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Abstract
With the worldwide spread of the novel severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health 
Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus dis-
ease-19 (COVID-19) has become one of the main challenges of our times. The high 
infection rate and the severe disease course led to major safety and social restriction 
measures worldwide. There is an urgent need of unbiased expert knowledge guiding the 
development of efficient treatment and prevention strategies. This report summarizes 
current immunological data on mechanisms associated with the SARS-CoV-2 infection 
and COVID-19 development and progression to the most severe forms. We characterize 
the differences between adequate innate and adaptive immune response in mild disease 
and the deep immune dysfunction in the severe multiorgan disease. The similarities of 
the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are 
underlined. We also summarize known and potential SARS-CoV-2 receptors on epithe-
lial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, 
kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential 
mechanisms underlying the involvement of comorbidities, gender, and age in develop-
ment of COVID-19. Consequently, we highlight the knowledge gaps and urgent research 
requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.

K E Y W O R D S

COVID-19 comorbidity, COVID-19 immunity, COVID-19 multimorbidity, COVID-19 
prevention, COVID-19 treatment, SARS, SARS-CoV-2 receptors

1  | INTRODUC TION

Infections with the novel coronavirus SARS-CoV-2 resulting in 
COVID-19 development represent the major medical and scientific 

challenges of our time. Knowledge on SARS-CoV-2 infection path-
ways and mechanisms associated with immune defense or immuno-
pathology is growing exponentially, as it is indispensable to design 
the proper diagnostic and therapeutic strategies. However, there 
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are several knowledge gaps and urgent unmet research needs in our 
understating of the current pandemics (Table 1). A group of experts 
in basic and clinical immunology has joined forces under the um-
brella of the European Academy of Allergy and Clinical Immunology 
(EAACI) to provide a consensus report on the basic molecular and 
immune mechanisms associated with susceptibility, clinical presen-
tations and severity of COVID-19.

2  | SARS- COV-2 RECEPTORS: PROVEN 
AND POTENTIAL INTER AC TION PARTNERS

On the basis of sequence homology, all human coronaviruses have 
animal origins: SARS-CoV, SARS-CoV-2, MERS-CoV, HCov-NL63, 
and HCoV-229E are considered to have originated from bats,1 
whereas HCoV- OC43 and HKU1 likely originated from rodents 
(Figure 1).2 SARS-CoV-2 has a significant structural similar-
ity to SARS-CoV and MERS-CoV and other human and animal 

coronaviruses.3,4 It has been quickly determined that SARS-CoV-2, 
similarly to SARS-CoV, utilizes the membrane bound form of angi-
otensin-converting enzyme 2 (ACE2) to enter human cells via its 
spike protein (S).5 After SARS-CoV-2 has bound ACE2, ACE2 will 
be internalized and its membrane expression decreased. Whereas 
ACE2 is an important regulator of bradykinin, its reduced expres-
sion in the lung environment results in local vascular leakage lead-
ing to angioedema in the affected lung tissue.6 The host serine 
protease TMPRSS2 cleaves spike protein into S1 and S2 fragments, 
which enables fusion with the cellular membrane, entrance to the 
cell, and start of the replication process.7 In addition to TMPRSS2, 
other proteins such as furin or human endosomal cysteine pro-
teases are potentially capable of cleaving S, such as cathepsin L 
(CTSL) and cathepsin B (CTSB).8,9 ACE2 is highly expressed in the 
lungs, small intestine, kidney, and heart, but it is not expressed on 
innate and adaptive immune cells.10-13 As recently shown, SARS-
CoV-2 can also use CD147 (also called basigin (BSG) or extracellu-
lar matrix metalloproteinase inducer (EMMPRIN)), to enter cells of 

TA B L E  1   Summary of knowledge gaps and research needs pertaining to SARS-CoV-2 and COVID-19 (as of May 20, 2020)

Knowledge Gaps Research Needs

Origin and evolution SARS-CoV-2 To shed light on the origin of SARS-CoV-2 via studies of genomic epidemiology and evolutionary 
dynamics

COVID-19 diagnosis To develop rapid and specific point-of-care diagnostic test for COVID-19 and to validate existing 
serological tests

Zoonotic transmission and exhaustive 
characterization of human SARS-CoV-2 
transmission

To elucidate mechanisms of SARS-CoV-2 transmission from animals to humans and vice versa. 
To determine how demographic factors and severity of COVID-19 patients affect SARS-CoV-2 
transmission as well as how infectious are asymptomatic or pre-symptomatic infected people

Route of SARS-CoV-2 transmission To ascertain the role of fecal–oral transmission in COVID-19 and better define the presence and 
duration of SARS-CoV-2 in oral and respiratory secretions, in fecal samples and in serum.

Natural history of asymptomatic and mild 
SARS-CoV-2 infection in humans

To identify SARS-CoV-2 a-/oligosymptomatic carriers to track their viral loads, clinical 
presentations and immune response (antibody titers, immune phenotyping, etc) over time

Pathogenicity of SARS-CoV-2 To investigate mechanisms of and changes in SARS-CoV-2 pathogenicity (as compared to SARS-
CoV) to provide the basis for the identification of novel therapeutic targets

Spectrum of COVID-19 severity To characterize the heterogeneity of COVID-19 severity to aid in directing management and 
treatment of COVID-19 patients

Risk factors and biomarkers associated with 
severe illness or mortality in COVID-19

To identify COVID-19 sensitive groups and determine the causes underlying disease severity to 
reinforce prevention strategies and treatment of high-risk groups

COVID-19 treatment To screen new pharmaceuticals, small molecule compounds, biologics, and other agents that have 
potent anti-SARS-CoV-2 to empower current COVID-19 treatments

Vaccine development for SARS-CoV-2 To develop SARS-CoV-2 vaccines for prevention and ultimate eradication of SARS-CoV-2. 
Particular attention should be placed to investigate potential antibody-dependent enhancement 
of viral infection in vaccine candidates

Pre-clinical models for SARS-CoV-2 and 
COVID-19 research

To develop animal models for SARS-CoV-2 research (mechanisms of infection, pathogenesis, 
treatments, etc)

Para-/postinfectious syndromes in SARS-
CoV-2 infection

To understand COVID-19-associated Kawasaki-like syndrome/TSS in children and rare para-/
postinfectious symptoms in adults.

Long-term sequelae of COVID-19 Follow-up of COVID-19 patients to detect potential long-term consequences of COVID-19 
pneumonia (eg, pulmonary fibrosis, early COPD) and other manifestations (eg, renal impairment, 
cardiac/ vascular dysfunction, increased risk of thrombosis/ sepsis (due to endothelial 
dysfunction))

Individual protection after SARS-CoV-2 
infections

To understand why development of protective antibodies is not seen in all infected patients and 
whether this might be related to severity of SARS-CoV-2 infection
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epithelial origin, but it is not yet clear if then virus can efficiently 
replicate or it leads to the cell death14 CD147 is utilized as a recep-
tor by other viruses including SARS-CoV and HIV-1, as well as by 
malaria to enter erythrocytes.15–17 It is, however, not yet clear if 
SARS-CoV-2 can replicate inside immune cells or just infects them 
and causes cell death. CD147 is a transmembrane immunoglobu-
lin-like receptor, which also exists in a secreted form.13,18 At the 
cellular membrane, it is activated by several extracellular ligands 
such as cyclophilins A and B (PPIA and PPIB), S100A9 or platelet 
glycoprotein VI (GP6).19–22 Its extracellular glycosylation sites bind 
to complex proteoglycans such as syndecan-1.23 CD147 often cre-
ates membrane complexes with CD44, one of the receptors for 
hyaluronan, an extracellular matrix component.24 Coronaviruses 
incorporate host cyclophilins during their cellular replication cycle, 
which further enables them to bind to CD147.25,26 CD147 is ex-
pressed in human airway and kidney epithelium, as well as in in-
nate cells (granulocytes, macrophages, dendritic cells (DC), innate 
lymphoid cells (ILCs), and lymphocytes).10 Other receptors poten-
tially utilized by SARS-CoV-2 are CD26 (encoded by DPP4; a re-
ceptor for MERS-CoV), an important T cell and also epithelial cell 
receptor, amino peptidase N (ANPEP; a receptor for human and 
porcine coronaviruses),13,27 ENPEP and a glutamyl aminopepti-
dase,28 as well as DC-SIGN 29 (Figure 2).

3  | ENTR ANCE OF THE VIRUS THROUGH 
EPITHELIAL BARRIERS:  COVID -19 
PATHOPHYSIOLOGY

3.1 | Airway epithelium: hotspot for disease 
development

In the upper and lower airways ACE2 and TMPRSS2 are highly co-
expressed,10–13 but there is no expression of SLC6A19, which po-
tentially blocks the access of TMPRSS2 to ACE2 and subsequently 
reduces active infection. 30,31 In the nasal and the pharyngeal epi-
thelium, in goblet and ciliated cell, ACE2 is expressed at high levels 
and co-expressed with TMPRSS2 representing the sites of initial 
viral replication and a main source of infectious particles.10–13,30 The 
lower airways, bronchial epithelium and type II pneumocytes (AT2 
cells) highly express ACE2 and TMPRSS2, which may provide virus 
entrance to the lung and lead to COVID-19 pneumonia. Moreover, 
CD147, CD26, ANPEP, and ENPEP are also expressed in the airway 
epithelium, as well as in many innate and adaptive immune cells, 
10,13 both in bronchoalveolar lavage (BAL) and peripheral blood 
(Figure 3A).

Once the virus enters the host cell, it releases its RNA into the 
cytoplasm and uses the host translation machinery to translate its 

F I G U R E  1   SARS-CoV-2 on the animal-human interphase. Animal models that resemble clinical and pathological features of COVID-19 
are essential to investigate pathogenesis, transmission, and therapeutic strategies. SARS-CoV-2 shares 96.2% of its genome sequence with 
the bat CoV RaTG13 posing the bat as the most probable natural host of virus origin. SARS-CoV-2-related coronaviruses have been identified 
in Malayan pangolins, which is considered as an intermediate host between bats and humans. ACE2, a critical SARS-CoV-2 receptor, in 
wild-type mice differs from the human one; therefore, transgenic mice models with recombinant hACE2 are necessary. To this date, Rhesus 
macaques, with ACE2 identical to human's, have been used to study the natural course of the disease and the effectiveness of therapeutic 
intervention with intravenous immunoglobulins. Ferrets and cats have been shown susceptible to SARS-CoV-2 infection and to develop 
COVID-19 symptoms including respiratory and gastrointestinal manifestations. Limited facilities and expertise in handling nonmurine 
species may hamper usage of the aforementioned models. Transmission between humans and animals has not been unequivocally confirmed
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polyproteins pp1a and pp1b, also known as replicases and viral es-
sential proteases 3CLpro and PLpro. These proteases cleave poly-
protein complex into several nonstructural proteins (Nsp), which 
together with the viral RNA-dependent RNA polymerase form the 
replication complex, where the negative strand and mRNA for struc-
tural proteins (S, nucleocapsid (N), envelope (E), and membrane (M)) 
and accessory proteins for the virus are created.2,32,33 After protein 
translation, they traffic through the ER to the Golgi apparatus, where 
the mature virions are assembled in budding vesicles and are exo-
cytosed from the cell. Inside infected cells, there are several innate 
immune mechanisms responsible for recognizing the virus at differ-
ent stages of its replication and leading to the production interfer-
ons type I (IFNα and β), type III, and pro-inflammatory cytokines.34 
Genes encoding these interferons form the type-1 (E1) epithelial re-
sponse profile. Also, ACE2 is a typical E1 gene.35 This response also 
includes mechanisms such as the expression of helicases or cytidine 
deaminases targeting viral RNAs (Figure 3A).

Viruses use various strategies to evade those mechanisms.36 
Yet, little is known about SARS-CoV-2 antiviral responses and eva-
sion strategies of this virus, but likely much can be extrapolated 
from the SARS-CoV and MERS-CoV-based knowledge.34,37 Viral 
single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), and 
proteins are recognized by cytosolic pattern recognition receptors 
(PRR), mainly RIG-I/MDA5 and toll-like receptors (mainly TLR7/8). 
This recognition leads to recruitment of MAVS, MyD88, and/or 
TRIF, respectively. Eventually, IRF3 and IRF7 transcription factors 

are activated leading to the production of type I interferons (IFN-α 
and IFN-β), whereas NF-KB and AP-1 transcription factors lead to 
the production of pro-inflammatory cytokines such as IL-6, IL-8, IL-1 
β, CXCL10, and CCL2.37

Epithelial cells produce type I and type III IFNs upon viral infec-
tion. Type I IFN act through receptors expressed in a vast number of 
cells. In contrast, type III IFNs seem to exert their effect mostly on 
epithelial cells, are less inflammatory, and are activated faster than 
type I IFN.38,39 IFNs are one of the most potent antiviral compo-
nents of the innate immune response. They work on various levels, 
that is, blocking viral attachment, entry, trafficking, protein produc-
tion, and genome amplification and also viral assembly and egress.38 
Moreover, IFNs also activate other innate and adaptive immune re-
sponses. However, in case of COVID-19 these responses seem to be 
diminished40 or dysregulated.41

SARS-CoV and MERS-CoV inhibit IFN signaling on various 
levels.42 The nsp 16 mediated 2’O methylation of viral mRNA 
cap structure prevents coronaviruses recognition by MDA5.43 
The sequestration of viral dsRNA within double membrane vesi-
cles (DMVs) also protects coronaviruses from detection through 
cytosolic PRRs.44 Moreover, coronaviruses produce many non-
structural proteins which inhibit induction of IFNs (inhibition of 
IRF3 and IRF 7), and/or interferon signaling (inhibition of STAT 1 
signaling).42 A reduced antiviral response via IFN pathway inhibi-
tion, together with an ongoing pro-inflammatory response, pre-
sumably heightened by increased viral load, may lead to excessive 

F I G U R E  2   Cellular distribution of confirmed and potential SARS-CoV-2 receptors and interaction partners. Entry of SARS-CoV-2 into the 
host cells depends on expression of i) adequate receptors and ii) cellular proteases. The two-step infection process is mediated by the viral 
Spike (S) protein. Its binding to the receptor and cleavage by proteases assures virus internalization. ACE2 and TMPRSS2 are critical complex 
for SARS-CoV-2 infection. CD147 and its extracellular (Cyclophilin A, Cyclophilin B, Platelet glycoprotein VI, S100A9, Hyaluronic acid) and 
transmembrane (CD44, Syndecan-1) interaction partners can be also used for SARS-CoV-2 entry and/or modulation of immune responses to 
the virus. It has been suggested for SARS-CoV-2 and shown in case of other Coronavidae family members that they can also exploit other cell 
surface receptors (CD26, ANPEP, ENPEP, DC-SIGN) and proteases (Furin, Cathepsin L, Cathepsin) to enter human cells. CypA, Cyclophilin 
A; CypB, Cyclophilin B; GPVI, Platelet glycoprotein VI; HA, Hyaluronic acid; SYND1, Syndecan-1. This figure is modified from the original 
publication by Radzikowska, Ding, et al, presenting the distribution of these receptors in various human tissues and immune cells in healthy 
children and adults, and in patients with COVID-19 comorbidities and risk factors (ref). Created with Biorender.com
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inflammation41 and worsening of the disease. In an animal model 
of SARS-CoV, a delayed type I interferon response resulted in ac-
cumulation of inflammatory monocytes/macrophages, leading to 
elevated lung cytokine/chemokine levels, vascular leakage, and im-
paired virus-specific T-cell responses.41 A recent study in humans 
showed that SARS-CoV-2 infection induces weak IFN responses 
from infected pneumocytes, even weaker than in SARS-CoV 

infection.40 Interestingly, ACE2 has been recently shown to be an 
interferon-stimulated gene.12 ACE2 is also known to protect mice 
against acute lung injury. Therefore, it needs to be determined 
whether upregulation of ACE2 after the initial antiviral response 
is used by SARS-CoV-2 to enhance infection, but also if the delay 
of IFN responses potentially leads to impairment of ACE2-related 
protection against lung injury.

F I G U R E  3   Epithelial barriers are susceptible for the SARS-CoV-2 infection. (A) Epithelial cells of the respiratory system are the primary 
site of SARS-CoV-2 infection. The respiratory epithelium is equipped with the receptors and other host proteins allowing viral entry: ACE2, 
TMPRSS2, CD147, and CD26. The highest expression of ACE2 is found in the nasopharynx. The virus was found to propagate in the lower 
respiratory tract as well, especially in type II alveolar cells. The effects of the virus on the respiratory epithelial barrier include cell membrane 
fusion and syncytium formation (which represents a mechanism of viral spread), apoptosis and virus-mediated cell lysis leading to the loss 
of barrier function. Upon infection, epithelial cells release interferons, chemokines, and cytokines promoting tissue infiltration by innate 
immune cells, such as monocytes, NK cells, neutrophils, and, with time, inflammatory macrophages and virus-specific lymphocytes. Immune 
cells express putative SARS-CoV-2 receptors, CD147, and CD26. (B) Gastrointestinal symptoms are seen in a substantial percentage of 
COVID-19 patients. The intestinal tissue has a high expression of ACE2 receptor, TMPRSS2, and TMPRSS4 proteases. Their expression 
increases with intestinal epithelial cell differentiation. ACE2 expression in intestinal epithelium decreases with inflammation and shows a 
negative correlation with IL-1β levels. SARS-CoV-2 infection results in disintegration of the intestinal epithelial barrier. Virus-specific IgA 
have been found in the gastrointestinal tract. Noninfectious SARS-CoV-2 RNA is found in stool after negative nasal swab tests. CXCL10, 
C-X-C motif chemokine 10; CXCR1, C-X-C motif chemokine receptor 1; CXCR10, C-X-C motif chemokine receptor 10; GB, goblet cell; 
ILC, innate lymphoid cell; IL, interleukin; IFN, interferon; Mθ, macrophage; MO, monocyte; NEU, neutrophil; NK, natural killer cell; pDC, 
plasmacytoid dendritic cell; TNF, tumor necrosis factor
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3.2 | From oral to rectal mucosa: What we know 
about the involvement of the gastrointestinal tract in 
COVID-19

Based on the current knowledge of SARS-CoV-2 receptors’ expres-
sion on the epithelial barrier sites, the gastrointestinal tract requires 
special attention. Human ACE2 is homogeneously distributed on the 
brush border of enterocytes across the small intestine and in the 
lung epithelium.45,46 In the oral mucosa, the basal layer of nonkerati-
nized, squamous epithelial cells were reported to be ACE2-positive, 
while stomach epithelial cells and colon enterocytes remained nega-
tive.45 TMPRSS2 and TMPRSS4 mediate infection of small intestinal 
epithelial cells.47 These enzymes might additionally be an interesting 
target for therapeutic intervention, since a clinically approved pro-
tease inhibitor is available.7 Less is known regarding the gastrointes-
tinal distribution of CD147.14 Enteric CD147 seems to play a role in 
carcinogenesis and inflammation,48 which might shed a new light on 
patients’ group at risk for severe SARS-CoV-2 infections and needs 
further attention. Of note, CD26 expression was reported to be high 
in ileum and jejunum, low in duodenal samples and not detectable in 
colon epithelial cells (Figure 3B).49

Gastrointestinal symptoms like vomiting and diarrhea in COVID-
19 are gaining attention.50 In the previous SARS outbreak and in MERS 
patients, gastrointestinal complaints were found in approximately 
30% of patients. In SARS-CoV-2 infections, diarrhea, and abdominal 
pain occur in 20%-50% of COVID-19 patients and might even precede 
onset of respiratory symptoms.51,52 SARS-CoV active replication was 
detected in small intestinal enterocytes53 and enteroids derived from 
human ileum and colon in case of SARS-CoV-2.47 This is highly rele-
vant as viral excretion was detected in fecal samples and anal swabs of 
COVID-19 patients.54 While first evidence is available that human co-
lonic fluids might rapidly inactivate SARS-CoV-2 in vitro,46 MERS-CoV 
was found to resist gastrointestinal fluids simulating conditions with 
elevated pH levels after food ingestion, while the virus rapidly lost 
infectivity when exposed to an acidic gastric fluid simulating fasted 
state.55 These reports might explain, at least partially, the fact that 
even though SARS-CoV-2 RNA was detected in stool samples from 
patients, the isolates were not infective.56 Thus, it remains unclear 
whether the fecal-oral-route might propagate disease transmission 
especially in reduced hygienic conditions.57

Further understanding of the relationship between disease and 
the digestive tract is essential to prevent transmission and disease 
progression as well as to design efficient treatment of COVID-19.

3.3 | Skin barrier: more than just matter of wearing 
protective equipment

Recent reports indicate that in COVID-19 the skin might also be af-
fected. An Italian and a French study reported that 20.4% to 50% 
of COVID-19 cases, respectively developed nonpruritic, erythe-
matous rashes, urticaria or varicella-like lesions affecting the trunk 
and sometimes the limbs.58,59 In general, the rashes occurred 3 days 

after development of COVID-19 symptoms and the median duration 
was 8 days.60 In addition, acrolated ischemic, self-healing lesions at 
toes, and fingers have been observed mainly in children and young 
adults shortly before COVID-19 symptom appearance.61 To put oth-
erwise, healthy kids in quarantine upon detection of these lesions 
might help to prevent infection from spreading. Apparently, cutane-
ous manifestations of COVID-19 are similar to skin rashes observed 
in other common viral infections. There is no evidence that they are 
related to the severity of the disease or an indication that the virus 
can replicate in the skin.

Unfortunately, the few studies available so far did not detect 
SARS-CoV-2 presence in skin lesions, which questions if the skin 
manifestations are indeed infectious or para-infectious driven. 
Given that ACE2 and TMPRSS2, the receptors for SARS-CoV-2 entry 
into human cells, are absent or weakly expressed in the skin,11 pa-
ra-infectious events seem to be more likely. Furthermore, the possi-
bility of adverse drug reactions as causative for skin manifestations 
in COVID-19 is being strongly considered in certain cases.

Some of the protective measures taken during the SARS-CoV-2 
pandemic (use of gloves, masks or goggles) can affect the skin. 
Masks and goggles often induce pressure injury due to not properly 
fitted material, and a study in Chinese health care workers indicated 
that 71% suffer from skin barrier damage such as dryness, scales, 
papules or erythema.62 Causative is the inevitable hand hygiene pro-
cedure—66.1% stated to wash their hands more than 10 times per 
day and only 22.1% used appropriate skin care products afterward. 
Moreover, long-term usage of gloves over 6 hours per day is com-
mon in health care workers leading to overhydration and dysbiosis 
with damage to the stratum corneum and subsequent skin infection 
or sensitization.63 Thus, proper education regarding the use of skin 
care products after the hand hygiene procedure is essential to pro-
tect the skin barrier and prevent further skin complications.

4  | DE VELOPMENT AND FAILURE OF AN 
ADEQUATE IMMUNE RESPONSE

4.1 | Innate Immunity

4.1.1 | DCs and macrophages

Monocytes/macrophages and DCs play a crucial role in anti-viral re-
sponses by linking innate and adaptive immunity. Peripheral activa-
tion and accumulation of activated pro-inflammatory monocytes/
macrophages within lungs has become one hallmark of symptomatic 
SARS-CoV-2 infection.41,64–66 In contrast, the exact role of interactions 
between DCs and SARS-CoV-2 has not been determined yet. Previous 
in vitro experiments showed that different human coronaviruses display 
either high (229E) or poor (OC43) capacities to infect macrophages.67 
The efficiency of macrophage infection by coronaviruses was negatively 
correlated with IFN-α production.67 In COVID-19 patients, ACE2 ex-
pression was detected on both lymph node-associated CD68 + mac-
rophages and tissue-resident CD169 + macrophages.68 It needs to be 
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addressed, however, whether other proven and potential SARS-CoV-2 
receptors, such as CD147 or CD209 (DC-SIGN), both being expressed 
by monocytes/macrophages and DCs can facilitate viral entry to these 
cells.14,29,69,70 Recently, SARS-CoV-2 particles were found in mac-
rophages, but it remains elusive whether these findings were an effect 
of active cellular infection or just the consequences of physiological 
phagocytosis. It is tempting to speculate that SARS-CoV-2, similarly 
to HIV, can use macrophages as a Trojan horse contributing to viral 
spread.68,71 Regardless of the exact mechanism of viral entry, both pre-
viously described coronaviruses and the new SARS-CoV-2 can trigger 
NLRP3 inflammasome activation in monocytes/macrophages, produc-
tion of high levels of pro-inflammatory mediators such as IL-6, GM- CSF, 
IL-1β, TNF, CXCL-8, CCL-3, and enhanced cell death. Subsequently, it 
may lead to the cytokine storm also known as cytokine release syn-
drome (CRS) (Figure 4).72 Some of these cytokines (ie, IL-6) are mainly 

secreted by macrophages,66,73–76 and the evidence of macrophage 
activation syndrome has been reported.77 Thus, beneficial effects of 
anti-IL-6R treatment on COVID-19 outcomes indicate that therapies 
targeting macrophage-related activities can become promising means 
to inhibit the inflammatory storm in the course of coronavirus disease.78 
Overloaded, activated and subsequently dying macrophages might 
contribute to an increase in the levels of plasma ferritin and profound 
dysregulation of iron metabolism.79,80 High ferritin levels are common 
clinical findings in patients with severe COVID-19.81

4.1.2 | Neutrophils and eosinophils

Neutrophils are one of the predominant lung infiltrating leukocytes in 
severe SARS-CoV-2 infection, and neutrophilia predicts poor clinical 

F I G U R E  4   Immunology of adequate and nonadequate response to SARS-CoV-2 infection. The clinical course of the SARS-CoV-2 
infection varies from an asymptomatic to a severe, life-threatening syndrome. The number of asymptomatic carriers is unknown, and 
virus detection is often accidental. Data on the immune characteristics in this group are lacking. Patients who experience mild symptoms 
are characterized by a transient, slight decrease in lymphocyte counts and an increase in neutrophil counts in the peripheral blood. 
Viral clearance in this group is convergent in time with the specific antibody production. Delayed and limited IFN type I response in 
combination with the overactivation of pro-inflammatory cytokine response has been suggested as a possible mechanistic explanation of 
hyperinflammatory syndrome in COVID-19 patients presenting with severe clinical manifestations: respiratory insufficiency, kidney failure, 
thromboembolic, and other complications. Severe COVID-19 is characterized by a systemic cytokine release syndrome (CRS), increased 
levels of LDH and CRP, hypoalbuminemia, deepening decrease in lymphocyte counts and immune exhaustion of T cells
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outcome.82 Postmortem analysis of lung samples from COVID-19 
patients showed neutrophil infiltration in pulmonary capillaries and 
neutrophil extravasation into the alveolar space.83,84 Under neutro-
phil-activating conditions, such as those occurring during systemic 
inflammation (CRS), neutrophil extracellular traps (NETs) can be re-
leased. Although this is a way to ensnare pathogens, NET formation 
is linked to pulmonary diseases, particularly acute respiratory distress 
syndrome (ARDS). Severe COVID-19 conditions with uncontrollable 
progressive inflammation presumably induce an intense crosstalk 
between neutrophils releasing NETs and IL-1β secretion from mac-
rophages, which is the driving force in further complications.83

Although eosinophils have protective effects in different viral in-
fections, the eosinophil response toward SARS-CoV-2 is incompletely 
understood.85 A significant amount of COVID-19 patients present eo-
sinopenia,86,87 although it is not reported in all cohorts.88 The pathophys-
iological mechanism of eosinopenia in COVID-19 patients is not clear 
but may be related to increased apoptosis, less eosinophilopoiesis, and 
decreased eosinophil egression from the bone marrow.89 Increased tis-
sue migration is unlikely because eosinophils infiltration was not found in 
pulmonary tissue of COVID-19 patients,90 but further research is needed.

4.1.3 | ILC and NK cells

ILC are effector cells that respond to environmental cytokines and reg-
ulate immune responses.91,92 Type 1 ILC include IFN-γ producing sub-
types and natural killer (NK) cells. Limited data are available on the role 
of ILC in relation to COVID-19, but it has been shown that ILC1-ILC3 
express CD26, CD147, cyclophilins and theirs interaction partners.10 
Data on the numbers of NK cells in patients with COVID-19 are varied. 
Some studies reported no differences in NK cell counts compared with 
healthy controls,93,94 while one study found increased numbers of NK 
cells and suggested a role for NK cells in the CRS.95 In contrast, other 
studies showed low96 or considerably decreased numbers of NK cells 
in patients with SARS-CoV-2 infection, which was more prominent in 
severe cases.97–99 After successful treatment, the numbers of NK cells 
restored to the normal levels with reduced expression of NKG2A.99

Functional exhaustion of NK cells and CD8+ T cells was described 
in relation to severe SARS-CoV-2 infection (Figure 4). Exhausted NK 
and CD8+ T cells expressed CD94/NK group 2 member A (NKG2A), 
which functions as an inhibitory receptor, and showed diminished 
production of CD107a, IFN-γ, IL-2, granzyme B, and TNF-α.99 During 
infection, IFN-γ induce expression of the nonclassical human leu-
kocyte antigen E (HLA-E).100 HLA-E is the ligand of NKG2A, which 
is expressed on epithelial cells. NKG2A blockade with monoclonal 
antibodies (Monalizumab) prevents the binding of HLA-E, which may 
be a target for COVID-19 therapy.

4.1.4 | Complement and SARS-CoV-2

The complement system is engaged in both coagulation and inflamma-
tory pathways. Histologic and immunohistochemical analysis of lung 

and skin have been conducted in patients with COVID-19-induced 
ARDS. The typical pulmonary findings for ARDS were accompanied 
with significant deposits of terminal complement components C5b-9 
(membrane attack complex), C4d, and mannose binding lectin (MBL)-
associated serine protease (MASP)2, in the microvasculature.101 The 
biopsies of both damaged and normally appearing skin revealed a 
pauci-inflammatory thrombogenic vasculopathy, with deposition of 
complement products C5b-9 and C4d.101 The authors conclude that 
a subset of sustained, severe COVID-19 patients may be defined by a 
type of catastrophic microvascular injury syndrome mediated by acti-
vation of complement pathways and an associated procoagulant state. 
Further, C3-deficient mice developed significantly less respiratory dys-
function despite viral loads deposited in the lung. These data indicate 
that SARS-CoV-mediated disease is largely immune driven and com-
plement activation regulates a systemic pro-inflammatory response to 
SARS-CoV infection.102 Most recently, the placentas from 5 healthy 
newborns (all negative for viral RNA and spike protein) of COVID-
19 positive mothers revealed vascular thrombosis without comple-
ment deposition, supporting COVID-19's systemic procoagulant 
effects unrelated to systemic complement activation.103

4.1.5 | Trained immunity

Stimulation of innate immune cells with specific microbial antigens 
induces long-lasting epigenetic and metabolic re-programming lead-
ing to enhanced responses upon a second challenge by the same or 
unrelated microbial insults, a process coined as “trained innate im-
munity.”104,105 As a consequence, trained immunity-based vaccines 
(TIbV) able to induce potent responses against both specific and 
nonspecific antigens contained in the formulation has emerged as 
a novel concept in vaccinology.105 TIbV might be especially relevant 
when conventional vaccines are not available, as it is the case for 
SARS-CoV-2. One of the best examples about trained immunity is 
the influence of BCG vaccination on unrelated pathogens.104 BCG 
seems to induce nonspecific responsiveness to infections both at 
the level of trained immunity and prolonged heterologous Th1/Th17 
responses.106 BCG-vaccinated infants have significantly increased 
production of pro-inflammatory cytokines, increased protection 
against infections and reduced mortality.107 Increased expression 
of PRRs in monocytes isolated from peripheral blood mononuclear 
cells (PBMCs) of healthy individuals 1 year after BCG vaccination 
has marked the importance of trained immunity.106 Although further 
studies are required, lower number of cases and deaths per popula-
tion during COVID-19 pandemic seem to be reported in countries 
with BCG vaccination programs than those that did not have or 
ceased it, which could be attributed to potential BCG vaccination-
induced trained immunity effects.108,109 Trials assessing the efficacy 
of BCG vaccination in populations at high risk of infection or with a 
high risk of mortality, such as hospital staff working in close contact 
with COVID-19 patients or older individuals, are currently being per-
formed in the Netherlands, Australia and Greece.110 Future research 
and clinical trials are needed to demonstrate whether novel TIbV 
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might represent a suitable strategy for the prevention and treatment 
of SARS-CoV-2 infection.

4.2 | Adaptive immunity

4.2.1 | T cell–related mechanisms: lymphopenia, 
T-cell over-activation and T-cell exhaustion

Cytotoxic CD8+ T cells directly neutralize infected cells, and CD4+ 
T cells aid B cells to initiate humoral responses (Figure 4).111 T cells 
are instrumental in developing immunological memory in the form 
of virus-specific CD8+ and CD4+ T cells as shown in case of SARS-
CoV.112–114 In fact, SARS-CoV-specific CD8+T cells have been de-
tected in humans up to 11 years postinfection, which is longer than 
the specific antibodies.114 SARS-CoV-2-specific CD8+ and CD4+ T 
cells were also recently identified in ~70% and 100% of COVID-19 
convalescent patients, respectively. CD4+ T cells responded to spike 
(S) protein, which correlated with the magnitude of the anti-SARS-
CoV-2 IgG and IgA titers. Importantly, SARS-CoV-2 reactive CD4+ T 
cells were also detected in ~ 40%-60% of unexposed individuals, sug-
gesting cross-reactive T-cell recognition between circulating “com-
mon cold” coronaviruses and SARS-CoV-2,115 which was confirmed 
by others.116 Profound lymphopenia, with the subsequent shifts in 
the T-cell subsets composition, is often reported in SARS-CoV-2 
infection, similarly to SARS-CoV and some other viruses.94,98,117 
Total numbers of CD4+ T cells and CD8+ T cells are below normal 
levels in most COVID-19 patients, with the lowest numbers in the 
severe cases. Moreover, the number of Treg cells is also decreased,98 
whereas a recent case report of nonsevere COVID-19 showed a 
progressive increase in the proportion of CD4+CXCR5+ICOS+PD-1+ 
circulating follicular helper T (TFH) cells.96 Delayed development of 
adaptive responses, together with prolonged virus clearance, has 
been reported in cases of severe SARS-CoV-2 infection (Figure 4).118 
Unfortunately, the mechanisms involved in the lymphocytopenia 
are still not known in SARS-CoV and SARS-CoV-2 patients. T cells 
can be infected through highly expressed CD14714,15 or potentially 
through CD26, as ACE2 expression on lymphocytes is very low,10 
except in certain tissue-derived T cells.119 It is yet unclear whether 
such infection is the reason of the death of infected T cells. Secondly, 
as in the case of SARS-CoV, an alteration in the antigen-presenting 
cells (APCs) function and subsequent impairment of T-cell priming 
might lead to an inefficient/delayed formation of virus-specific T 
cells.120–122 Finally, also a high cytokine response from the infected 
cells might induce apoptosis of T cells.123 The causes of lymphopenia 
need to be extensively studied, as it correlates with the higher risk of 
severe disease and increased length of hospitalization.124,125 In ad-
dition to decrease in numbers, there are also other defects reported 
in the function of T-cell subsets in SARS-CoV-2 infection. In severe 
pneumonia in COVID-19 patients, it has also been shown that highly 
cytotoxic, activated CD8+ T cells and Th17 cells, can also partici-
pate in the CRS, together with macrophages and epithelial cells.117 
Highly activated T cells participating in viral infection often acquire 

an exhausted phenotype. Surviving T cells appear functionally ex-
hausted with elevated levels of PD-1.126 The increased expression 
of PD-1 and Tim-3 on CD8+ T cells was found to progress with the 
infection. T-cell exhaustion is a reversible process where a decrease 
in antigen availability, achieved either through the gradual resolution 
of the infection or intervention strategy, has led to exhausted T cells 
regaining their functions.127

4.2.2 | B cell–related mechanisms and antibody-
responses

Human SARS-CoV-2 infection activates mechanisms of B- and T-cell 
immunity that result in the generation of neutralizing antibodies.96 
Initially, B cells appear to recognize SARS-CoV-2 through the nu-
cleocapsid protein, which induces their activation and subsequent 
interaction with cognate CD4+ T cells. The antibody response is 
mounted 4-8 days after the onset COVID-19 symptoms and domi-
nated by IgM.128 This initial IgM-response is followed by IgA and 
then IgG production (10-18 days).

The development of mucosal IgA likely prevents SARS-CoV-2 
re-infection while circulatory IgA may contribute to systemic SARS-
CoV-2 neutralization and to dampen inflammation during active 
infection (Figure 4).129 The extent and quality of the IgG response 
to neutralize SARS-CoV-2 is critical. Based on previous SARS-CoV 
infection reports, SARS-CoV-2-neutralizing IgG antibodies should be 
specific for the S protein and detected in serum at 2-3 weeks post-
infection.130,131 For that reason, human convalescent serum transfer 
has been proposed for the prevention and treatment of COVID-19 
patients.132 In fact, and a number of clinical trials have recently re-
ported its therapeutic value in COVID-19.51,54,133,134 However, low 
affinity or suboptimal IgG levels may enhance viral entry into Fcγ 
receptor-expressing cells through IgG binding. This mechanism may 
induce the release of inflammatory cytokines and contribute to the 
CRS reported in some severe COVID-19 patients.135

In a recent pre-print study, single-cell RNA sequencing (scRNA-
seq) of PBMCs of 7 patients hospitalized with confirmed COVID-19 
and 6 healthy controls was performed.136 Heterogeneous interfer-
on-stimulated gene (ISG) signature, HLA class II downregulation, 
and a novel B cell–derived granulocyte population were reported in 
patients with acute respiratory failure requiring mechanical ventila-
tion. The putative contribution of this intriguing B-cell population to 
COVID-19 pathology remains to be elucidated.

A central issue of B-cell immunity to SARS-CoV-2 is the duration 
of the antibody (IgG) response once the infection is cleared, as well 
as the ability for SARS-CoV-2 specific memory B cells to expand, or 
replenish, the plasma cell compartment upon re-infection. Given that 
long-lived plasma cells and high-affinity memory B cells are thought 
to be germinal center-dependent,137 it is important to character-
ize the antibody and B-cell memory repertoire (affinity, number of 
mutations, clonal origin, etc) of asymptomatic patients and patients 
that have recovered from COVID-19. The rapid peak of viral load de-
tected in COVID-19 patients,138,139 as compared to SARS-CoV, may 
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accelerate plasma cell differentiation,140 thus limiting the germinal 
center phase and the degree of long-term immunity protection.

4.3 | Multiorgan involvement in severe COVID-19

4.3.1 | Lung pathologies in COVID-19

It has yet to be determined whether SARS-CoV-2 shows signifi-
cantly more pronounced lung tropism than other respiratory vi-
ruses. COVID-19-associated viral pneumonia is relatively frequently 
complicated by ARDS. Lung CT images of COVID-19 pneumonia pa-
tients revealed mostly diffuse patchy ground-glass opacities under 
the pleura with partial consolidation which, in clinically improving 
individuals, can be further absorbed and followed by formation of fi-
brotic tissue.141 Postmortem analysis of COVID-19 patients revealed 
extensive alveolar damage complicated by the formation of hyaline 
membranes, diffuse remodeling of alveolar wall and accumulation 
of immune cells (mostly macrophages) infiltrating air spaces.117,142 
Macrophages accumulating in lungs secrete type I and type III IFNs 
that enhance local antiviral defenses in surrounding epithelial cells. 
Lung-associated macrophages contribute to development of CRS by 
producing IL-6 and IL-1β, cytokines promoting further recruitment of 
cytotoxic T cells and neutrophils. In consequence, activated neutro-
phils produce reactive oxygen species and leukotrienes that directly 
contribute to acute lung injury.143 Even successful eradication of the 
virus does not prevent from continuous lung damage, development 
of frequently progressive and irreversible fibrotic consequences.144 
At this relatively early phase of the pandemic, the exact fraction of 
COVID-19 patients burdened with persistent fibrotic interstitial lung 
disease cannot be precisely determined. Nevertheless, available and 
novel anti-fibrotic therapies should also be considered as candidate 
strategies to manage post-COVID-19 long-term lung fibrosis.145

4.3.2 | Myocardial and endothelial damage: an 
immunological perspective on cardiac presentation of 
COVID-19

Cardiac injury is a prominent feature in COVID-19 developed by 
a considerable proportion of patients and is associated with an 
increased mortality.146 The pathogenesis of COVID-19 in the car-
diovascular system likely results from a combination of several 
mechanisms such as direct viral toxicity, systemic CRS-mediated and 
stress-related injury. These mechanisms promote cardiomyocyte and 
endothelial apoptosis, endothelial shedding, plaque destabilization, 
and increase wall shear stress, leading to myocarditis, endothelii-
tis, ischemia, cardiac arrhythmias, and hypercoagulability. ACE2 is 
highly expressed on cardiomyocytes and endothelial cells, possibly 
facilitating direct viral damage. However, it is unknown whether vas-
cular derangements in COVID-19 patients are due to endothelial cell 
involvement by the virus. A recent study found that endothelial cells 
can be infected by SARS-Cov-2, as postmortem analysis of kidney 

by electron microscopy revealed viral inclusion structures within en-
dothelial cells.147 The postmortem histology from patients with mul-
tiorgan failure in COVID-19 showed endothelitis in the lung, heart, 
kidney, liver, and small intestine, with an accumulation of inflamma-
tory cells associated with endothelium.147 These findings suggest 
that the endotheliitis may be a combination of direct consequence 
of the viral involvement (ie, presence of intracellular viral bodies) and 
the host inflammatory response (Figure 5).

In cardiomyocytes, SARS-CoV-2 appears to downregulate ACE2 
and diminish its cardioprotective role, promoting left ventricular 
failure and hypertrophy, as well as pro-thrombotic and pro-oxi-
dant pathways.148 Few cases documented myocarditis with diffuse 
T-lymphocytic inflammatory infiltrates with interstitial edema and 
without fibrosis, suggesting an acute inflammatory process. A recent 
study presenting data from autopsy series also demonstrated SARS-
CoV-2 viral load in heart tissue.149–151 Since SARS-CoV-2 may predis-
pose patients to coagulopathies with clinical manifestations ranging 
from arterial and venous embolisms to disseminated intravascular 
coagulation, with very poor prognosis, early prophylactic anticoag-
ulation in hospitalized patients is recommended.152 Taken together, 
direct viral involvement, imbalanced host immune response, and 
systemic inflammation are proposed as important mechanisms of 
myocardial/endothelial injury.

4.3.3 | Coagulation parameters in 
COVID-19 patients

Abnormal coagulation parameters such as mild thrombocytope-
nia, prolonged prothrombin time, disseminated intravascular co-
agulation,153–155 and elevated D-dimers are seen in 36% to 43% of 
COVID-19 patients.154,156 In a meta-analysis of 4 published studies, 
higher D-dimers were found in patients with more severe COVID-
19.156 Also, thrombocytopenia was reported to be associated with 
more severe COVID-19 and increased risk of death (Figure 5).155,157 
In a trial of severe COVID patients (n = 99), anticoagulant therapy 
(eg, low molecular weight heparin) was associated with better 
prognosis.158

Activation of endothelium, platelets, and leukocytes leads to 
enhanced local and systemic production of thrombin, which in turn 
leads to deposition of fibrin, microangiopathy, and eventual organ 
damage. Both pathogen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns (DAMPs) initiate these 
processes.159 In 16 patients with severe COVID-19, a correlation 
between IL-6 and fibrinogen levels was found, supporting a link be-
tween hyperinflammation and increased venous thromboembolism 
(VTE) risk.160

Although thrombocytopenia has been implicated in patients 
infected with SARS-CoV-2, the association between platelets 
and the disease mortality is not clear. In COVID-19 patients from 
Wuhan, China, platelet count increase was an independent risk 
factor reversely associated with in-hospital mortality, as an in-
crease of 50x109/L platelets was associated with a 40% decrease 
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in mortality.155 Another study of 548 patients from China found 
that while platelet levels were decreased when hospitalization for 
COVID-19, platelet levels increased in survivors over time, but main-
tained lower levels or dropped significantly over time in nonsurvi-
vors.161 Thus, baseline platelet levels and changes over time appear 
to be associated with subsequent mortality and monitoring platelet 
levels is important in predicting prognosis of patients with SARS-
CoV-2 infection.

4.3.4 | Neurological disease presentation

Together with the choroid plexus, the blood-brain barrier protects 
the brain from invading microorganisms.162 Nevertheless, several 
pathogens, including viruses, are still able to traverse the barriers,163 
especially in cases of systemic inflammation164 causing potential al-
terations of the central nervous system (CNS). In particular, corona-
viruses might exhibit neurotropic properties,165 and SARS-CoV was 
detected in human brain.166,167 Of interest, ACE2 is expressed in the 
human brain.45 Based on the knowledge from animals studies, SARS-
CoV can enter the brain via the olfactory nerve leading to a rapid, 
transneuronal spread to connected areas of the brain.168 As SARS-
CoV infects immune cells, the virus might penetrate the CNS also via 
the hematogenous route.167

In the current COVID-19 outbreak, a few case reports described 
meningitis/encephalitis or COVID-19-associated acute necrotizing 
hemorrhagic encephalopathy with or without SARS-CoV-2 RNA de-
tected in the cerebrospinal fluid.169,170 Moreover, autopsies of pa-
tients with COVID-19 showed cerebral hyperemia and edema with 

degeneration of some neurons.171 In a study on COVID-19 patients 
from Wuhan hospitals, 78 out of 214 patients had neurological man-
ifestations especially in severe infections. Some patients had only 
neurological manifestation without typical COVID-19 symptoms.172 
In addition, olfactory and gustatory dysfunctions are often reported 
in patients with COVID-19,173–175 which might be due to direct ef-
fects on the nervous system.

4.3.5 | COVID-19-related kidney failure

Recent evidence indicates that kidney injury occurring during SARS-
CoV-2 infection can result not only from CRS and ongoing sepsis 
but also from direct virus-induced impairment.176,177 In fact, ACE2 
is highly expressed on renal tubular cells.178 Clinical observations of 
COVID-19-related kidney damage have been confirmed by an ele-
gant experiment demonstrating that SARS-CoV-2 can directly infect 
human kidney organoids.179 Moreover, this infection led to further 
efficient shedding of progeny viruses capable of infecting Vero E6 
cells. This finding suggests that kidneys are an active player in the 
process of viral spread rather than only a site of virus-induced tis-
sue damage. The process of kidney infection by SARS-CoV-2 was 
significantly, but not completely inhibited by human recombinant 
soluble ACE2, which indicates that there might be other than ACE2 
receptors accounting for the entry of SARS-CoV-2 to kidney cells.179 
The putative candidate can be CD147 being highly expressed on 
proximal tubular epithelium. CD147 together with one of its ligands, 
cyclophilin, plays a crucial role in renal inflammation and renal fi-
brosis.180 Moreover, cyclophilins efficiently control the process of 

F I G U R E  5   Involvement of endothelium in COVID-19 progression. SARS-CoV-2 viremia is seen approximately 1 wk after the onset 
of illness, accompanied by an abundance of circulating pro-inflammatory cytokines. Endothelial cells express ACE2 receptor and can 
be infected by the SARS-CoV-2. Direct viral influence on the endothelial cells, as well as systemic inflammation (depicted by activated 
neutrophils and extensive NET-osis) and cytokine storm, can lead to endotheliitis, disseminated intravascular coagulation, and coagulopathy, 
described in severely affected COVID-19 patients. Activated endothelial cells upregulate the expression of adhesion molecules (P-selectin) 
and coagulation factors (vWF), secrete immune mediators (CCL2, IL-6). Monocytes respond to these by releasing tissue factor and 
upregulate the expression of PSGL. Simultaneously, platelet activation and aggregation occurs. Increased numbers of neutrophils and 
monocytes in the peripheral blood correlate with severe disease course and fatalities. CCL2, CC-chemokine ligand; IL-6, interleukin 6; MO, 
monocyte; NEU, neutrophil; NET, neutrophil extracellular traps; PLT, platelets; PSGL, P-selectin glycoprotein ligand 1; vWF von Willebrand 
factor.
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coronavirus replication.181 Thus, therapeutic strategies could aim at 
breaking the CD147-cyclophillins.

4.4 | Multi-morbidities as a risk factor for severe 
COVID-19

Multi-morbidities are associated with the severe course of COVID-
19. A meta-analysis including 1,558 patients with COVID-19 showed 
as independent risk factors chronic obstructive pulmonary disease 
(COPD) (OR: 5.97), cerebrovascular disease (OR:3.89), type 2 diabe-
tes mellitus ((T2DM) (OR: 2.47), and hypertension (OR: 2.29).182,183 
In the nation-wide report from China including 1590 patients with 
COVID-19, one comorbidity was present in 25.1% and two or more 
comorbidities in 130 8.2% patients (Figure 6).184

Several mechanisms directly linked to the underlying patholog-
ical condition can contribute to the unfavorable clinical outcome. A 
recent study suggested that hypertension and diabetes resulted in 
delayed clearance of SARS-CoV-2.185 The relationship between the 
immune dysfunction in patients with multi-morbidities and infec-
tion with SARS-CoV-2 was not specifically evaluated. A transgenic 
diabetic mouse model expressing human CD26 had more severe 

disease together with a dysregulated immune response following 
infection. A delayed and decreased recruitment of CD4+ T cells and 
inflammatory monocytes and macrophages into the lung tissue and 
a more prominent Th17 response was oberved.186 Interestingly, obe-
sity is changing the expression profile of SARS-CoV-2 receptors.10

Metabolic induced low-grade systemic inflammation, as in obese pa-
tients,187 facilitates an enhanced release of cytokines upon an acute trig-
ger such as viral infection. As the human endocrine pancreas expresses 
ACE2, the coronavirus might enter islets and cause acute β-cell dysfunc-
tion, leading to acute hyperglycemia and transient T2DM.188 A mathe-
matical model showed that the insulin resistance, advanced glycan end 
product (AGE)-Receptor of AGE (RAGE) signaling pathway in diabetic 
complications and the adipocytokine signaling pathway were found in all 
fatal comorbidities of COVID-19.189 In addition, AGEs can induce mono-
cyte CD147 expression, an effect mediated by inflammatory pathways 
and RAGE.190 CD147 is highly expressed in patients with diabetic com-
plications such as nephropathy, retinal neuropathy, and vasculopathy 
and was associated with chronic renal failure of other causes.

COPD and ongoing smoking contribute to COVID-19 severity.191 
COPD and active smokers had significantly increased expression of 
ACE2 and its gene expression inversely related to the lung function, 
suggesting a dose-dependent response.192

F I G U R E  6   Age, gender, and 
comorbidities modify the onset and 
progression of COVID-19. Epidemiological 
observations show clear differences 
in the course of SARS-CoV-2 infection 
between children and adults. It seems 
that children are less susceptible to 
the infection and develop less typical 
symptoms of the disease. Consequences 
of the infection on physiological 
development of children are unknown. 
Clinical data and age-related rhesus 
macaque model of COVID-19 reveal that 
obesity, diabetes, hypertension, smoking, 
chronic respiratory diseases, male gender, 
and older age are the most common 
risk factors for development of severe 
COVID-19. Older age is associated with 
higher incidence of multimorbidity and 
state of low-grade systemic inflammation. 
Immunosenescence could influence the 
adequacy of the host's response to the 
infection
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Multimorbidity is also associated with elevated levels of plas-
minogen. Plasmin, and other proteases, may cleave a newly inserted 
furin site in the S protein of SARS-CoV-2, extracellularly, which in-
creases its infectivity and virulence. Hyperfibrinolysis associated 
with plasmin leads to elevated D-dimer in severe patients. Thus, the 
plasminogen system may prove a promising therapeutic target in 
COVID-19.193

4.5 | Sex and aging as a risk factor for 
COVID-19 course

The increased vulnerability of males compared with females to severe 
COVID-19 has been reported during the pandemic. A direct endocrine 
link is involved as androgen receptor activity is required for the tran-
scription of TMPRSS2 gene.194,195 Male vulnerability may be further 
enhanced by X-linked inheritance of genetic polymorphisms as both 
the androgen receptor, and the ACE2 genes loci are on chromosome X.

Old age was also associated with an increased risk of infection 
and worse outcome (Figure 6). Frailty is characterized by multisystem 
dysregulation leading to reduced physiologic reserve. Although not 
formally assessed in the COVID-19 trials, frailty may be linked to infec-
tious disease through common pathways that reduce immunity.196,197 
Frailty has also been shown to be associated with poor postvaccina-
tion immune response.196 The aged immune system is characterized 
by a low-grade chronic systemic inflammatory state marked by ele-
vated inflammatory markers such as IL- 6 and C-reactive protein and 
an increased susceptibility to infection.198 The expression of ACE2 and 
TMPRSS2 genes in the type II alveolar cells of elderly and young pa-
tients is comparable. Therefore, it does not seem to be responsible for 
the worse outcomes observed in COVID-19 affected elderly, but the 
expression of other receptors is age-dependent.10

4.6 | Allergy-related risk for COVID-19

Drug hypersensitivity (11.4%) and urticaria (1.4%) were self-reported 
by patients with COVID-19.86 In contrast, respiratory allergies and 
asthma were not reported as risk factors for SARS-CoV-2 infec-
tion.82,86,199–202 However, a report from the CDC of US hospitaliza-
tions described contradicting findings in adults with asthma. Among 
hospitalized patients with COVID-19, 27.3% of 18-49 year old adults 
had asthma, 13.2% of 50-64 years, and 12.9% of those of 65 years or 
older.203 Currently, patients with allergic rhinitis and patients treated 
with allergen-specific immunotherapy are advised to continue their 
therapies.204–206

Another study elucidated the impact of comorbid respiratory al-
lergy or asthma on COVID-19 susceptibility and disease severity.207 
Children with asthma and moderate to severe allergic sensitization 
showed reduced ACE2 gene expression compared with children 
with nonatopic asthma. An additional trial including 23 patients with 
asthma confirmed reduced ACE2 expression in lower airway epithe-
lial cells postallergen challenge. Finally, in vitro experiments using 

nasal and bronchial airway epithelium showed that IL-13 reduced the 
ACE2 expression.207 However, adult patients with asthma seem to 
have higher expression of TMPRSS2 and CD44, which forms a func-
tional complex with CD147 in bronchial epithelium.10

5  | IMMUNOLOGIC AL BIOMARKER 
PROFILING OF COVID -19 FOR PREDIC TION 
OF DISE A SE SE VERIT Y

The development of serious complications and even fatal outcome 
in SARS-CoV-2 infection is strongly linked to the patients’ immune 
response resulting in CRS.208 There is an urgent need for biomarkers 
that predict patients developing severe complications.209 To date, 
there is limited information on the biomarkers associated with, or 
even predicting severe complications in COVID-19. However, there 
is much similarity on the biomarkers that have been described be-
fore for MERS-CoV and SARS-CoV, also β-coronaviruses, but also 
with sepsis. Many markers have been demonstrated to be increased 
in SARS-CoV-2-infected individuals. These markers are related to in-
nate as well as adaptive immunity, endothelial cell activation, throm-
bocyte activation, and leukocyte infiltration.201 The list of markers 
related to severe disease, ICU, and even lethality is more limited. In 
ICU-admitted COVID-19 patients, significant increases of D-dimer, 
ferritin, LDH, IL-6, high sensitivity cardiac troponin, IL-2, IL-7, G-CSF, 
MCP-1, MIP-1α, and TNF-α were reported.201 An even more re-
stricted group of markers (IL-10, MCP-3, IL-1ra) were increased in 
severe and lethal cases.210 Differences in the biomarkers described 
are most probably due to the different sampling time during disease 
and the large heterogeneity between the patients.201

Most likely, single biomarkers will not be predictive. On the other 
hand, a combination of markers (a biosignature) will help in patient 
stratification and may even guide patients-tailored therapy.

6  | URGENT RESE ARCH NEEDS FOR 
MECHANISTIC ,  DIAGNOSTIC APPROACHES, 
THER APEUTIC ,  AND PRE VENTIVE INSIGHT

6.1 | Kids versus adults: Mechanisms explaining the 
clinical differences

Children experience milder COVID-19 as compared to adults, and a 
larger proportion of children remains asymptomatic (Figure 6).203 Data 
from the USA show a strikingly low number of pediatric hospitaliza-
tions (5.7%) and very limited ICU admissions in young age. 203 Of note, 
children show similar chest CT results as compared to adults, with sub-
pleural ground-glass opacities even when having few symptoms.211 
While children may be asymptomatic, they are shedding viral particles 
and can therefore still be contagious with comparable virus loads.212 
ACE2 receptors are upregulated by type 1 IFNs,12 but downregulated 
by IL-13, indicating that Th1/Th2 balance may significantly influence 
course of SARS-CoV-2 infection.207 Therefore, type 1 IFNs driving 
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anti-viral immunity may paradoxically promote SARS-CoV-2 expan-
sion by upregulating ACE2 expression. Inflammatory responses dif-
fer throughout life, for example, pre-existing chronic inflammation is 
common in elderly while absent in children. In addition, children have 
less potent PAMP activation, suboptimal, and Th2-skewed cytokine 
production, all resulting a hypo-inflammatory immune response.213 
This confers decreased protection against infections, but seem benefi-
cial in preventing a CRS in SARS-CoV-2 infection. Hence, preferential 
Th2-skewed cytokine production observed in children is presumably 
protective (Figure 6). Additionally, children have less often comorbidi-
ties such hypertension, diabetes, and COPD. However, in rare cases, 
a severe hyperinflammatory shock syndrome with features of atypical 
Kawasaki disease or toxic shock syndrome was reported in pediatric 
COVID-19 patients,214 which is currently intensively investigated.215 
Data are lacking on evidence surrounding transmission rates of the 
virus by children. The China/World Health Organization joint com-
mission found that infected children were largely identified through 
contact tracing in households of adults.216 However, no significantly 
different virus levels in the respiratory tract were recently reported 
across age groups, thus having the potential for similar transmission 
rates.56 Understanding the mechanisms underlying different prognosis 
in children is essential for designing targeted therapies for COVID-19.

6.2 | Immunological diagnosis of SARS-CoV-2 
infection: challenges of current approaches

PCR tests are useful for detecting SARS-CoV-2 RNA in an upper 
respiratory (preferably a nasopharyngeal) specimens. In addition, a 
number of diagnostic procedures to assess immunity built against 
SARS-CoV-2 are still being developed, validated, and optimized.

Antibody testing is evolving, and the market is flooded with test 
kits (both ELISA and rapid tests in the form of lateral flow immunoas-
says). However, only a small number of these kits are certified, and the 
results need to be interpreted with caution. Preliminary data indicate 
that COVID-19 presents with a classical antibody response consisting of 
early induction of IgM, followed by IgA and IgG antibodies (Figure 7).128 
IgG seems to appear early in the course of clinical presentation proba-
bly due to the relatively long incubation period. However, there is not 
yet enough evidence with regard to the development of long-term pro-
tective immunity. Antibody testing is so far more valuable in mapping 
the situation in individual populations, as planned by the WHO in the 
Solidarity II project.217 Test kits for the assessment of SARS-CoV-2-
specific T-cell responses for diagnostic use are currently not available.

6.3 | Immunological treatment approaches: 
biologicals, small molecules and beyond

Current evidence on the role of biologicals, small molecules, and 
passive immunizations in the treatment of COVID-19 was assessed 
conducting a systematic literature search (see online Supporting 
information).

By May 15, 2020, case series and nonrandomized, small, open-la-
bel studies report on the treatment of SARS-CoV 2 infections were 
assessed. Results from controlled, randomized or placebo-con-
trolled, randomized trials are still lacking. Approaches include either 
targeting the CRS and hyperinflammatory status of lung destruction 
via anti-IL-6R antibodies,218–237 IL-1R antagonists,238–240 JAK-STAT 
inhibitors,241 or inhibition of entrance by anti CD147 antibodies237 
and destruction of the virus via protective antibody delivered with 
convalescent plasma51,54,66,133,134,242 (Table 2). Eculizumab targets 
complement protein C5 preventing activation of complement termi-
nal complex, which was used off label in patients with SARS-CoV-2 
infection and severe pneumonia or ARDS and is now evaluated in 
an ongoing trail (SOLID-C19).243 Additionally, clinical trials with type 
I and III interferons in COVID-19 are currently conducted.244,245 
Targeting T-cell exhaustion to reverse the dysfunctional state and 
restore immune responses can be achieved by anti-PD-1 and LAG-3 
therapies,246,247 revealing novel therapeutic opportunities for per-
sisting infections. In conclusion, prospective, randomized, and place-
bo-controlled trials are needed to elucidate the clinical potential of 
immunomodulatory or passive immunization therapies.

6.4 | Virome interactions with commensal 
communities: future prevention and treatment 
strategies for SARS-CoV-2 infections?

Mucosal anti-viral immunity can be regulated by the microbiota via mul-
tiple mechanisms. The immune response to microbes is a form of host 
defense and entails a variety of intimate interactions with important sym-
biotic physiological effects on the host.248 Specific bacterial components 
and specific metabolites can promote immune maturation and polariza-
tion, which ensures appropriate defense against occasional pathogens, 
while strongly promoting immune tolerance networks that dampen aber-
rant inflammatory responses.249,250 The composition of the gut and lung 
microbiome is strongly associated with the induction of polarized im-
mune responses within the human lung.187,250 Bacterial-derived metabo-
lites such as short chain fatty acids (SCFAs) promote anti-viral responses 
in the lungs, while also reducing inflammation.251,252 Composition and 
metabolic activity of the gut microbiome has been associated with blood 
proteomic biomarkers predictive of severe COVID-19.253 The integra-
tion of microbial diagnostics with traditional immunological biomark-
ers will improve patient´s stratification and prognosis. In addition, the 
combination of microbial-derived therapeutics with immune modifying 
drugs, such as biologicals, will enhance response to treatment and better 
protect from damaging inflammatory processes.

6.5 | Future pandemic prevention strategies based 
on immunological knowledge

Apart from the well-known measures of social distancing, wash-
ing hands, and disinfection, which have proven to limit the SARS-
CoV-2 spread, several prevention strategies can be considered 
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from an immunological point of view. The WHO Strategic and 
Technical Advisory Group for Infectious Hazards (STAG-IH) regu-
larly reviews and updates its risk assessment of COVID-19 to make 
recommendations.254

For the future, it is essential to define the actual prevalence 
of COVID-19 in the population. Confirmation of infection at pres-
ent consists of PCR for acute infection and serological tests to 
identify antibodies.255 However, this may not be sufficient. The 
implementation of immune tests detecting neutralizing antibod-
ies is key to define protection against SARS-CoV-2 (Figure 7). This 
can only be achieved by implementing massive testing. Moreover, 
multiple vaccines are under development with the aim of pre-
venting infection, reducing disease severity, and viral shedding. 
A complete and continually updated list is available from the 
WHO.256,257

Zoonotic infectious diseases have been an important concern to 
humankind for more than 10 000 years. Today, approximately 75% 
of newly emerging infectious diseases (EIDs) are zoonoses that re-
sult from various anthropogenic, genetic, ecologic, socioeconomic, 
and climatic factors. The COVID-19 pandemic is an extreme re-
minder of the role which animal reservoirs play in public health. Also, 
it reinforces the urgent need for globally operationalizing a One 
Health approach focusing on a broad surveillance for SARS-CoV-2 
among different animals, and the possibility of reverse zoonosis.258 
Moreover, the current pandemic highlights the essential need for 
a broad understanding of immunological mechanisms underlying 
infectious diseases to design suitable therapeutic and preventive 
strategies.
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