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Role of p85α in neutrophil extra- and intracellular reactive 
oxygen species generation
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AbstrAct
Drug resistance is a growing problem that necessitates new strategies to combat 

pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, 
has been shown to cooperate with antibiotics in the killing of microbes. This study 
tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production 
of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression 
of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels 
of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, 
p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in 
intracellular ROS with no change in phagocytosis in response to both Fcγ receptor 
and complement receptor stimulation. Furthermore, the increased intracellular ROS 
correlated with significantly improved neutrophil killing of both methicillin-susceptible 
and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel 
approach to improving the clearance of resistant pathogens.

IntroductIon

Staphylococcus aureus make up a large proportion 
of human infections worldwide, causing various diseases 
that range from acute skin infections to life-threatening 
systemic toxic shock syndromes. The rise of methicillin-
resistant S. aureus (MRSA) and other antibiotic-resistant 
strains has sparked the need for new treatment strategies in 
both immunodeficient and immunocompetent individuals 
[1-5]. Neutrophils are part of the innate immune system 
and are critical for clearing S. aureus infections. They 
are the first responders to invading bacteria and kill 
microbes using reactive oxygen species (ROS) produced 
by the NADPH oxidase complex [1, 6-10]. During 
ingestion, neutrophils first form a phagosomal cup, which 

then becomes a fully internalized phagosome where 
microorganisms are isolated and exposed to toxic levels of 
superoxide (O2

-) and other reactive oxygen species (ROS) 
[11]. The NADPH oxidase complex is located within the 
phagosome membrane and it is made up of membrane-
bound gp91phox and p22phox; and cytosolic p47phox, p67phox, 
p40phox, and Rac2 [12, 13]. Individuals with chronic 
granulomatous disease (CGD) demonstrate the importance 
of NADPH oxidase function for human health, as these 
patients lack a functional NADPH oxidase complex, and 
thus suffer from recurrent and severe bacterial and fungal 
infections [10, 14, 15].

A variety of receptors on neutrophil membranes 
contribute to the recognition of opsonized material. Two 
of the most important receptors are Fcγ receptors (FcγRs), 
which bind to IgG-coated pathogens, and complement 
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receptors (CRs), which bind C3b on complement-coated 
pathogens [16-18]. FcγR or CR binding causes the 
cytosolic components of NADPH oxidase to translocate 
to gp91phox/p22phox at the membrane. Downstream of these 
receptors are many signaling molecules that regulate 
NADPH oxidase assembly and activation, including 
Class IA phosphoinositide 3-kinase (PI3K). PI3K is a 
heterodimer consisting of a regulatory subunit (p85α, 
p55α, p50α, or p85β) and a catalytic subunit (p110α, 
p110β, or p110δ) and phosphorylates the lipid PI(4,5)P2 to 
produce PI(3,4,5)P3 [12, 13]. Furthermore, pharmacologic 
inhibition and genetic ablation of the catalytic subunits 
have been shown to decrease neutrophil ROS production 
in response to IgG-zymosan and Aspergillus fumigatus 
hyphae [16, 19]. However, the specific role of p85α, the 
most abundant regulatory subunit of Class IA PI3K, has 
not been fully studied.

We previously found that a functional binding site on 
p47phox for Class IA PI3K-derived phospho-lipids, PI(3,4)P2 
and PI(3,4,5)P3, is needed for extracellular ROS production, 
but is dispensable for intracellular ROS production 
during early phagocytosis [20]. This finding is consistent 
with the observation that PI(3,4)P2 and PI(3,4,5)P3  
are found on the early phagosomal cup at the location of 
and during the time of extracellular ROS production, but 
are not detected on the mature, internalized phagosome. 
Notably, p85α, the regulatory subunit of Class IA PI3K 
and thus necessary for PI(3,4,5)P3 production, remains 
associated with the phagosome membrane even when 
PI(3,4,5)P3 is no longer present [21]. These observations 
led us to hypothesize that p85α differentially influences 
extracellular and intracellular NADPH oxidase activity 
and performs a function on the internalized, sealed 
phagosome independent of PI(3,4,5)P3 production.

To test this hypothesis, we used neutrophils 
lacking p85α, p55α, and p50α (encoded by Pik3r1), 
and distinguished production of extra- and intracellular 
ROS. We found that the PI3K regulatory subunits are not 
necessary for formation of the early phagosome cup or 
for production of extracellular ROS. However, we show 
that the loss of p85α leads to enhanced intracellular ROS, 
which also contributed to improved killing of methicillin-
susceptible S. aureus (MSSA) and methicillin-resistant S. 
aureus (MRSA).

Our work provides a novel target in the regulation 
of enhancing neutrophil intracellular ROS, which has been 
shown to cooperate with anti-microbial agents to increase 
bacterial killing [22, 23]. This is an improvement over 
indiscriminately increasing global ROS production, which 
could lead to inflammation-induced tissue injury. Using 
intracellular ROS to augment anti-microbial therapies may 
provide a novel strategy in the treatment of antibiotic-
resistant pathogens.

results And dIscussIon

Loss of regulatory subunits p85α, p55α, and p50α 
decreases extracellular ROS production, but 
increases intracellular ROS production

As global knockout of Pik3r1-/- leads to perinatal 
lethality [24], timed matings were performed between 
Pik3r1+/- mice for the isolation of fetal liver-derived 
hematopoietic cells at 14.5 days post-conception. WT 
(Pik3r1+/+), Pik3r1+/-, and Pik3r1-/- (lacking expression of 
p85α, p55α, and p50α) [24, 25] fetal liver mononuclear 
cells were differentiated in vitro to neutrophils [20], and 
each population demonstrated similar differentiation as 
assessed by morphology and Mac-1/Gr-1 staining (Figure  
1A and 1B). Consistent with previous studies reporting 
increased PI3K catalytic subunit degradation upon loss of 
the stabilizing regulatory subunits [24, 26], p110α, p110β, 
and p110δ protein expression was substantially reduced in 
the Pik3r1-/- neutrophils (Figure  1C). Notably, however, 
the levels of the NADPH oxidase subunits (p67phox, p47phox, 
and p40phox) were unchanged (Figure  1C). 

To examine the function of the PI3K regulatory 
subunits in neutrophil ROS production, we examined 
both extra- and intracellular ROS production in response 
to various stimuli. Pik3r1-/- neutrophils had significantly 
reduced FcγR (hIgG-latex)-stimulated extracellular 
ROS (50% of WT, Figure  1D), but similar amounts of 
CR (SOZ)-stimulated extracellular ROS (Figure  1D). 
Together with the lower expression of the PI3K catalytic 
subunits, this finding supports the notion that PI3K activity 
is required for extracellular ROS mediated by FcγR 
stimulation, and is consistent with our previous findings 
[20]. In contrast to that observed with extracellular ROS, 
loss of p85α/p55α/p50α led to significantly increased 
FcγR- and a trend of enhanced CR-stimulated intracellular 
ROS production (Figure  1E). Both extra- and intracellular 
ROS production from heterozygous Pik3r1+/- neutrophils 
was similar to that of WT. 

Immunoblots confirmed that activated Akt was 
reduced in Pik3r1-/- neutrophils; however, myeloperoxidase 
(MPO) levels were equal in WT and Pik3r1-/- cells (Figure  
1F), demonstrating that the increased intracellular ROS 
production in Pik3r1-/- neutrophils is due to a regulatory 
effect of p85α/p55α/p50α, rather than due to reduced 
MPO expression and diminished ROS consumption. 
Furthermore, by immunostaining with anti-F-actin and 
anti-Rac to visualize the phagosomes at 10min and 30min 
post-SOZ stimulation, we found a similar phagocytic 
index in WT and Pik3r1-/- neutrophils (Figure  1G and 
1H), indicating that increased FcγR- and CR-stimulated 
intracellular ROS levels in Pik3r1-/- neutrophils is not 
merely due to enhanced phagocytosis, but to a regulatory 
role of p85α/p55α/p50α on NADPH oxidase activity.
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Figure 1: Characterization of WT, Pik3r1+/-, and Pik3r1-/- fetal liver-derived neutrophils. Differentiation of fetal liver cells 
taken from WT, Pik3r1+/-, and Pik3r1-/-embryos was assessed based on A. morphology (images taken with 40X objective) and b. Mac-1/
Gr-1 staining; C. Protein expression of PI3K catalytic subunits and NADPH oxidase subunits as measured by immunoblot; D. Extracellular 
and E. intracellular ROS production was measured in WT, Pik3r1+/-, and Pik3r1-/- fetal liver-derived neutrophils stimulated with hIgG-latex 
(FcγR simulation) and SOZ (CR stimulation), n=10, *p<0.0001 comparing extracellular ROS production from Pik3r1-/- to WT in response 
to hIgG-latex, and n=10, p=0.0009 comparing intracellular ROS production from Pik3r1-/- to WT in response to hIgG-latex, statistical 
analyses performed by two-tailed, one-sample Student’s t-test; F. Immunoblotting for phospho-Akt and MPO in WT and Pik3r1-/- fetal 
liver-derived neutrophils, stimulated for 0min, 10min, and 30min with SOZ; G. WT and Pik3r1-/- fetal liver-derived neutrophils were 
stimulated with SOZ and immunostained with anti-F-actin and anti-Rac to visualize phagosomes and quantitate phagocytic index, images 
taken with 100× objective; H. 10min and 30min after SOZ stimulation, phagocytic index (PI) was calculated as PI = (% of phagocytic cells 
containing ≥ 1 particle) × (mean number of particles/phagocytic cell containing particles).



Oncotarget23099www.impactjournals.com/oncotarget

Re-introduction of p85α corrects the levels of 
extra- and intracellular ROS production in 
Pik3r1-/- neutrophils

We next examined the effect of re-introducing p85α 
(Figure  2A) on extra- and intracellular ROS production 
from Pik3r1-/- fetal liver-derived neutrophils [27]. We 
found comparable neutrophil differentiation (Mac-1, Gr-
1) between Pik3r1-/- neutrophils and Pik3r1-/- neutrophils 
upon re-introduction of p85α (Figure  2B). Protein 
levels of PI3K catalytic subunit p110δ were increased 
upon re-introduction of p85α, and concordantly, Akt 
phosphorylation was normalized (Figure  2C). Moreover, 
p85α restored hIgG-latex-stimulated extracellular ROS 
levels and inhibited hIgG-latex-stimulated intracellular 
ROS compared to Pik3r1-/- neutrophils (Figures 2D, 2E, 
and 2F). Consistent with a dispensable role of p85 α, p55α, 
and p50α on SOZ-stimulated extracellular ROS (Figure  
1D), re-introduction of p85α did not alter SOZ-stimulated 
extracellular ROS production from Pik3r1-/- neutrophils 
(Figure  2G); however, SOZ-stimulated intracellular 
ROS was inhibited by re-introduction of p85α. These 
findings demonstrate that of the PI3K regulatory subunits, 
p85α uniquely is able to negatively regulate hIgG-latex- 
and SOZ-stimulated intracellular ROS production. 
Furthermore, as the C-terminal portion of p85α (nSH2, 
iSH2, and cSH2 domains, the shared domains between 
the p85α, p55α, and p50α regulatory proteins) is critical 
for promoting PI3K activity, these findings suggest that 
the N-terminus of p85α (SH3 and BH domains) functions 
to negatively regulate intracellular ROS.

Elevated intracellular ROS in Pik3r1-/- neutrophils 
enhances bacterial killing

Based on our observation that Pik3r1-/- fetal liver-
derived neutrophils have increased intracellular ROS 
production in response to Fcγ receptor and CR stimulation, 
we predicted that Pik3r1-/- neutrophils would demonstrate 
enhanced S. aureus-stimulated ROS production and 
enhanced bacterial killing compared to WT neutrophils. 
Consistent with our hypothesis, Pik3r1-/- fetal liver-
derived neutrophils produce more intracellular ROS in 
response to serum-opsonized MSSA (Wood 46), while 
the extracellular ROS levels were not affected (Figures 
3A and 3B).

To determine the antimicrobial function of Pik3r1-/- 
neutrophils, we performed a bacterial killing assay. 
WT and Pik3r1-/- fetal liver-derived neutrophils were 
incubated with serum-opsonized methicillin-sensitive S. 
aureus (MSSA) (Wood 46) over 60 min, and at various 
time points, neutrophil samples were quenched in ice-cold 
LB-saponin, sonicated to liberate ingested bacteria, and 
surviving bacteria were enumerated by plating on LB-
agar. Surviving MSSA was reduced when incubated with 

Pik3r1-/- neutrophils compared to WT neutrophils at all 
time points, with a trend toward statistical significance at 
60 minutes (Figure  3C).

Given the promising results using fetal liver-derived 
neutrophils and Wood 46 MSSA, we turned our attention 
to a more relevant pathogen, MRSA. Hypervirulent 
MRSA, such as LAC MRSA USA300 strain, has become 
an important public health problem due to the sheer 
number of infections and widespread antibiotic resistance 
[3]. Consistent with results observed using MSSA, we 
observed enhanced intracellular ROS in fetal liver-derived 
Pik3r1-/- neutrophils compared to WT neutrophils in 
response to serum-opsonized MRSA (USA300), and no 
difference in extracellular ROS production (Figures 3D 
and 3E). We next conducted bacterial killing assays using 
a more physiologic source of neutrophils directly isolated 
from the bone marrow using a percoll gradient. Since 
global knockout of Pik3r1 induces perinatal lethality, 
we utilized a murine model bearing a conditionally 
targeted Pik3r1 allele (Pik3r1flox/flox) crossed with Mx1-
Cre. Pik3r1flox/flox;Mx1Cre+ and Pik3r1flox/flox;Mx1Cre- 
littermate controls were treated with polyI:polyC to 
induce recombination of the Pik3r1 allele. Animals 
were permitted to recover from polyI:polyC treatment 
for at least 12 weeks prior to isolation of bone marrow 
neutrophils. Phenotypically and morphologically, bone 
marrow neutrophils isolated directly from the Pik3r1flox/

flox;Mx1Cre+ and Pik3r1flox/flox;Mx1Cre- bone marrow were 
similar (data not shown). To control for phagocytosis, 
neutrophils were incubated with GFP-expressing MRSA 
for 2 hours, followed by quenching of extracellular 
GFP using trypan blue. To measure bacterial killing, a 
second plate was incubated for an additional 2 hours and 
then quenched with trypan blue. Following quenching, 
intracellular GFP levels were read immediately on a 
fluorometer to measure phagocytosis and bacterial killing, 
respectively. GFP-expressing MRSA were phagocytized 
equally (Figure  3F); however, significantly reduced 
GFP levels, previously shown to correlate with bacterial 
survival [28], was observed in Pik3r1flox/flox;Mx1Cre+ 
neutrophils compared to Pik3r1flox/flox;Mx1Cre- neutrophils 
(Figure  3G). Collectively, these findings suggest that 
increased intracellular ROS production may provide 
enhanced bacterial killing, in particular of MSSA and 
MRSA.

Our findings demonstrate that genetic disruption of 
Pi3kr1 differentially regulates NADPH oxidase activity on 
the plasma membrane (extracellular ROS production) v. 
the phagosome membrane (intracellular ROS production). 
These novel findings are consistent with other studies 
demonstrating that the regulation of NADPH oxidase 
activity differs between the plasma and phagosome 
membranes, and highlights the varied environments of 
these two compartments. An example relevant to the 
current work is the Class III PI3K product, PI3P, which is 
a strong positive regulator of intracellular ROS production 
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Figure 2: Re-introduction of p85α in Pik3r1-/- fetal liver-derived neutrophils normalizes hIgG-latex-stimulated extra- 
and intracellular ROS. A. Domain structure of p85α construct, BH: Bcr homology domain; B. Representative flow cytometry of fetal 
liver-derived neutrophils upon transduction with p85α (either in tandem with EGFP or tagged with YFP); C. Immunoblotting for Akt, PI3K 
catalytic subunit p110δ, and NADPH oxidase subunits in Pik3r1-/- and Pik3r1-/- + p85α neutrophils, stimulated for 0 and 23min with SOZ; 
D. Representative extracellular and E. representative intracellular ROS production measured in Pik3r1-/- and Pik3r1-/- + p85α neutrophils 
stimulated with hIgG-latex; F. Quantitative assessment of hIgG-latex-stimulated extra- and intracellular ROS production, n = 6, *p = 
0.04 comparing intracellular ROS production from Pik3r1-/- to Pik3r1-/- + p85α; G. Quantitative assessment of SOZ-stimulated extra- and 
intracellular ROS production, n = 7, **p = 0.05 comparing intracellular ROS production from Pik3r1-/- to Pik3r1-/- + p85α; statistical 
analyses performed by two-tailed, one-sample Student’s t-test.



Oncotarget23101www.impactjournals.com/oncotarget

Figure 3: Pik3r1-/- neutrophils demonstrate superior killing of MSSA (Wood 46) and MRSA (USA300). A. Extracellular 
and B. intracellular ROS production from WT and Pik3r1-/- fetal liver-derived neutrophils in response to serum-opsonized MSSA (Wood 
46), representative of 2 independent experiments; C. WT and Pik3r1-/- fetal liver-derived neutrophil killing of MSSA (Wood 46) was 
measured by counting the number of surviving bacteria after 0, 10, 30, and 60min incubation, n = 3, p = 0.09 comparing Pik3r1-/- to WT 
at 60min, statistical analysis performed by unpaired, two-tailed Student’s t-test; D. Extracellular and E. intracellular ROS production was 
measured in WT and Pik3r1-/- neutrophils stimulated with serum-opsonized MRSA (USA300), experiment performed on one occasion. 
F. Phagocytosis and G. killing of MRSA (USA300) by Pik3r1flox/flox;Mx1Cre- and Pik3r1flox/flox;Mx1Cre+ bone marrow neutrophils was 
measured by fluorescence remaining inside cells after washing and quenching extracellular fluorescence, n = 30, *p < 0.001 comparing 
Pik3r1flox/flox;Mx1Cre- to Pik3r1flox/flox;Mx1Cre+, statistical analysis by unpaired, two-tailed Student’s t-test, experiment conducted on two 
independent occasions.
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but plays no role in extracellular ROS production. A key 
molecule increasing Class III PI3K activity and increased 
PI3P production on the phagosome is the Rab GTPase, 
Rab5. Down-regulation of Rab5 reduces the capacity of 
S. aureus-containing phagosomes to fuse with endocytic 
organelles resulting in poorer bacterial killing [29]. 
Notably, p85α is known to interact with Rab5 and to 
bear GTPase Activating Protein (GAP) activity towards 
Rab5-GTP, which is localized to the p85α BH domain 
(Figure  2A). These considerations suggest that a feasible 
mechanism underlying the negative regulatory effect 
of p85 α on intracellular ROS may be downregulating 
Rab5a-GTP levels via its GAP function [30, 31], resulting 
in reduced Class III PI3K-derived PI3P. Thus, while 
our current work cannot exclude the possibility that 
p85α negatively regulates intracellular ROS production 
in an indirect manner due to altered expression of the 
Class IA PI3K catalytic subunits, a thought-provoking 
consideration is that p85 α functions in a Class IA PI3K 
catalytic subunit-independent manner to regulate NADPH 
oxidase activity on the phagosome membrane.

Collectively, our findings show that neutrophils 
lacking the PI3K regulatory subunit p85α produce 
significantly more intracellular ROS without affecting 
phagocytosis. Furthermore, this correlates to significantly 
increased killing of both MSSA and MRSA. These results 
suggest a new strategy for combating the growing threat 
of resistant microorganisms.

MATERIALS AnD METHODS

Preparation of particulate stimuli

Human IgG-opsonized latex beads (1.98 µm or 
2.94µm), serum opsonized-zymosan A particles (Sigma, 
St. Louis, MO, USA), and serum-opsonized MSSA (Wood 
46) were prepared as previously described [32-34]. MRSA 
USA300 (LAC) expressing superfolded GFP was grown 
overnight at 37°C with shaking, OD600 was measured 
to identify mid-logarithmic growth, and bacteria were 
washed with PBS before adding to PMNs [35]. Final 
concentrations were 5:1 IgG-beads/PMNs; 400 µg/
ml SOZ; 40:1 S. aureus/PMNs; 60 µg/ml hyphae; 50:1 
MRSA/PMNs.

Western blots

Cell lysates were prepared from murine neutrophils 
using 1% Triton X-100, 15 µg lysate was subjected to 
SDS-PAGE separation and immunoblotting using a 
nitrocellulose membrane (Thermo Scientific). Blots were 
blocked with 5% BSA and then incubated overnight with 
anti-p85α, -p110δ (Santa Cruz);anti-p67phox, -p47phox, 
-p40phox (Millipore); anti-p110a, -p110b, -phospho-Akt 

(Ser473), or -MPO (Cell Signaling). Blots were then 
incubated with HRP-conjugated secondary antibody and 
signal was visualized with ECL detection (Pierce).

Confocal microscopy

SOZ-induced phagocytosis in WT and Pik3r1-/- fetal 
liver-derived neutrophils was imaged using a spinning-
disk (CSU10) confocal system mounted on a Nikon 
TE-2000U inverted microscope with an Ixon air-cooled 
EMCCD camera (Andor Technology, South Windsor, 
CT) and a Nikon Plan Apo 100X 1.4 N.A. objective 
as described previously [16, 20, 21]. Images were 
analyzed with Metamorph software (Universal Imaging; 
Downington, PA).

Animal husbandry

Mice were housed and bred in accordance with 
the Institutional Animal Care and Use Committee of the 
Indiana University School of Medicine. Pik3r1+/- mice 

[24, 25] were subjected to timed matings, dams were 
euthanized at day 14 post-conception, and fetal livers 
were harvested for generation of Pik3r1+/+, Pik3r1+/-, and 
Pik3r1-/- neutrophils. Pik3r1flox/flox mice [36] were crossed 
with Mx1-Cre+ mice to produce Pik3r1flox/flox; Mx1-Cre+ 
mice. Cre expression was induced by 3 intraperitoneal 
injections of polyI:polyC (300ug), and recombination of 
Pik3r1 was confirmed by genotyping.

neutrophil differentiation

Fetal liver cells were collected from embryos at 
day 14 of gestation, genotyped, and differentiated into 
neutrophils in α-minimum essential medium with 20% 
heat-inactivated FCS, 1% penicillin/streptomycin, 50ng/
ml G-CSF and 50units/ml IL-3. Every 2 days, cells were 
counted and replated at a concentration of 0.5×106/ml in 
fresh differentiation medium. Activity was analyzed on 
days 6 and 7 of differentiation [20].

Reintroduction of p85α

p85α cDNA was cloned upstream of an internal 
entry site (IRES) and the enhanced green fluorescence 
protein (EGFP) in the bicistronic retroviral plasmid, 
pMIEG3 [37]. Alternatively, p85α was tagged on the 
C-terminal end with yellow fluorescent protein (YFP) and 
cloned into the retroviral plasmid, pMSCV (Clontech). 
Ecotropic retrovirus containing the vectors was used 
to transduce Pik3r1-/- fetal liver cells, cells were sorted 
for EGFP or YFP positivity, and differentiated into 
neutrophils. Data using both constructs are combined 
for statistical analyses, as the YFP tag did not alter the 
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function of p85α (data not shown). 

ROS detected by chemiluminescence in intact 
cells

Oxidant production was measured by 
chemiluminescence using 2×105 neutrophils during 
synchronized phagocytosis of particulate stimuli [20, 21, 
38, 39]. Extracellular ROS was measured using 20µM 
isoluminol with 20U/ml horseradish peroxidase (HRP), 
and intracellular ROS was measured using 20µM luminol 
with 20U/ml HRP and 10µg/ml superoxide dismutase 
(SOD) [20, 21, 32]. An Lmax microplate luminometer 
(Molecular Devices, Sunnyvale, CA, USA) was used to 
record luminescence as previously described [20, 21].

Methicillin-susceptible S. aureus (Wood 46) killing

6×106 WT or Pik3r1-/- fetal liver-derived neutrophils 
were incubated with 1.5×106 serum-opsonized MSSA 
(strain Wood 46) in 300 µl PBS for 60 min. Samples 
were added to ice-cold Difco nutrient broth (BD, Franklin 
Lakes, NJ, USA) with 10% saponin and sonicated to 
liberate ingested bacteria [32]. Surviving bacteria were 
enumerated by plating on Columbia agar (Sigma, St. 
Louis, MO, USA).

neutrophil isolation from bone marrow and 
MRSA (USA300 LAC) killing

Mice were sacrificed, bone marrow cells were 
collected from the pelvis, femur, and tibia, and neutrophils 
were isolated using a 62% and 55% percoll gradient. 
Neutrophils were washed in Hanks’ Balanced Salt solution 
(Sigma, St. Louis, MO, USA), resuspended in Iscove’s 
Modified Dulbecco’s Medium (Life Technologies, 
Carlsbad, CA, USA), and plated at 2x105 cells per well 
into a 96well plate coated with celltak (Corning, Corning, 
NY, USA). MRSA (USA300 strain LAC) was incubated 
with neutrophils for 2h at 37°C, and then plates were 
washed with warm PBS. For phagocytosis analysis, 50uL 
of 500mg/mL trypan blue was added immediately to 
PBS-washed plates to quench extracellular fluorescence. 
For bacterial survival analysis, PBS-washed plates were 
incubated for an additional 2h at 37°C followed by the 
addition of 50uL of 500mg/mL trypan blue. For both 
phagocytosis and bacterial killing analyses, plates were 
read on a fluorometer to measure intracellular GFP 
fluorescence promptly following the addition of trypan 
blue. Fluorescence intensity correlates to bacterial survival 
based on the previously defined correlation of HOCl-
bleaching of superfolded GFP to bacterial viability.
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