K36me3 and H3K4me1
were consistently the top predictive features (100% of all
tissues and timepoints for H3K36me3 and 86% of tis-
sues and timepoints for H3K4me1) (Figure 5, Supple-
mental Figures S68–S71). The predominant appearance
of H3K36me3 and H3K4me1 as top predictors indicated
their strong association with exon splicing patterns in both
developmental gain/loss and isoform selected high/low
categories.

To further investigate the role of these hPTMs we selected
several developmentally-regulated alternative exons charac-
terized in the literature (38). We then analyzed the hPTM
enrichment in the flanking regions of these exons. Using this
approach, we identified a subset of exons for which hPTM
enrichment strongly correlated with exon splicing rate, as
measured by PSI. This data further supported a potential
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Figure 4. Contributions of different types of hPTM to differentiate developmental gain versus developmental loss over time in (A) forebrain (B) heart (C)
hindbrain (D) limb (E) neuraltube (F) liver (G) midbrain. The importance score generated by random forest was normalized so that the maximum value
is 1. H3K36me3 is the top predictive feature across all the timepoints and tissues.

link between hPTMs and tissue development driven by al-
ternative splicing (Supplemental Table S4). Taken together,
these results supported our hypothesis that H3K36me3 and
H3K4me1 specifically contribute to alternative splicing.

Interaction among histone modifications and skipped exon se-
lection

Interactions among histone modifications in promoter re-
gions for the regulation of gene expression and exon splic-
ing have been reported in several studies based on Bayesian
methods (23,46). However, Bayesian methods used in these
studies discretized the ChIP-seq signal based on the clus-
tering result, which may cause information loss. To investi-
gate the interaction among histone modifications, we used
iterative random forest model (iRF), which can be applied
to identify high-order interactions. iRF algorithm first se-
quentially grows feature-weighted random forests to per-
form feature space reduction and then fits the model based
on Random Intersection Trees algorithm to identify high-

order feature combinations that are prevalent on the ran-
dom forest decision paths (55).

As demonstrated in Figure 6, many histone modification
interactions were observed in forebrain, heart and liver for
developmental gain versus loss category at E12.5. The inter-
actions from other tissues and isoform selected high versus
low category are in Supplemental Figures S54–S67. These
included interactions between modifications on different
amino acids (e.g. H3K36me3 and H3K4me1), between dif-
ferent kinds of modifications (e.g. H3K4me1 and H3K9ac),
and between the different genic regions of the same histone
modification (e.g. H3K4me1 5′ downstream and H3K4me1
3′ upstream). The interaction between H3K36me3 and
H3K4me1 in the exon flanking regions (H3K36me3 5′
downstream and H3K4me1 3′ upstream) was the top fea-
ture in both developmental gain versus loss and isoform
selected high versus low group. The other top interac-
tions included H3K27me3 and H3K36me3, H3K27ac and
H3K36me3, H3K27ac and H3K4me1 and H3K36me3 and
H3K9me3. Interestingly, we observed many interactions be-
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Figure 5. Contribution of top 5 predictive hPTMs after stratifying gene expression level in developmental gain/loss exons (A) forebrain, E12.5 (B) Con-
tribution of different hPTMs among six tissues shows H3K36me3 and H3K4me1 consistently become the top predictive features to differentiate different
exon splicing patterns.

tween the different flanking regions of the same histone
modification, such as interactions between H3K36me3 5′
upstream and H3K36me3 3′ upstream, suggesting a spatial
relevance of hPTMs to alternatively spliced exon selection.
The prevalence of H3K36me3 and H3K4me1 as interact-
ing partners further underscores the relative importance of
these hPTMs in skipped exon selection.

DISCUSSION

AS plays a critical role during tissue development and cell
differentiation (2,38). Previous studies reveal several regu-
latory mechanisms for AS, including expression and target-

ing of splicing factors and enrichment of hPTMs (38). In
this study, we sought to comprehensively investigate previ-
ous observations of the relationship between hPTMs and
AS during tissue development by integrating ChIP-seq and
RNA-seq data from seven different mouse embryonic tis-
sues at six developmental time points. We identified two dif-
ferent categories of AS (skipped) exons: skipped exons asso-
ciated with development and skipped exons associated with
isoform selection. Ontological analyses found that genes
from these two categories are enriched in different func-
tions. AS genes associated with developmental gain/loss
category in forebrain were more likely to be enriched in
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Figure 6. Top stable interactions of histone modifications in the exon flanking region for gain versus loss group obtained by iRF algorithm (stability score
> = 0.5). 3 tissues (12.5 day) were visualized: (A) forebrain, (B) heart and (C) liver. Many histone modification interactions were observed in forebrain,
heart and liver for developmental gain versus loss category at E12.5. These included interactions between modifications on different amino acids (e.g.
H3K36me3 and H3K4me1), between different kinds of modifications (e.g. H3K4me1 and H3K9ac), and between the different genic regions of the same
histone modification (e.g. H3K4me1 5′ downstream and H3K4me1 3′ upstream).
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neuronal-related functional categories, such as neuron pro-
jection, postsynaptic density and cytoskeleton. This is con-
sistent with previous gene ontology analysis for differen-
tially spliced exons in developing cerebral cortex, which
show that cytoskeleton genes are overrepresented in mouse
and human (41). On the other hand, AS genes that belong
to isoform selected high/low category are overrepresented
in distinct ontological categories important to maintain cell
function or tissue identity, such as cell cycle, protein trans-
port and RNA binding.

Computational models constructed based on ChIP-seq
signal in the flanking regions of skipped exons showed that
hPTMs associated with both categories of skipped exon.
Consistent with previous studies, we found H3K36me3 to
be most predictive for skipped exon groups (37,41). Specifi-
cally, H3K36me3 enrichment in the flanking region 5′ splice
site downstream and 3′ splice site upstream of the skipped
exon was the top predictor in all tissues. This result was also
true when we stratified the exons by gene expression level.
While the contributions of hPTMs varied by gene expres-
sion category, H3K36me3 was consistently the top predic-
tive features in all tissues and time points (Figure 5, Sup-
plemental Figure S68–S71). This result has been reported
previously in other systems. First, a computational analy-
sis of skipped exons based on 3 human cell lines shows the
enrichment of H3K36me3 in exon and downstream of 3′
splice site is significantly correlated with skipped exon in-
clusion (43). Second, analysis of human and C. elegans ex-
ons finds H3K36me3 is most highly enriched at the 5′ end of
exons (47). Finally, our previous analysis of mouse nucleus
accumbens reveals that H3K36me3 has the greatest enrich-
ment at alternative isoforms relative to other hPTMs (48).
Our approach is an improvement over previous approaches
based on clustering (49) by quantifying the global associ-
ations between hPTMs and exon splicing and their contri-
butions. Together with our findings, these prior reports in-
dicate one possible regulatory by which H3K36me3 enrich-
ment contributes to alternative exon selection in AS.

Using iterative random forest model, we further iden-
tified interactions between several hPTMs that associ-
ated with skipped exon selection. The interaction between
H3K36me3 and H3K4me1 in the exon flanking regions was
the top feature in both developmental gain/loss and iso-
form selected high/low group. Other interactions, such as
H3K27me3 and H3K36me3, H3K27ac and H3K36me3,
and H3K36me3 and H3K9me3, indicated that relatively
weaker predictive hPTMs may only be functional when
in combination with the highly predictive ones. The con-
cept of hPTM interaction is not new. Several studies have
found the combinatorial effect of histone modifications and
their association with gene transcription and differentia-
tion. For example Han et al. deciphers histone modifica-
tion interaction relationships on exons based on Bayesian
network (23). Interestingly, we found many interactions
that occur between the different flanking regions of same
or different histone modifications, such as interactions be-
tween H3K36me3 5′ upstream and H3K36me3 3′ upstream
and between H3K36me3 5′ downstream and H3K4me1
3′ upstream. These results suggested hPTMs located in
different positions in the exon flanking region may con-
tribute differently to skipped exon selection. This is consis-

tent with the result of a previous study that finds hPTMs
correlate to skipped exon inclusion via specific patterns
along the flanking region of those exons (25). In particu-
lar, H3K36me3 shows a significant correlation between up-
stream and downstream of exon flanking regions for exon
inclusion rate, which is consistent with our finding.

Furthermore, we observed the occurrence of some
hPTMs at several skipped exons found in neuronal devel-
opmental tissues from a previous study (38), suggesting a
potential mechanistic connection between those modifica-
tions and tissue development driven by AS (Supplemental
Table S4). RNA-seq analysis from Zhang et al. shows ex-
onN is included in cerebral cortex and cerebellum but ex-
cluded from non-neural tissues. This is consistent with our
finding that the inclusion level of FLNA exonN is signifi-
cantly increased in forebrain over developmental time, but
not in liver, heart and limb. Interestingly, one previous study
finds that mutations that disrupt the Polypyrimidine tract
binding protein (PTBP1) binding site of FLNA exonN in
neural progenitor cell causes a brain-specific malformation
in human, suggesting the potential regulatory role between
PTBP1 and exonN inclusion (41). In this study, we observed
that the signal of H3K36me3 in the flanking regions was
significantly correlated with FLNA exonN inclusion in fore-
brain (Figure 7A, B), suggesting a link among histone mod-
ifications, splice factors and exon inclusion (Figure 7C).
This notion is furthered by previous findings from Luco et
al., that H3K36me3 can directly interact with spliceosome
components to regulate alternative exon expression in hu-
man cell lines (50). Finally, motif enrichment analysis in the
flanking regions of developmental gain/loss exons identi-
fied motifs that were over-represented in the alternatively
spliced exons among different tissues, including PTBP1 in
brain-related tissues, further indicating the potential link
between hPTM and splicing motifs in regulation of alter-
native spliced exon (Supplemental Figure S72).

In recent years, deep learning models also have been ap-
plied in identifying epigenetic factors associated with alter-
native splicing and gene expression (51,52). Deep learning
methods are especially useful with large numbers of fea-
tures and examples, and techniques that use perturbation
or backpropagation (backtracking) (53) can aid in model
interpretation. Perturbation-based approaches may better
capture the space of inputs that can change an output
but are computationally expensive, while backpropagation-
based methods are efficient but potentially more limited in
their ability to define a full set of features related to an out-
put (53). In short, these methods are powerful predictors
but may not be the most suitable methods when the goal is
to understand why an input is linked with an output. Here,
we had relatively few features so we studied the link be-
tween hPTM and splicing with, logistic regression and itera-
tive random forest models, which aligned with our scientific
goals. Future studies, particularly those focused primarily
on building predictive models from raw sequence-level fea-
tures, could benefit from deep learning.

Although our model identified potential links between
hPTMs and exon splicing, it still has certain limitations.
Firstly, without the input information, the ChIP read count
could be influenced not only by hPTM enrichment in ChIP-
seq data, but by the other factors such as GC context and
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Figure 7. Potential mechanistic connection between histone modifications and tissue development. (A) Genome browser view shows the enrichment of
H3K36me3 and exonN inclusion in forebrain, heart, liver and limb. (B) The inclusion level of exonN in FLNA gene was significantly correlated with
H3K36me3 enrichment. (C) Schematic depicts a potential mechanism by which H3K36me3 regulates exonN inclusion. H3K36me3 can recruit splicing
factor PTBP1, which will further repress exonN inclusion.

chromatin accessibility of the region. However, there other
studies have pointed out that correcting the effect using
ChIP-seq input and nucleosome occupancy has little influ-
ence for the original result and major findings still hold
(54). In addition, at present, we focus on hPTM enrich-
ment in the exon flanking region, which is that area most
likely to be relevant in a direct recruitment model. However,
hPTM enrichment further from the exons, in the promoter,

from different exons or across the gene, likely contribute
to splicing as well. Further analyses will incorporate these
distal associations, requiring additional parameters to con-
trol for noise and uncertainty introduced into the model.
Overall, we have performed a comprehensive analysis to
investigate chromatin-mediated alternative splicing events
during tissue development. Using computational models,
we found that specific histone modifications, H3K36me3
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and H3K4me1, have the strongest associations in skipped
exon selection among all the tissues and developmental time
points examined. We also identified interactions of two or
more hPTMs that highly predict AS. For example, the in-
teraction between H3K36me3 and H3K4me1 in the exon
flanking region was the top feature in both skipped exon
categories. These findings increased the complexity of defin-
ing AS regulation, which will inform further experimental
studies on the functional relevance of these modifications to
alternative splicing.
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(2010) Histone modification levels are predictive for gene expression.
Proc. Natl. Acad. Sci. U.S.A., 107, 2926–2931.

36. Wu,S., Li,K., Li,Y., Zhao,T., Li,T., Yang,Y.-F. and Qian,W. (2017)
Independent regulation of gene expression level and noise by histone
modifications. PLoS Comput. Biol., 13, e1005585.

37. Jiao,X., Sherman,B.T., Huang da,W., Stephens,R., Baseler,M.W.,
Lane,H.C. and Lempicki,R.A. (2012) DAVID-WS: a stateful web
service to facilitate gene/protein list analysis. Bioinformatics, 28,
1805–1806.

38. Baralle,F.E. and Giudice,J. (2017) Alternative splicing as a regulator
of development and tissue identity. Nat. Rev. Mol. Cell Biol., 18, 437.

39. Ferrarese,R., Harsh,G.R.T., Yadav,A.K., Bug,E., Maticzka,D.,
Reichardt,W., Dombrowski,S.M., Miller,T.E., Masilamani,A.P.,
Dai,F. et al. (2014) Lineage-specific splicing of a brain-enriched
alternative exon promotes glioblastoma progression. J. Clin. Invest.,
124, 2861–2876.

40. Dillman,A.A., Hauser,D.N., Gibbs,J.R., Nalls,M.A., McCoy,M.K.,
Rudenko,I.N., Galter,D. and Cookson,M.R. (2013) mRNA
expression, splicing and editing in the embryonic and adult mouse
cerebral cortex. Nat. Neurosci., 16, 499–506.

41. Zhang,X., Chen,M.H., Wu,X., Kodani,A., Fan,J., Doan,R.,
Ozawa,M., Ma,J., Yoshida,N., Reiter,J.F. et al. (2016)
Cell-type-specific alternative splicing governs cell fate in the
developing cerebral cortex. Cell, 166, 1147–1162.

42. Cheng,C., Yan,K.K., Yip,K.Y., Rozowsky,J., Alexander,R., Shou,C.
and Gerstein,M. (2011) A statistical framework for modeling gene
expression using chromatin features and application to
modENCODE datasets. Genome Biol., 12, R15.

43. Liu,H., Jin,T., Guan,J. and Zhou,S. (2014) Histone modifications
involved in cassette exon inclusions: a quantitative and interpretable
analysis. BMC Genomics, 15, 1148.

44. Olson,R.S., Cava,W., Mustahsan,Z., Varik,A. and Moore,J.H. (2018)
Data-driven advice for applying machine learning to bioinformatics
problems. Pac. Symp. Biocomput., 23, 192–203.

45. Enroth,S., Bornelov,S., Wadelius,C. and Komorowski,J. (2012)
Combinations of histone modifications mark exon inclusion levels.
PLoS One, 7, e29911.

46. van Steensel,B., Braunschweig,U., Filion,G.J., Chen,M., van
Bemmel,J.G. and Ideker,T. (2010) Bayesian network analysis of
targeting interactions in chromatin. Genome Res., 20, 190–200.

47. Tilgner,H., Nikolaou,C., Althammer,S., Sammeth,M., Beato,M.,
Valcarcel,J. and Guigo,R. (2009) Nucleosome positioning as a
determinant of exon recognition. Nat. Struct. Mol. Biol., 16,
996–1001.

48. Hu,Q., Kim,E.J., Feng,J., Grant,G.R. and Heller,E.A. (2017) Histone
posttranslational modifications predict specific alternative exon
subtypes in mammalian brain. PLoS Comput. Biol., 13, e1005602.

49. Feng,J., Wilkinson,M., Liu,X., Purushothaman,I., Ferguson,D.,
Vialou,V., Maze,I., Shao,N., Kennedy,P., Koo,J. et al. (2015) Erratum
to: chronic cocaine-regulated epigenomic changes in mouse nucleus
accumbens. Genome Biol., 16, 227.

50. Luco,R.F., Pan,Q., Tominaga,K., Blencowe,B.J., Pereira-Smith,O.M.
and Misteli,T. (2010) Regulation of alternative splicing by histone
modifications. Science, 327, 996–1000.

51. Xu,Y., Wang,Y., Luo,J., Zhao,W. and Zhou,X. (2017) Deep learning
of the splicing (epi)genetic code reveals a novel candidate mechanism
linking histone modifications to ESC fate decision. Nucleic Acids
Res., 45, 12100–12112.

52. Singh,R., Lanchantin,J., Robins,G. and Qi,Y. (2016) DeepChrome:
deep-learning for predicting gene expression from histone
modifications. Bioinformatics, 32, i639–i648.

53. Ching,T., Himmelstein,D.S., Beaulieu-Jones,B.K., Kalinin,A.A.,
Do,B.T., Way,G.P., Ferrero,E., Agapow,P.M., Zietz,M.,
Hoffman,M.M. et al. (2018) Opportunities and obstacles for deep
learning in biology and medicine. J. Roy. Soc. Interface, 15, 20170387.

54. Zhou,Y., Lu,Y. and Tian,W. (2012) Epigenetic features are
significantly associated with alternative splicing. BMC Genomics, 13,
123.

55. Basu,S., Kumbier,K., Brown,J.B. and Yu,B. (2018) Iterative random
forests to discover predictive and stable high-order interactions.
Proceedings of the National Academy of Sciences, 115, 1943–1948.


